FROCEEDINGS OF THE INTERMATIOMAL COMFEREMCE

ON FIFTH GENERATION COMPUTER SYSTEMS 1992,
edited by ICOT. © ICOT, 1992

166

Experimental Parallel Inference Software

Katsumi Nitta

Kazuo Tald

Nobuyuki Ichiyoshi

Seventh Research Laboratory
Institute for New Generation Computer Technology
4-28, Mita 1-chome, Minato-ku, Tokyo 108, Japan
{nitta,taki,ichiyoshi}@icot.or.jp

Abstract

As tools to develop large scale intelligent systems, ICOT
has developed parallel inference machines PIMs, a par-
allel logic programming langnage KL1 and an operating
system PIMOS, In order to evaluate the appropriateness
of these tools to the development of practical intelligent
systems, we have developed four application programs in
KL1 — the L5I-CAD systerm, the Genome Analysis Sys-
tem, the Legal Reasoning System and the Go Playing
Game System —, and cooperating manufacturers have
developed eight application programs. They cover a wide
range of knowledge processing techniques such as case-
based reasoning, model-based reasoning, qualitative rea-
soning and machine learning,

To obtain high performance from each application pro-
gram, we have developed parallel programming tech-
niques such as concurrent algerithms and load balanc-
ing. Moreover, we analyzed the performance of parallel
programming technology theoretically. The result forms
good guidelines for the selection of parallel programming
techniques.

We introduce each application program and the results
of performance analysis, and discuss our experiences of
parallel programming.

1 Introduction

As tools to develop knowledge processing systems, [COT
has developed an experimental parallel inference machine
Multi-PSI and five models of parallel inference machine
PIMs [Uchida et al. 1988] [Goto ef al. 1988]. They are
MIMD meachines on which user’s programs written in the
parallel logic programming language KL1 can run in par-
allel [Chikayama 1992]. As KL is based on the theory of
first order predicate logic, it is useful to represent human
knowledge naturally and to formalize inference processes
naturally. Therefore, we can develop large-scale intelli-
gent systems easier by using PIMs and KL1. However, if
we develop KL1 programs naively, we cannot obtain high
performance because the performance can be affected by

sequential bottlenecks and various parallelization over-
heads; Good parallel algorithms and load distrdbution
techniques have to be developed. Moreover, to develop
efficient parallel programs, we have to understand the
characteristics of the KL1 language and the architec-
tures of Multi-P5] and PIMs (Figure 1). As these par-
allel programming technologies are closely refated, when
we develop KL1 programs, we have to choose suitable
techniques carefully. Therefore, we need guidelines for
selecting suitable parallel programming techniques and
for estimating the relation between data size, number
of processors, and performance. To get such guidelines,
in addition to developing application programs, we have
to conduct theoretical analysis of parallel programming
techniques.

Application Programs

(Paraliel Problem Solving)

f)

-d—---a-[Concurrent Ngarithm]

Theaoretical Load Distribution
Analysis M:‘L]

,.E..,..[KL1 imprementaﬁm_]

| J«a-&ralle[Inference Macl"tines]

Crt D

Figure 1: Parallel programming technologies

We have developed parallel application programs to
achieve the following goals.

» Evaluation of applicability of PIMs to developing
practical intelligent systems:

As PIMs solve problems efficiently by parallel infer-
ence, developing large scale systems using them is
easier than using other computers. We wish fo cul-
tivate application fields and develop Al techmiques
where PIMs are effectively used.

o Development of Parallel Programeming Techniques:
By analyzing the behavior of application programe,
we can extract parallel programming techniques to
obtain high performance. A library of these tech-
niques will help to develop new parallel programs.

In Section 2, we will give an overview of the research
activities of the seventh research laboratory of ICOT.
Section 3 presents application programs developed in-
side [COT, and Section 4 presents application programa
developed outside ICOT. In Section 5, the research ac-
tivity in performance analysis is reported. In Section 6,
we summarize the experiences of parallel program devel-
opment.

2 Research Activities

Ag we explained in the previous section, to develop intel-
ligent systems on PIMs, we have to cover a wide range of
technologies from the knowledge of human experts to the
features of hardware. To manage the various researches
effectively, we organized the researchers of the seventh re-
search laboratory into four Application Groups and one
Performance Analysis Group (Figure 2). The roles of
the Application Groups and the Performance Analysis
Group are to develop specific application programs, and
to give guidelines on parallel programming techniques by
analyzing the behavior of KL1 programs theoretically.

Following are the researches of the Application Groups.
To acquire knowledge from human experts effectively,
these groups established four working groups: parallel
IC CAD (PIC), genetic information processing (GIP),
advanced design system (ADS), and knowledge architec-
tare (KAR).

[] LS[—CJ*LD S_!fstsm:
The LSI design process consists of several stages,
such as architecture design, function design, logic de-
sign, micro program design, logic simulation and lay-
out design. This group has developed the following
two systems.

— Logic Simulator
~ LSI Layout Systems
s Genome Analysis System:
One of the most important targets of genome analy-

sis is to interpret the meanings of protein sequences.
This group has developed the following systems.

— Protein Sequence Analysis System

167

— Protein Folding Simulatien Program
= Protem Structure Analysis Program

& Legal Reasoning System:
The difficulty of legal ressoning stems from the am-
biguity of legal concepts. To deal with ambiguous
concepts, this group has developed a legal reasoning
gystem with a rule-based engine and a case-based
engine.

o Go Playing Game System:
The game of gois a traditional Japanese board game.
This group has developed a parallel go playing game
system.

In the next section, we will present an overview of each
system.

Development of Application Programs

(Lsl-CAD) (Genome Analysis)

[Lt-;fgal Fte&suning] [Gn Playing Gama_J

Specific Problem Solving

[Performance Analysis]

General Framework

Figure 2: Research groups

Besides the above application programe, cooperating
manufacturers have developed knowledge processing sys-
tems in order to evaluate the appropriateness of PIMs to
these fields,

» Co-HLEX: Co-operative Recursive LSI Layout Prob-
lemn Selver _
(hierarchical and cooperative problem solving)

» Cooperative Logic design Expert System on a Multi-
Processor
{assumption-based reasoning, cooperative problem
solving)

o Case-based circuit design system
{case-based reasoning)

¢ High Level Synthesis by Parallel Rule-based Anneal-

g
(rule-based annealing)

» Design Supporting System based on Deep Reasoning
(gualitative reasoning)

I68

* A Diagnostic and Control Expert System Based on
& Plant Model
{maodel-based rersoning, qualitative reasoning)

s Adaptive Model-based Diagnostic System (model-
based reasoning, machine learning)

o Motif Extraction System
{genetic algorithm, machine learning)

These systems cover varions knowledge processing sys-
tems such as CAD systems, diagnosis systeims, and con-
trol systems. They are related to various Al tech-
niques such as case-based reasoning, gualitative reason-
ing, model based reasoning, and machine learning,

We will introduce these systems in Section 4.

3 Overview of Application Pro-
grams (1)

3.1 Logic Simulator
3.1.1 Background

A logic simulator is used to verify not only the func-
tions of designed circnits but alse the timing of signal
propagation. Sinee logic simnolation is one of the most
time-consuming stages in LSI design, faster simulators
are urgently needed. A parallel logic simulator is one
likely way of producing quick simulation.

Parallel logic simulation is treated as a typical applica-
tion of parallel discrete event simulation (PDES). PDES
can be modeled so that several objects (state automata)
change their stales by communicating with each other.
A messape has the information of an event whose oo
currence time is stamped on the message (time-stamp).
Since messages should be received and evaluated in the
time-stamp order by their destination objects, the time-
keeping mechanism is essential for efficent execution
of PDES. Several mechanisms have been proposed for
PDES time-keeping, however, each has its own peculiar
shortcomings. ’

We are targeting an efficient logic simulator on PIM,
which is a distributed memory MIMD machine. Wae
adopled the Time Warp mechanism {TW), which has
been considered to contain a heavy overhead — a roll-
back process. In practice, however, TW has never been
evaluated in detail on MIMD machines. We expected
that TW would be a suitable logic simulator on large-
scale MIMD machines with some deviess that reduced
the rollback overhead. Thus, a local message scheduler,
an antimessage reduction mechanism, and a load distri-
bution scheme were added to our system and evaluated.

3.1.2 Overview of Logic Simulator

The system simulates combinatorial circuits and sequen-
tial circuits that have feedback loops. It handles three
values: Hi, Lo, and X (unknown). A different delay time
can be assigned to each gate (non-unit delay model).
Sinee this simuolator handles gates ouly, flip-flops and
ather functional blocks should be completely decom-
posed into gates,

The Time Warp mechanism (T'W) [Jefferson 19835] was
proposed by D). R. Jefferson. In PDES using TW, each
objecl usually acts according to received messages and
also records the history of messages and states, assuming -
that messages arrive chronologically. But when a mes-
sage arrives at an abject cut of time-stamp order, the ob-
ject rewinds its history (this process is called rollback]),
and makes adjustments as if the message had arnived in
correct time-stamp order. After rollback, ordinary com-
putation is resumed. If there are messages which shounld
not have been sent, the object also sends antimessages
in order to cancel those messages.

Since TW contains its own peculiar overheads caused
by the rollback processes, some device for reducing the
overheads is needed for quick simulation. Purthermore,
inter-PE communication overlieads must be reduced be.
cause the simulator works on a distributed memory ma-
chine such as PIM.,

For these purposes, a load distribution scheme, a local
message scheduler, and an antimessage reduction mech-
anism are included in our simulater. These are expected
to reduce the overheads described above and might pro-
mote the efficient execution of the simulator.

Each device is outlined below.

¢ Cascading-Oriented Partitioning

We propose the Cascading-Oriented Partitioning strat-
egy for partitioning circuits to atain high-quality load
distribution {(Figure 3).

A4

Y/

[/,

-

Figure 3: Cascading-Oriented Partitioning

This scheme provides adequate partitioning soluticns
that satisfy these three requirements: load balancing,

Spieedup

00| F==""Tgeui e
—=— s13207 -
504 "

A0

o i g0 a0 40 S0 60
MNo. of PEz
Figure 4: Speedup

keeping inter-PE communication frequency low, and de-
riving a lot of parallelism.

Local Message Scheduler

During simulation, there are usually several messages
to be evaluated in a PE, When TW is used, the bigger
time-stamp a message has, the more likely the message is
to be roiled back. For this reason, appropriate message
scheduling in each PE is needed for reducing rollback
frequency.

¢ Antimessage Reduction

As long as messages are sent through the KL1 stream,
messages arrive at their receiver in the same order as
they are transmitted. In this environment, subsequent
antimessages can be reduced, We adopted this optimiza-
tion, expecting that it would reduce the rollback cost.

3.1.4 Result

We executed several experimental simulations on the
Multi-PSL. Four sequential circuits, presented in IS-
CAB'80, were simulated in our experiments,

Figure 4 shows the speedup figures when the circuits
were simulated using various numbers of PEs. The best
performance is also shown there. In the best case, very
good speedup of 48-fold was attained wsing 64 PEs. Ap-
proximately 90K events/sec performance, fairly good for
a full-software logic simulator, was alse atkained. This
experiment revealed that the Time Warp mechanism
would be an efficient time-leeping mechanizm,

In addition, we analyzed several factors which
possibly limited speedup. Details are reported in
[Matsumoto et al. 1992).

3.2 LSI Layout Systems
3.2.1 Background

The LSI layout consists of two stages. The first is
placement, which determines the physical position of the
cireuit components. The next is rouling, which finds

169

the paths between terminals of the circuit components.
These are the most time-consurning stages in L8] design.
Therefore high performance layout CAD systems lead to
& shorter LST design period.

Our aim is to study conmcurrent algorithms and load-
balancing methodologies through design and develop-
ment of parallel layout programe. Also, we are targeting
the system to attain a high quality layout running on
Multi-P5I and PIM.

3.2.2 Ovwerview of LSI Layout System

{1) Placement System Our placement system is im-
plemented for the standard cell type LS without any
macro blocks. The standard cells have uniform height
and variant widths. These cells are assigned into multiple
cell-blocks s0 as to minimize the chip area (strictly speak-
ing, the total estimated wire length). The cell placement
problem is a combinatorial optimization problem. As a
powerful technique to solve such problems, simulated an-
nealing (SA) is well-known. In order to execute SA ef-
ficiently, cooling schedules are important. In our place
ment system, the time-homogeneous parallel SA algo-
rithm [Kimura ef al. 1991), which constructs appropri-
ate cooling schedules automatically, was adopted. Figure
5 shows an outline of this algorithm.

(2) Routing System Our routing system finds
pathe based on the loock-ahead line search algorithm
[Kitazawa 1985]. This algorithm provides high quality
solutions in a short execulion time, however, it was orig-
inally proposed with assumption of sequential execution.
We introduced a new programming style based on a con-
current objects model in routing problems, and improved
the basic algorithm to make it suitable for parallel execu-
tion. The concurrent objects model is expected to derive
parallelism of small grain size. We designed the concur-
rent algorithm so that objects=processes corresponds to

T (temperature)
o t ke a cooling schedule for the
T:h .3 sequential simulated annealing
n] e
Ts+ I'il‘
0 t (time}
U_ parallelize
Ty amsnes
Tz
T2
Ta

Ts

I : 2 probabilistic exchange of solutions
f=1/% : frequency of exchanges

Figure 5: Time-homogeneous parallel simulated anneal-
ing

170

[1

e ff;a

-y

line-processes

™,
\\.
N

i

Figure 6: Master line processes and line processes

(LTI T ITITE
T IO O 1
[T T TR IT0)
LL I TIF OT T TR

Figure 7: Placement results

every line segment on & routing grid. As in Figure 6,
each process corresponds to each grid line (master line
process) and line segment (line process) on it. A mas-
ter line process manages line processes on the same grid
line and passes messages between the line processes and
crossing line processes.

3.2.3 Result

(1) Placement System The MCNC benchmark data
consisting of 125 cells and 147 nets was chosen for our
measurements. In the mitial placement, the value of en-
ergy was 911520 (the lower bound of the chip area is
estimated as 1.372[mm?]).

When we executed our program for 30 minutes using 64
processors, the final energy was 424478 (the lower bound
of the chip ares is estimated as 0.615 [mm?)).

Experimental results showed that final energy is re-
duced by 56.0 percent in comparison to the initial energy.
Figure T shows the placement results.

(2) Routing We evaluate our router from the follow-
ing three points of view using real LSl chip data. (1)
Data size vs. Speedup, (2) Parallelism vs. Wiring Rate,
{3) Comparison with & general purpose computer,

Figure § shows the system performance when the rout-
Ing program was executed using various numbers of PEs.
The size of DATAZ2 is larger than DATAL. In the best
case, 24-fold speedup was attained using 64 PEs.

Speedup
25
20 DATAZ
15
10 DATAT

g

¢ [] 18 a2

Mo. of PEs

Figure 8: Speedup

Other experimental results
[Date et ol 1992).

are reported im

3.3 Protein Sequence Analysis Pro-
grams

3.3.1 Background

A primary structure of protein is a linear chain of amino
acids. After a profein is created in the cell, it is folded
and forms a complex structure,

The similarity analysis of protein sequences by the use
of multiple alignment is an important technique for pre-
dicting the function and higher order structure of pro-
teins and for drawing phylogenetic trees of creatures. An
alignment is reslized by lining the sequences with cor-
responding characters (amino acids) directly above one
another as follows.

+ o TICSFADCGAAYNENWELQAHLC-KH. . .
. . -FPCKEEGCEKGFTSLHHLTREFL-TH. . .
.+ -FTCDEDFCOLRFTTKANMKKHFNEFH. . .

Until recently, multiple alignment was produced by hand
by biologists. However, with the increasing rate of de-
termination of protein sequences, computer assistance in
multiple alignment is becoming indispensable.

It is well-known that once a similarity value between
amino acids is given, the multiple alignment problem
can be solved theoretically by Dynamic Programming
(DP)[Needleman et al. 1970]. An alignment algorithm
by DP method is the same as finding the shortest path
in & network constructed by input sequences (Figure 9).
N-way DP can align n sequences simultanecusly and can
derive the opiimal alignment of these sequences,

One problem with DP is the incredible computational
time it requires. N-way DP takes computational time in
the order of the n-th power of the sequence length. To
keep this expansion of computational time manageable,
neasly all multiple alignment systems developed so far
employ 2-way DP as a base and combine the results of
2-way DP to produce multiple alignment [Barton 1990].

ADH-E
A-HIE

Figure 9: Alignment by 2-way DP

This class of alignment methods is good because of the
small computational time required, but this is not suf-
ficient to preduce an alignment of sequences when their
gimilarities are low.

3.3.2 Overview of Protein Sequence Analysis
Programs

To produce multiple alignments of high-quality with
small increases in computational time, we developed
several multiple alignment systems. MASCOT (Mul-
tiple Alignment System developed by iCOT, see Fig-
ure 10) is a multiple alignment system based on DP
[Hirosawa ef al. 1991].

When protein sequences are given to MASCOT, MAS-
COT, firstly, classifies them into several clusters based on
the similarities of sequences. Wext, for each cluster, se-
quences are aligned from the neareat tree sequences using
3-way DP. Then, each intra-cluster alignment is refined
by the simulated annealing method (Figure 5). Finally,
each intra-cluster alignment is merged into a single align-
ment.

3.2.2 Result

Each module of MASCOT iz described by the KL1 and is
executed on the Multi-PSI. Though MASCOT requires
more computation than conventional alignment systems
due to the use of 3-way DP, parallel execution by the par-
allel inference machine [Ishikawa et al. 1991] can reduce
the total time. Figure 11 shows the speedup of 3-way DP
versus the number of processors used. 128 processors are
about 64 times faster than a single processor.
MASCOT can produce a biologically valuable result.
A resultant alignment shows clear consensus patterns in
core alignments and diseernible patterns in the alignment
of each cluster. We think that this is a promising way to
compare these kinds of pattern information with known
motif information so that integrated information can be
useful for attachment-alignment and intra-cluster align-
ment. We are now investigating how to use knowledge
engineering to realize such an extension of MASCOT.

171

B4
B0
Speedup
40 - a7
: 2
20 1
]
L 18 27 64 i28

Humber of processors

Figure 11: Speedup in 3-way dynamic programming

3.4 Folding Simulation Program
3.4.1 Background

Folding simulation simulates the process of protein for-
mation from its stretched state to its native folded state
by computer. This research topic haz held the interest
of biologiste for a quarter of a century because while we
can determine the order of amino acids in a sequence of
protein extremely easily, it is very difficult to determine
the structure of a protein. X-ray crystallography and
MMR({Nuclear Magnetic Resonance) can be used to de-
termine structure. However, both require plenty of time
from months to a year.

One of the most frequently employed approxima-
tion methods is lattice representation [Ueda ef ol. 1978]
[Skolnick and Kolinsky 1991], which restricis the posi-
tion of amino acids in 3-dimen=ional lattice cells,

3.4.2 Overview of Folding Simulation Program

We applied time homogeneous parallel (femperature par-
allel) simulated annealing (Figure 5) to the folding sim-
ulation problem [Hircsawa et al. 1992]). Water-counting,
which uses lattice representation (Figure 12) and em-
ploys only hydrophobic interaction, is introduced to for-
mulaie folding simulation as an optimization problem.
In lattice cells, any place where protein is not present
wiill be filled with water.

The energy to be minimized is expressed in the follow-
ing formula.

“’“ﬁ{Watur County — 1) x Hydrophobicitym

li'li-"u.tu-r County, =
calls

The energy can be reduced both by incressing the
amount of water around the hydrophilic amino acid and
by reducing the amount of water around the hydrophobic
amino acid. The minimization of energy has the effect
of inviting hydrophobic amino acids toward the center

172

Intra-Cluster .
Alignment - Evaluation
Saguances — of F-Alignment
—>| Cluster | ' jnys-Gluster _ | imter-Gruster Alignment
Analysls Alignment > Aignment
= . Consuliation
3 Inira-Cluster -
Allgnment Motif Dictionary
.--ﬂ""-ﬁif o .1""‘-»._
—"L—Gnnaraﬁnn of Initial Alignment ~ Rafinement of A].ann;g}.‘r
Gmurfaﬂun
Core Al t
onment 1.t Alonment > | Simulated Annealing
san | L
Figure 10: Multiple sequence alignment system: MASCOT
0
~10000
pquentlal SA

Figure 12: Representation of a section of protein: main
chains(shaded} and side chains{unshaded)

of the protein where there is less water and to oust hy-
drophilic amino acids to the surface of the protein where
water is abundant. These effects serve to produce pro-
tein that has a similar distribution of hydrophobic amine
acids and hydrophilic amine acids within the protein
structure.

3.4.3 Hesult

We selected flavodoxin, whose structure is known, as the
protein to be simulated. This protein is of 2 medium
size and has 138 amino acids. We ran the folding simu-
lation pregram using temperature parallel SA on Multi-
PSI using 20 processors over 10 days. This corresponds
to 30,000 cycles. We also ran the folding simulation pro-
gram using simple parallel SA in 30,000 cycles, also with
20 processors.

Slmple paraflel SA
Temparature Parallel SA

-30000-
Energy
-40000-
-50000-
600007 10000 20000 30000 40000
Steps

Figure 13: Energy history of folding simulation

We made the following observations from the energy,
history of simulation (Figure 13).

1. Two kinds of parallel SAs had better results within
a fixed time than sequential SA. This is simply the
effect of multiple processors.

2. Up to the middle stage of simulation, temperature
parallel SA is always better than simple parallel SA.
This is because temperature parallel SA can produes
optimal sclutions at that time.

3. Two kinds of parallel SAs have almost the same final
energy value,

3.5 Protein Structure Analysis Pro-
grams

4.5.1 Background

One of the most important problems in the field of struc-
tural biology and biophysics is protein structure predic-
tion. Structural biclogists have proposed many methods
to solve the structure prediction problem. Still, the ac-
curacy of secondary structure prediction (i.e. to know
the local feature of a protein structure), which seems to
be the easiest part of protein structure prediction, is far
below the biclogical demand.

3.5.2 Overview of Protein structure analysis
programs

We plan to solve this difficult problem by a three-phase
strategy. In the first phase, we should develop a effective
methed for representing the structure of protein. Sec-
andly, we are to analyze the statistical relation between
the representation and the sequence of a protein, and
to cbtain a statistic predietion method, Finally, we are
planning to analyze which part of the prediction is sta-
tistically imprecise by logical consideration in order to
know the limits of the statistical prediction method. We
also plan to improve the prediction method by using log-
ical knowledge gained from analysis. This plan should
ensure that the parallel inference machine is used effec-
tively.

At the moment, we are in the first phase, and have
obtained a new way of representing the structure of pro-
tein produced by multi-variate analysis (Figure 14). The
three dimensional distribution of the amino asid residues
which are serial in & protein sequence is easily character-
ized by each standard deviation on the thres main axes
of the distribution. This gives us the local coordinates
for analyzing the local structure.

3.5.2 Result

As the result, we found it possible to numerically repre-
sent the local structure of protein, and we can recognize
its secondary structure from this new representation of
protein. This numerical representation, which seems to
be suitable for numerical operations such as regression
analysis, may be quantized into a symbelic representa-
tion for logical or symbelic operations (Figure 15).

3.6 A Legal Reasoning System

3.6.1 Background

Legal knowledge consists of statutory laws and old cases.
As a statutory law is a set of legal rules, inference by a

173

Figure 14: Main axes of the distribution of amino acid
residues

8
Fl
8
4
2 o2
0 J a3
2 ;

100 110 120 130 140 150 160 170 180 190 200

Figure 15: Spatial distribution of amino acids of protein
sequence

statutory law is realized as rule-based reasoning. How-
ever, legal rules often contain legal predicates (legal con-
cepts). Some legal concepts are ambiguous and their
strict meanings are not fixed until the rules are applied
to actual facts. To apply legal rules to actual facts, rule
interpretation and matching between legal concepts and
concrete facts are needed. To realize this, old cases are
often referenced and their explanations are reused. Con-
seguently, legal reasoning can be modeled as a mixed
paradigm of rule-based reasoning and case based reason-
ing.

However, there are some difficulties in developing a
practical legal ressoning system. Firstly, as there are
many legal rules and many old cases, it takes a long time
to search for similar cases and to draw conclusions based
on them. Secondly, to manage several inference engines,
a complex mechanism to control inference is needed.

To solve these problems by parallel inference, we devel-
oped a legal reasoning system, HELIC-II, on the parallel
inference machine.

174

3.6.2 Ovwerview of the Legal Reasoning System

HELIC-II draws legal conclusions for a given cass by
referencing a statutory law and old cases and outputing
them in the form of inference trees [Nitta ef al. 1992].

HELIC-II consists of a rule-based engine and a case-
based engine (Figure 16). The rule-based engine refers
to legal rules and draws legal consequences logically. The
case-based engine generates legal concepts from given
facts by referring to similar old cases,

Figure 16: Architecture of HELIC-IT

Rule-based inference As there are many legal rules,
a fast rule-based engine is needed. Moreover, legal rules
somelimes have exceptional rules, the rule-based engine
has to be added some mechanism fo handle nonmono-
tonic reasoning.

The rule-based engine of HELIC-11 is based on the par-
allel theorem prover MGTP (Model Generation Theo-
rem Prover) [Fujita et al. 1991]. Given a set of non-Horn
clauses, MGTF generates models which satisfy all input
clauses by parallel inference.

To use MGTP as a rule-based engine of legal rules, and
to obtain high perfermance by pipeline effect, we added
several extended functions to the original MOTP.

Case-based inference A judicial precedent (old case)
consists of arguments by both sides and the opinton of
judges and a final conclusion. We represent an old case
as a situation and some case rules.

A situation contains informations on the occurrences
of the case and represents & set of events/objects and
their temporal relations. Arguments by both sides are
represented as a set of case rules,

The function of the case-based engine is to generate le-
gal concepts by referring to similar old cases. In the first
stage, the engine searches for similar cases from the case
base. Old cases are distributed to each processor(PE) of
the Multi P51, and similarities between the new case and
old cases are evaluated in parallel. In the second stage,
similarities between case rules of selected cases and the
new case are measured using a Rete-like network (Figure
17), and new arguments are constructed.

{ddvel carfoyotall

two-ingut node Hﬂ

Figure 17: Rete-like network

3.6.3 Results

We observed that HELIC-II can solve several cases of the
Penal Code. Figure 18 shows the speedup in the second
stage of the case-based engine. We obtained more than
50-fold speedup using the 64PEs of the Multi-PSI.

e l. spesdup

1200 60

1000 rso
800 a0
800 30
400 20
2001 10

%0 1o 20 30 a0 S0 60 70"

number of proceasans
Figure 18: Performance of the case-based engine

3.7 Go Playing Game System “GOG”
3.7.1 Background

Go is a popular board game played traditionally in
Japan, China, and Korea. Go is played using black and
white stones and a 19 3 19 grid. The two players alter-
nately place black and white stones on the grid intersec-
tions. The goal is to gain more secure territories than
your opponent. It is a perfect information game.

Go has been a difficult game for computers to play.
There have been no go-playing programs that match the
ability of average human go-player. The difficulty of con-
structing a go-playing program comes mainly from the
fact that (1) the branching factor of an average game tree
is too large for brute force searches to be feasible, and
(2) a simple and good board evaluation function does
nol exist.

As a go-playing program requires basic Al techniques
such as searching, processing ambiguous patterns, ex-
ceptional processing, and cooperative problem solving,
it is a suitable research subject for knowledge processing
techoologies.

We are trying to build a strong go program using the
computing power of the parallel inference machines, We
are aiming at the strength of GOG (GO Generation)
with the ability of the average humen player.

3.7.2 Owverview of GOG
GOG has the following three features,

L. It simulates the thinking mechanism of a human
player.

2. The large tasks are performed in parallel,

3. The new "flying corps” technique has been applied
to improve the strength of GOG considerably while
retaining its real-time response.

Simulating the Thinking Mechanism of a Human
Player The process in which the GOG system deter-
mines its next moves comprises three stages (Figure 20).
When the system receives the enemy’s move, it first rec-
ognizes the board configuration. And then, it generates
many candidate moves. It rates those moves and selects
the one with the highest value as the next move.

¢ Board Recognition
The raw data of the board configuration is simply
the state of every board position, which is either (a)
vacant, (b) occupied by & white stone, or (c) occu-
pied by a black stone. Just like 2 human player, the
system starts from the raw board data and succes-
sively makes higher-level data structures — stones,
strings (a siring is comnected stones of the same
color), groups (strings of the same color that are close

175

enerny’s Board C?ﬂ;‘g’t’e esct Moy
move Recognition (leneration Derision
t1o
Tasks for - Qut Connec}

execution gnitio (me)
of L /Escape

Figure 1% Outline of Process in The Parallel GOG

to each other), families (loosely connected groups),
etc. —, and then defermines their attributes (poten-
tial value, area of surrounded territory, etc.) in the
recognition phase.

Candidate Move Generation

The system has candidate knowledge which gener-
ates the coordinate and evaluation value of a can-
didate move. To decide the next move, many can-
didates are listed by executing tasks invoked from
candidate knowledge. GOG has 12 kinds of the
candidate knowledge (JOSEKI, Edge, DAME, In-
vasion, Spheres' Contact Point, Capture/Escape,
Cut/connect, Enclose/Escape, ete.).

¢ Next Move Decision

The local adjustment for candidates rearranges
disharmoenies between the different candidate knowl-
edges. Then, the system sums the total proposed
values of candidates af each point on the board. The
system selects the one with the highest value as the
next move and plays it.

Parallel Processing In GOG, one of the processors
of the Multi-PSI serves as a manager processor, and the
rest act as worker processors. The next move decision
process is made cn the manager processor, which also
distributes tasks to worker processors,

When the system receives the enemy’s move, it rec-
ognizes the board configuration and generates candidate
moves, In those processes, it picks up large tasks such as
local searches, which check whether a string to be cap-
tured or not, and dispatches the worker processors. The
results are sent to the manager processor which, then,
decides the next roove based on these results.

Flying Corps To improve the strength of the system
considerably while retaining its real-time response, we
proposed the concept of flying corps.

176

This idea 15 to find the tasks which are important but
don't have to be solved before the next move and to
make flving corps processes execute these tasks. The
system which incorporates the flying corps idea consists
of main corps processes and flying corps processes (Fig-
ure'20). A flying corps process and a main corps process
are assigned Lo the same processor. Main corps processes
consist of a manager and workers and flying corps pro-
cesges use the same manager and workers. Main corps
processes execute necessary tasks to operate by go rules
and tasks to maintain their strength.

Main corps processes have a higher priority than flying
corps processes, Flylng corps processes notify task com-
pletion to a flving corps manager process when the dis-
patched task is completed (which may be several moves
after the initiation of the task). Whenever the main
corps tasks are finished, the manager process of main
corps will collect the results of finished tasks on flying
corps processes. With those results and the results by
main corps worker processes, the system decides on the
next move. The time to decide the next move depends
only on the main corps processes,

Flying corps processes execute these tasks indepen-
dently from the immediate next move decision process
{in main corps processes). When the opponent is think-
ing of the next move, the flying corps processes keep on
running. When & local sitnation, which caused tasks for
flying corps, will be changed by some later move, these
tasks are aboried,

PE1

anager of idle FE
for main corps

@gﬁ of idle PE }
for flying corps

VoI HET O
AN COTTE

worker of
flying corps

Figure 20: Configuration of System

3.7.3 Result

Table 1 shows the GOG's performance in parallel execu-
tion. From these results, the parallel execution shertens
the processing time in go. The strength of GOG, includ-
ing the flying corps idea, is now under evaluation.

We have been developing sequential GOG. The object
is to test the new algorithm ideas of recognition, candi-
date knowledge, and next move decision. Last Novern-

Table 1: Speedup in Parallel Execution

1st of final match, 13th Kisei tournament
— S [IPE[4PE] 6 FE
thmove] 1.0 33 5.1
0th move | 10| 84 53
1B0th move | 1.0 3.7 7.5
th of final match, 13th Meijin tournament |
Stage | 1 PE [4 PE 16 PE
30th move | 10| 32 54
O0thmove | 10| 34 | 5.6
180th move | 10| 3.6 5.0

ber, the sequential GOG and seven other computer go
programs including last year's top five programs, par
ticipated in the tournament at the Game Playing Sys-
tem Worlshop. The result of our sequential GOG was
2 wins and 3 loses. It shews that GOG is a top-class
computer go-program. In human terms, the current sys-
tem is stronger than an entry level human go player, but
considerably weaker than an average player.

4 Overview of Application Pro-
grams (2)

Co-HLEX: Co-operative Recursive
LSI Layout Problem Solver

LST layout is one of the greatest problems requiring mas-
sive computation power. Also, the development and en-
hancement of a layout system consumes huge amounta
of programmers labor. In the development of Co-HLEX,
the development of a parallel algorithm as well as the
possibility of more elegant program descriptions were in-
vestigated. The classical divide and conquer algorithm
works well while subprobleme correlate weakly. For LSI
layout, this is not so. Neighboring modules should have
abutting shapes and wires to avoid dead spaces. The
concurrent co-operation mechanism among processes of-
fered by FGCS paradigm might be an effective means to
solve this problem.

An overview of Co-HLEX is given in Figure 21,

The problem-solving kernel is & quadiree-shaped pro-
cess network called CMPN that generates a chip lay-
out. Before layout generation, each node of CMPN con-
tains cirenit data including the module name, the module
property, a list of net names connecting this module to
others, "and a list of sub-circuit names, After the lay-
ont is generated, layout data are added to each node:
the template name (layoutframe) used to slice the node,
the enveloping rectangle size, the list of adopted wiring
pattern names for each net, etc.

4.1

Mugsnge Siraams

Biock

Call

£] B r

Figure 21: Overview of Co-HLEX

A recursive algorithm called HRCTL (Hierarchicel Re-
cursive Coneurrent Theorem) was developed. Thiz alge-
rithm performs the layout by the following steps.

Placement A placement message containing a list of
planned shape and planned peripheral connector
placements iz sent to the top node of CMPN from
the co-ordination process. Then a set of recursive
placement actions is performed by CMPN processes,
In top-down processing, each non-terminal node is
sliced by using an appropriate layoutframe picked up
from the template library. Reaching the leaf node,
an appropriate layoutframe defining the cell geome-
try is chosen. In bottom-up processing, the layouts
of lower level children are aggregated to form a par-
ent layout.

Wiring Non-terminal power supply nets Vee and Vee
are wired first, because they interfere with the wiring
of signal nete. MNon-terminal signal nets are then
wired. Then, & set of recursive wiring actions is per-
formed by CMPN. For each net of the non-terminal
node, the existence range (CERW) of all the periph-
eral connectors of the net are first reduced, then
an appropriate winng pattern is selected from the
wiring pattern list attached to the layoutframe cho-
sen before. At each point where the chosen pattern
crosses the sub-slice border line, an induced connec:
tor is introduced. This is used as 2 peripheral con-
nector by the adjacent sub-slices in the subsequent

1

recursion. Recursion terminates at each leal nede,
with each CERW reduced to the magnitude of eell
height or width. Lastly, the nets in cells are wired
(SE-wiring, NW-wiring, and ND-widing).

Layout experiments are conducted for bipolar-analog
circuits with approximately 1000 modules. The resulting
layout realized a compact module placement and wires
free of useless bends. By runtime wire abutment coop-
eration, channel areas used by inler-module patch wires
were avoided. This was useful for chip area reduction.

Co-HLEX has a time complexity of roughly O(N),
where N is the number of modules in the circuit, as con-
trasted to a time complexity of neazly O(N?) for tradi-
tional layout systems.

The Co-HLEX program has 1,000 lines in KL1, while
traditional implementations typically have more than
100,000 lines of code. The recursive HROTL algo-
rithm and the modularized streamed-parallel computa-
tion model of KL1 both contributed to the size reduction.

4.2 Cooperative Logic Design Expert
System on a Multiprocessor

One of the pressing problems of CAD systems is the lack
of a means to iterate the cycle of evaluation and redesign
until the design satisfies all constraints. Witheut it, it
would be impossible to design a quality cireuit with the
desired characteristice (area and speed) by looking at the
design from a global point of view,

co-LODEX is a cooperative logic design expert sys-
tem on a multiprocessor, based on an evalnation-
redesign mechanism using assumption-besed reasoning
[Maruyama 1988][Maruyama 1990]. In it, design alter-
natives are considered as assumptions and constraint vi-
olations are viewed as contradictions. Redesign is im-
plemented as contradiction resclution. Justifications for
comstraint viclations, nogood justifications (NJs), play
a central role in the mechanism. co-LODEX divides
the whole cireuit to be designed into subdrcuits in ad-
vance and designs each subeircoit on each processor to
exploit pazallel processing. Global evaluation-redesign
takes place by processors exchanging design results or
NJs. NJs received from other agents help narrow down
the search space for an agent in the sense that new MNJs
made from received NJs enable the agent to prune the
search space [Maruyama 1991). That is the reason why
we claim that eo-LODEX is cooperative.

co-LODEX inputs a behavioral specification written
in a hardware deseription language, a block diagram of
the datapath, and constraints on area and speed. Con-
straints on area are expressed as inequalities in the gate
count, and constraints on speed are expressed as inequal-
ities in the propagation delay. co-LODEX outputs a
CMOS standard call netlist that satisfies the constraints,

178

The resulting netlist can be inpui to an automatic place-
and-route system for CM O3 standard cells.

co-LODEX divides the whole circuit to be designed
into subeircuits, Each subcireunit is designed by a design
agent, Figure 22 shows the five subareuits for a circuit
that solves a second-order differential equation [DHFEQ)
and the agents in charge.

— Critical path cundldaic

Figure 22: Sub-cirenits and agents

Fach design agent designs given functional blocks hi-
erarchically using the fop-down method. This method
keeps splitting functional blocks and subblacks into sub-
subblocks until all given blocks are implemented with
CMOS standard cells.

Then it counts the number of gales and estimates de-
lays to evaluate the implemented circuit against com-
slraints on area and time. A design agent usually de-
signs its subcircuit independently and in parallel with the
other design agents. However, since the design results
of the other agents are necessary for evaluation against
global constraints, design agents exchange their results
every time they design or redesign. A design asgent re-
desipns when it detects a constraint violation for which
it is responsible.

co-LODEX was implemented on Multi-PSI in KLIL
[Minoda 1992]. Experimental resulte show that co-
LODEX can efficiently carry out global optimization,
Design agents correspond to processors on a one-to-one
basis, We had one extra processor for distributing Lhe
functional blocks to other processors and making statis-
tica. The relation between the number of design agents
{1 to 15) and the speedup for a circuit with high unifor-
mity is shown in Figure 23.

4.3 Case-based circuit design system

Recently, much atiention has been paid to case-based
reasoning (CBR) as & software technology for aquiring
large amounts of knowledge easily and utilizing it ef-

Speecup

I -
e =~ il design
-
o o chasge in ool
__,.--"'" Duﬁhiﬁ "
H’,,-.-"" _p. WEhage in corsmmalel
-

E W oun oo N M

Figure 23: Relation between the oumber of agents and
speedup

fidently. We have researched into a flexible and fast
CBR mechanism through upper-level digital circuit de-
sign problems.

We suppose that novice designers, who have knowledge
about primitive circuits but lack experiences in design,
will use this system to solve application problems that
are & little beyond the basic level. This system econ-
structs block diagrams satisfying given specifications by
retrieving similar precedent circuits, then modifying and
combining them, based only on design cases and knowl-
edge on primitive circuits,

This system features retrieving circuits whose func-
tional structures are similar fo the problem’s and use
a Structure Mapping Engine (SME) [Falkenhainer 86] as
a case-Tetriever.

SME can extract cases structurally similar to the given
problem, if higher order relations in given structures are
the same between the case and the problem, even if the
lower relations and entities are not same. In this sys-
tem, SME evaluates the similarity of functional hierar-
chy trees. It, also, evaluates the descriptions of the cir-
cuit block functions that represent the hierarchical rela-
tions between the primary function and secondary func-
tions that are necessary to realize the primery function.
Then, it retrieves the cirenits which have the most simi-
lar functions as a whole even though the details may be
different. For example, when designing a digital clock,
SME retrieves a similar circuit which counts the amount
of money from the case base, even if there is no digital
clock cireuit.

Figure 24 shows the configuration of this system. We
describe the design process briefly below,

Firstly, Analyzer analyzes the input specs to create
functional hierarchy trees along the data flow and de-
tailed specs for the given problem. Secondly, Reiriever
reirieves the cases which have similar functional hierar-
chy trees to the problems with SME. Thirdly, Adapter
checks whether the detail specs are the same between

detall spacs

:Output store
Figure 24: Configuration of case-based circuit design sys-
tem

the retrieved case and the problem. When different,
adaptor checks the possibility of modifving detail specs,
then combines the retrieved cases which have confirmed
adaptability to the given problem. In this phase, SME
also predicts design failures and recovers from them, and
those failure recoveries are reported via Advisor. Finally,
the system outputs block diagrams corresponding to the
combined cases. Users evaluate the output block dia-
gram and, if it is suitable, the problem and the solution
are stored in the case base as a new case,

We confirmed that non-stereofyped circuits are actu-
ally designed with this approach in mind; i.e. a digital
clock with the additional function of sensing temperature
can be an air-conditioner performance monitor.

Through experiments we also confirmed the effective-
ness of the CBR method with SME. SME, however, has
very high running costs because of its structural match-
ing process which includes the combination problem. For
this problem, we made SME programs parallel with the
multi-level load balancer, and, with the 64 PE of Multi
P5I, we obtained 10-fold speedup.

4.4 High Level Synthesis by Parallel
Rule-based Annealing

Figure 25 describes the process flow of High Level Syn-
thesis (HL.3). LSI behavior deseriptions written in a

179

Pascal-like language (Paspec) are parsed and converted
to a schedule table. The schedule table describes when
each expression is executed and by which ALU. It cor-
responds to a datapath circuit. The problem finding the
lowest cost configuration in the schedule table. The cost
is the sum of the chip area and the execution speed. It
is & typical combinatorial oplimization problem (COP).

heuristics

ALY Rule 1"’
TimeRule Raule—based
Anmesling
etc

Datapath

whif bl eha i

SEEE

BEHD

Figurc 25: the process flow of HLS

Parallel Rule-Based Annealing Simulated anneal-
ing (SA) ean be used to find & near global minimum in a
COP, but it requires a huge number of iterations. Heuris-
tic algorithms are faster, but the solutions are prone to
capiure in local minima. The rule-based annealing (RA)
algorithm was developed, which has intermediate char-
acteristics betwesn the two, In each iteration step, the
RA algorithm generates candidates of the next schedule
table configuration by using not only random conversion
but conversions using heuristic rules. The rule is selected
probabilistically and the selection probability of the rule
alters the temperature changes. The higher the accep-
fance rate of the candidate is, the higher the selection
probability of the rule.

A parallel RA algorithm was then designed. The sys-
tem consists of ene master processor and a number of

180

slave processors. Bach processor runs the rule-based an-
nealing independeatly at the same temperature, gener-
ating different sequences of configurations. At the begin-
ning of annealing at a temperature, the master proces-
sor classifies the slave processors into a higher cost group
and a lower cost group based on the cost of configura-
tion. The annealing process continuwes until there is Little
difference in the cost distributions of the the two groups,
at which time the equilibrium state is considered to have
been reached. This contributes to the shortening of an-
nealing steps at high temperatures. At low temperatures,
configurations judged to be trapped in local minima are
abandoned and are replaced by better configurations in
other processors,

The parallel RA algorithm was implemented on a
Multi-PSI with 16 processors. Figure 26 shows the ex-
perimental results. The RA algorithm was 4 times faster
than the SA alpavithm. The parallel BRA was 8 times
faster than the sequential RA. The effectiveness of the
parallel RA algorithm was thus experimentally proven.

-

=R &g
TR
Ul T
L]
B
L]
L
ol

e — b II--- b T e e e —eee
i

¥

i

1

1

i
—r——-r—T-oprn=p

Figure 26: Experimental Result

4.5 Design Supporting System based
on Deep Reasoning

In design, there are many cases in which a designer does
nat divectly design a new device, but rather, changes
or improves an old device. Sometimes a designer only
changes the parameters of components in a device to
salisfy the requirements. The designer, in such cases,
knows the structure of the device, and needs to deter-
mine the new values of the components. This is commen

in electronic circuits. Desq (Design supporting system .

based on qualitative reasoning) delermines valid ranges
of the design decisions using qualitative reasoning,

Desq uses an envisioning mechanism, which, by using
qualitative reasoning, determines all possible behaviors
of a system. However, the qualitative reasoning of Desq

is different from ordinary qualitative reasoning, because
it can deal with quantities both qualitatively and quan-
titatively, Accordingly, Desq may be able to determine
quantitative ranges, if parameters are given as quantita-
tive values.

Initial data Knowledge base

— e
H‘?sjcll iy

b
- and objects Simmul .
Eshniur\p / inequalities
Reasoner Internal

n
W Vri=Rri*irl
Mot e | | VeIVl
Id1=Irl+id2
WVri=5.0

A
Pai:‘.gﬂu.l}m (’“t:_
on kMulii-PSI1

Figure 27: System organization

The system organization of Desq is shown in Figure
27. Desq consists of three subsystems:

Behavior reasoner

This subsyster is based on a qualitative reasoning
system. Its model building reasoning part builds si-
multanecus inequalities from initial data using defi-
nitions of physical rules and objects. The simultane-
ous inequalities are a model of a target system. The
envisioning part derives all possible behaviors.

Design parameter calculator

This subsystemn calculates ranpes of design parame-
ters undefined in initial data.

Parzllel constraint solver

This subsystem solves simultaneous inequalities. It is
written in KL1 and is exeeuted on 2 parallel inference
machine,

Desq finds the valid ranges of design parameters as
follows:

{1) Perform envisioning with design parameters whose
values are undefined in initial data,

(2) Select preferable behaviers from possible behaviors
found by envisioning,

(3) Calcalate the ranges of the design paramefers that
give preferable behaviors.

As an experiment, Desq successfully determined the
valid range of resistance Rb in the DT circuit in Figure
23.

DTL Circuit 5V

Undafinad pa}m'lalar

Figure 28: DTL circuit

4.6 A Diagnostic and Control Expert
System Based on a Plant Model

Currently in the field of diagnosis and control of thermal
power plants, the trend in systems is that the more in-
telligent and flexible they become, the more knowledge
they need. As for knowledge, conventional diagnostic
and control expert systems are based on heuristics stored
a priori in knowledge bases. So, they cannot deal with
unforesesn events when they occur in a plant, Unforessen
events are abnormal sitnations which were not expected
when the plant was designed. To overcome thiz limi-
tation, we have focused on model-based reasoning and
developed a diagnostic and contral expert systemn based
on a plant model.

The system (Figure 28] consists of two subsystemns: the
Ehallow Inference Subsyslern (SI5) and the Deep Infer-
ence Subsystem [DIS).

The 5[5 is a conventional plant control system based
on heuristics, namely shallow knowledge for plant con-
trol. It selects and executes plant operations accord-
ing Lo the heurigstics stored in the Itnuwledge base. The
Flant Monitor detects occurrences of unforeseen events,
and then activates the DIS. The DIS utilizes various
kinds of models to realize the thought processes of a
skilled human operator and to generate the knowledge
for plant control to deal with unforeseen events. It
consiste of the following modules: the Diagrosor, the
Operation-Generater, the Precondition-Generntor, and
the Simulation-Verifier. The Diagneser uiilizes the
(Fualitative Causal Madel for plant process parameters
to dizgnose unforeseen events. The Operation-Generator

13t

generates the operations that deal with these unfore-
seen events. [t utilizes the Deviee Model and the Op-
eration Principle Model The Precondition-Generator
generates the preconditions of each operation generated
by the Operation-Generator, and, as a result, generates
rule-based knowledge for plant control. The Simulation-
Verifier predicts the plant behavior that will be ob-
served when the plant is operated according to the gener-
ated knowledge. It utilizes the Dymemics Model, verifies
the knowledge using predicted plant behavior, and gives
feedback to the Operation-Generator, if necessary.

nupxm:esmmm
ﬂ e !ﬂ
I:II-W Gtml:ur dliﬂ
1 —— * "l"
Simulation-Verifier)
L I A
- 4 -,
— R
Shallaw
Inference’, Engine
\Subsystem ~} y

C Plant)

Figure 29: System Overview

The knowledge generated and verified by the DIS is
transmitted to the SI5. The 575, then, executes the plant
operations zccordingly, and, as a result, the unforeseen
events should be taken care of,

We have implemented the system on Multi-PS1. To re-
alize a rich experimental environment, we have also im-
plemented a plant simulater on a mini-eomputer. Both
computers are linked by a data transmission line. We
have incorporated both a device and a dynamics model
for each device of a thermal power plant (to a total of
78). We summarize the experimental results as follows.

* The OIS could generate plan control knowledge to
deal with unforeseen events.

o The 575 executed plant operators according to the
generated knowledge and could deal with unforeseen
events.

+ Weahave demonstrated a fivefold improvement in res-
soning time by using Multi-PSI with 16 processor
elements.

182

4.7 Adaptive Model-Based Diagnostic
System

Though traditional rule-based diagnostic approaches
that use symptom-failure association rules have been
incorporated by many current diagnostic systems, they
lack robustness. This is because they cannot deal with
unexpected cases nob covered by the rules in its knowl-
edge base, On the other hand, model-based diagnostic
systems that use the hehavioral specification of a device
are more robust than rule-based expert systems. How-
ever, in general, many tests are required to reach a con-
clusive decizsion becavse they lack the heuristic knowl-
adge which human experts usually utilize. In order to
solve this problem, a model-based diaﬁnuatig system has
leen developed which is adaptable becanse of its ability
Lo learn from experience [Koseld et al, 1990].

This system consists of several modules as gshown in
Figure 30. The knowledge base consists of design knowl-
edge and experfential knowledge, The design knowledge
represents & correct model of the target device. It con-
sists of a structural description which expresses compo-
nent interconnections and a behavior description which
expresses the behavior of each component. The expe-
viential knowledge is expressed as a failure probability
for each component. The diegnosis module utilizes those
two kinds of kuuwltdg«;.

| (=2 (=) |
rd 1

SN

Tes! Paitern
Selector /| | <—| Dan0sis L o Leaming
Generalor ula

(R A

Symptom Test Testresult Suspects

Figure 30: Structure of the System

Figure 31 shows the diagnosis flow of the system. The
systemn keeps a set of suspected components as a suspect-
list. It uses an eliminate-not-suspecled strategy to reduce
the number of suspects in the suspect-list, by repeating
the test-and-eliminate cycle. It starts by getting an ini-
tial symptom. A symplom is represented as a set of tar-
gel device input signals and an observed incorrect output
signal. Tt caleulates an initial suspect-list from the given
initial symptoms. 1t performs model-based reasoning to
obtain a suspect-list using & correct design model and an
expected correct output sigaal. To obiain an expected
correct output signal for the given inputs, the system
carries out simulation using the correct design model.

Getobserved |
data

v

Calculate new suspects
& update Suspect-List

Figure 31: Diagnosis Flow

After oblaining the initial suspect-list, the system re-
peats a test-and-eliminate eycle, while the number of sus-
pects is greater than one and an effective test exdsts. A
set of tests is generated by the tesl pattern generator.
Among the generated tests, the most cost effective is
selected as the next test to be performed. The effective-
ness is evaluated by vsing & minimum entropy technique
that utilizes the fault probability distribution. The se-
lected test is sugpested and fed into the target device
By feeding the test into the target devies, another set of
observations are oblained as a test result and are nsed
to eliminate the non-failure components,

Learning Mechanism The performance of the test
selection mechanism relies on the preciseness of the pre-
sumed probability distribution of components. [n order
to estimate an appropriate probability distribution from
asmall amount of obhservation, the system acquires a pre-
sumption tree using minimum description length(MDL)
criterion. A description length of a presumption tree
is defined as the sum of the code length and the log-
likelibood of the model. Using the constructed presump-
tion tree, the probability distribution of future events
can be presumed appropriately. .

The algorithm is implemented in KL1 language on a
parallel inference machine, Multi-PSI. The experimental
results show that the 16 PE implementation is about 11
times as fast as the sequential one.

The performance of the adaptive diagnestic system (in
terms of the required number of tests) was also examined.
The target device was a packet exchange system and
its model was comprised of about 70 components. The
experimental results show that the number of required
tests can be reduced by about 40% on average by using
the learned knowledge.

4.8 Motif Extraction System

One of the important issues in genetic information pro-
cessing s to find common patterns of sequences in
the same category which give functional/structural at-
Lribules to proteins, The patterns ape called motifs, in
biolegical terms.

On Multi PSI, we have developed the motif extraction
system shown in Figure 32, In this, a motif is represented
by stochastic decision predicates and the optimal motif is
searched for by the genetic algorithm with the minimum
description length{ MDL) principle.

Protein DB

Amino acid sequences and their
functional closses are stored.

- Motif .
motif(S,cytochrome_c) with p

:- contain("CXXCH",S).

means that if & given sequence contains
CHECH" it is cytochrome_c
with probability p.

Genetic Algorithm
with MDL Principle

Miodif Is represented by binary string.
Mouifs fittness value is caleulated using MDL principle,

Figure 32: Motif Extraction System

Stochastic Decision Predicate Ii is difficult to ex-
press a mobif as an exact symbolic pattern, so we employ
the stochastic decision predicate as follows.

motif (5, cytochreme_c) with 129/225
= contain("CXXCH",5).
motif (5,0thers) with 8081/8084.

This example means that if 5 contains a subsequence
matched to “CXXCH", then § is eytochrome ¢ with
probability %. oiherwise S is another protein with prob-
ability %.

183

Minimum Description Length Principle We em-
ploy the minimum description length{MDL) principle
because it is effective in estimating a good probabilis-
tic model for sample data, including uncertainty avoid-
ing overfitting. The MDL principle suggests that the
best stochastic decision predicate minimizes the follow-
ing value.

predicate description length + correctness de-
scription length

The value of the predicate description length indicates
the predicate complexity(i.e. smaller values are better).
The value of the correctness description length indicates
the likelihood of the predicate(i.e. smaller values are bet-
ter). Therefore, the MDL principle balances the trade-off
between the complexity of motif representation and the
likelihood of the predicate to sample data.

Genetic Algorithm The genetic algorithm is a prob-
abilistic search algorithm which simulates the evolution
process. We adopt it to search for the optimal stochas.
tic motif, because there is a combinatorially explosive
number of stochastic motils and it takes enormous com-
putation time to find the eptimal stochastic motif by
exhaustive searches,

The following procedures are performed in order to
search for the optimal peint of a given function f using
the simple genetic algorithm.,

L. Give a binary representation that ranges over the
domain of the function f

3, Creale an initial population which consists of a set
of binary strings

3. Update the population repeatedly using selection,
crossover, and mutation operators

4. Pick up the best binary string in the population after
certain generations

We apply the simple genetic algorithm to search for
the optimal motif representation. Bach motif is repre-
sented by a 120-bit binary string, with each bit corre
sponding to one pattern (eg. “CXXCH™). The 120-bit
binary siring represents the predicate whose condition
part is the conjunction of the patterns containing the
corresponding bits.

Table 2 is the result of applying the motif extrac-
tion system to Cytochrome ¢ in the Protein Sequence
Database of the Mational Biomedical Research Fourida-
tion. This table shows the extracted motifs and their
description lengths. CL is a deseription length of motif
complexity, PL is a description length of probabilities,
and DL iz a description lengih of motif correctness,

154

Table 2: cytochrome ¢

Motaf Compared | Matched | Correct
CARCH 8308 225 129
others 2084 8034 8081

Drescription Length 286.894 (CL = 16,288, PL = 10.397,
DL = 260.209)

5 Performance Analysis of Par-
allel Programs

5.1 Why Performance Analysis?

Along with the development of various application pro-
grams, we have been conducting a study of the perfor-
mance of paralle]l programs in 2 more general frame-
wark. The main concern is the performance of parallel
programs that sclve large-scale knowledge information
processing problems on large-scale parallel inference ma-
I'_'hil:lﬂ.

Parallel speedup comes Trom décomiposing the whale
problem inte a number of subproblems and solving them
in parallel. Ideally, a parvallelized program would run
p times faster on p processors than on one processor.
Tl.'IIEL'E are, IIWEW:I, var]nua H'\-’Cl’hm’d rE.;EL’DI'ﬂ,, E'IH.'.II s
load imbalance, communication overhead, and {possible)
increases in the amount of computation. Knowledge pro-
cessing type programs are “non-uaiform® in (1) that the
number and size of subproblems are rarely predictable,
{2) that there can be random communication patterns
between the subproblems, and (3} that the amount of
total computation can depend on the execution order
of subproblems. This makes load balancing, communi-
cafion comtrol, and scheduling important and nontriv-
ial issues in designing parallel knowledge processing pro-
El'ﬂ-l'l'.l_‘i.

The overhead factors could make the effective perfor-
mance obtained by actually running those programs far
worse than the “peak performance” of the machine. The
pecformance gap may not be just a constant factor loss
{e.g., 30 % loss), but could widen as the number of
processors increases. In fact, in poorly designed par-
allel programs, the effective-to-peak performance ratio
can approach gero as the number of processors increases
without limit.

If we could understand the behavier of the various
overhead factors, we would be able to evaluate paral-
lel programs, identify the most serious bottlenecks, and
possibly, remove them. The ultimate goal is to push the
horizon of the applicalihiy of large-scale parallel infer-
ence machines into a wide vanety of areas and problem
instances.

5.2 FEarly Experiences

As the first programs to run on the experimental
parallel inference machine Multi-P3I, four programs
were developed fo solve relatively simple problems.
These were demonstrated at the FGUSSE8 conference
{Ichiyoshi 1989]. They ace:

Packing Piece Puzzle (Pentomino)

A rectangular box and a collection of pieces with var-
ous shapes are given. The goal is to find all possible
ways to pack the pieces into the box. The puzale
is often known as the Pentomino puzzle, when the -
pieces are all made up of 5 squares. The program
does & top-down OHR-parallel all solution search.

Shortest Path Problem

Given a graph, where each edge has an associated
nonnegative cost, and a start node in the graph,
the problem is to find the lowest cost path from the
start node to every node in the graph (single-source
shortest path problemn). The program performs a
distributed graph algenthm. We ased square grid
graphs with randomly generated edge costs.

Natural Language Parser

The problem is to construct all possible parse
trees for an English sentence. The program is a
PAX parser [Matsumoto 1987], which is essentially
& bottom-up chart parsing algorithm, Processes rep-
resent chart entries, and are connected by message
streams that reflect the data flow in the chart.

Tsumego Solver

A Tsumego problem is to the game of go what the
checkmate problem is to the game of chess. The
black stones surrounding the white stones try to cap-
ture the latter by suffocating them, while the white
tries to survive. The problem is finding out the result
assuming that black and white do their best. The re-
sult is (1) white is captured, (2) white survives, or
(2} there is a tie. The program does a parallel alpha-
beta search.

In the Pentomine program, the parallelism comes from
concurrently searching different parts of the scarch tree.
Since disjoint subtrees can be searched totally indepen-
dently, there is no communication between search sub-
tasks or speculative computation. Thus, load balancing
is the key factor in parallel performance. In the first ver-
sion, we implemented a dynamic load balancing mech-
anism and attained over 40-fold speedup using 64 pro-
cessors, The program starts in a processor called the
master, which expands the tree and generates search sub-
tasks. Each of the worker processors requests the master
processor for a subtask in a demand-driven fashion (i.e.,

it requests 2 subtask when it becomes idle). Later im-
provement of data structures and code tuning led to bet-
ter sequential performance but lower parallel speedup. It
was found that the subtask generation thronghput of the
master processor could nat keep up with the subtask se-
intion throughput of the worker processors. A multi-level
subtask allocation scheme was introduced, resulting in 50
fold speedup on 64 processors {Furnichi el al. 1990],

The load balancing mechanism was separated from the
program, and was released lo other users as a utilily
Several programs have used it. One of them is a paral-
lzl iterative deepening A" program for solving the Fif-
teen puzzle. Altheugh the seavch tree 12 very unbal-
anced because of pruning with a heuristic function, it at-
teined over 100 fold speedup on 2 128-processor PIM,/m
[Wada el al. 1992].

The shortest path program has a lot of inter-process
communication, but the communication is befween
neighboring vertices. A mapping that respects the lo-
cality of the original grid graph can keep the amount of
inter- processer communication low. A simple mapping,
in which the square graph was divided into as many sub-
graphs as there are processors, maximized locality. But
the parallel speedup was poor, because the computation
spread like a wavefront, making only some of the pro-
cessors busy at any time during execution. By dividing
the graph into smaller pieces and mapping & number of
pieces from different parts of the graph, processor uti-
lization was increased [Wada and Ichiyoshi 19907,

The natural language pavser is 2 communication inten-
sive program with a non-local communication pattern.
The first static mapping of processes showed very little
speadup. It was rewritten so that processes migrate to
where the necessary data reside to reduce infer-processor
communication. [t almost halved the execution time
[Susaki et al. 1989].

The Tsumego program did parallel alpha-beta searches
up te the leaf nodes of the game tree. Sequential alpha-
beta pruning can halve the effective branching factor of
the game tree in the best cases. Simply searching dif-
ferent alternative moves in pavallel loses miich of this
pruning effect. In other words, the parallel version might
de a lot of redundant speculative computation. In the
Tsumego program, the search tashs of candidate moves
are given execution priorities according to the estimated
value of the moves, so as to reduce the amount of spee-
ulative computation [Oki 1989].

Through the development of these programs, a nume-
ber of techniques were developed for balancing the load,
localizing communication, and reducing the amount of
speculative cornputation.

5.3 Scalability Analysis

4 desper understanding of various overheads in parallel
execution requires the construction of models and anal-

ysis of those models. The results form 2 robust core of
insight inte paralle]l performance.

The focus of the research was the scalability of parallel
programs. Good parallel programs for utilizing large-
scale parallel inference machines have performance that
scales, Le,, the performance inereases in aceordance with
the ircrease in the number of processors. For example,
two-level load balancing is more scalable than single-level
load balancing, because it can use more processors. But
deciding how scalable a program is reguires some ana-
Iytical method.

As a measure of scalability, we chose the ise-
cﬂl‘nin:mcy funcﬁnn prnpua-:u:l IJ:,r Kumar and Rao
[Kumar «f al. 1988]. For a fixed problem instance, the
efficiency of a parallel algorithm (the speedup divided
by the number of processors) generally decreases as the
number of processors increases. The efficiency can often
be regained by increasing the problem size. The furction
Fip) is defined as an isoefficiency function if the problem
size (identified with the sequential runtime) has to in-
crease a5 f(p) to maintain a given constant efficiency E
as the number of processors p increases. An iscefficiency
function grows at least [nearly as p increases (lest the
subtask size allocated to each processor approaches zern).
Due to various overheads, isoefficiency functions gener-
ally have strietly more than lnear growth in p. A slow
growth rate, such as plogp, in the isoefficiency function
would mean a desired efficiency ean be obtained by run-
ning a problem with a relatively small problem size. On
the other hand, a very rapid growth rate such as 2* would
indicate that only a very poor use of a large-scale parallel
computer would be possible by running a problem with
a realiztic size.

On-demand load balancing was chosen first for analy-
sis. Based on a probabilistic model and explicitly stated
assumptions on the nature of the problem, the iseefli-
ciency functions of single-level load balancing and multi-
level load balancing were obtained. In a deterministic
Case {au subtasks have the same ru_uning ti]ne], the iso-
efficiency function for single-level load balancing is p?,
and that for two-level load balancing is p¥*. The de-
pendence of the iscefficiency functions on the variation
in subtask sizes was also investigated, and it was found
that if the subtask size is distributed according to an
exponential distribution, a log p (respectively, (log p)*'")
factor is added to the isoefficiency function of single-level
(respectively, two-level) load balancing. The details are
found in [Kimura ei al. 1991].

More recently, we studied the load balance of dis-
tributed hash tables. A distributed hash table is a paral-
lelization of a sequential hash table; the table is divided
inko subtables of equal size, each one of which is allo-
cated to each processor, A number of search operations
for the table can be processed concurrently, resulting in
mereased throughput. The overhead comes mainly from
load imbalance and communication overhead., By allo-

186

cating an increasing number of buckets [= subtable size)
to each processor, the load is expected to be improved,
We set out Lo determine the necessary rate of increase of
subtable size to maintain a good load balance. A very
simple static load distribution model was defined and
analyzed, and the iscefficiency function (with regard to
load imbalance) was obtained [Ichiyoshi et al 1992]. It
was found that a relatively moderate growth in subtable
size ¢ (g = w(({leg p)?}) is sufficient for the average load
te approach perfect balance. This means that the dis-
tributed hash tzble is a data structure that can exploit
the computational power of highly parallel computers
with problems of a reasonable size.

5.4 Remaining Tasks

We have experimented with a few technigues for mak-
ing better use of the computational power of large-scale
parallel computers. We have alao conducted a sealabil-
ity analysis for particular instances of both dynamic and
static load balancing. The analysie of various paralleliz-
ing overheads and the determination of their asymptotic
characteristics gives insight into the nature of large-scale
parallel processing, and guides us in the design of pro-
grams which run on large-scale parallel computers.

However, what we have done is & modest exploration of
the new world of large-scale parallel computation. The
analysis technique muost be expanded to include commu-
nigation overheads and speculative computation. Now
that PIM machines with hundreds of processors have be-
come operational, the results of asymptotic analysis can
be compared to experimental data and their applicability
can be evaluated.

6 Summary of Parallel Applica-
tion Programs

We have intreduced overviews on parallel application
programs and results of performance analysis. We will
summarize knowledge processing and parallel processing
using PIMs/KL1.

(1) Knowledge Processing by PIM/KL1

We have developed parallel intelligent systems such
as CAD systems, diagnosis systems, contrel systems, a
game system, and so on. Knowledge techuologies used
in them are the newest, and these systems are valuable
[rom viewpoint of Al applications, too. Usually, as these
technologies need much computation time, it is impos-
sible to solve large problems using sequential machines.
Thevelore, these systems are appropriate to evaluaie ef-
{ectiveness of parallel inference.

We have already been experienced in knowledge pro-
cessing by sequential logic programming languages.

Therefore, we have got accustomed to developing pro-
grams in KLl in a short time. Generally, to develop
parallel programs, programmers have to consider the
synchronization of each medules. This is troublesome
and often causes bugs. However, as KL1 has automated
mechanisms to synchronize inferences, we were able to
develop parallel programs in a relatively short period of
time as follows.

Program Size | man®month

Logic Simulator ak 3
Placement
(KL1) ik 4
(ESP1) 8k 4
Routing 49 k 2
Alignment by 3-DP Tak 4
Alignment by SA 37k 2
Folding Simulation | 13.7k 5
Legal Reasoning

{(Rule-based engine) | 2.5k 3
(Case-based engine) | 2k 6
Go Playing Game 11 k 10

f: An extended Prolog for system programming.

In those cases where the program didn’t show high per-
formance, we had to consider another process model in
regards to granularity of parallelism. Therefore, we have
to design the problem solution model in more detail than
when developing it on sequential machines,

{2) Two types of Process Programming

The programming style of KL1 is different from that of
sequential logic programming language. A typical pro-
gramming style in XL1 is process programming. A pro-
cessis an object which has internal states and procedures
to manipulate those internal states. Each process is con-
nected to other processes by streams. Communication is
through these streams. A process structure can be eas-
ily realized in I{L1 and many problem solving technigues
can be modeled by process structures.

We observed that two types of KL1 process structure
are used in application programs.

1. Static process structure

The first type of process structure is a static one.
In this, & process structure for problem solving is
constructed, then, information is exchanged between
processes. The process structure doesn’t change until
the given problem is solved. Most distributed algo-
rithms have a static process structure. The majority
of application programs belong to this type.

For example, in the Logic Simulator, an electrical eir-
cuit is divided into sub ¢ircuits and each sub circuit

is represented as a process (Figure 3}. In the Protein
Sequence Analysis System, two protein sequences are
represented as a two dimensional network of KL1
processes (Figure 9). In the Legal Reasoning Sys-
tem, the lefthand side of a case rule is represented
as a Rete-like network of KL1 processes (Figure 17).
In co-LODEX, dﬂsi.gn agents are s’t.at,icall:,' rna.ppad
onto processors (Figure 22).

2, Dynamic process structure

The second type of process structure is & dynamic
one. The process structure changes during come
putation. Typically, the toplevel process forks info
subprocesses, each subprocess forks into subsubpro-
cesses, and so on (Figure 33). Usually, this pro-
cess structure corresponds to a search tree, Appli-
cation programs such as Pentomino, Fifteen Puszle
and Tsumego belong to this type.

Figure 33: A search tree by a dynamic process structure

(3) New Paradigm for Parallel Algorithms

We developed new programming paradigms while de-
signing parallel programs. Some of the parallel algo-
rithms are mot just parallelizations of sequential algo-
rithmos, but have desirable properties not present in the
base algorithm.

In combinatorial opfimization programs, a parallel
simulated annealing {SA) algorithm (used in the LS cell
placement program and MASCOT), a parallel rule-based
annealing (RA) algorithm (used in the High Level Syn-
thesis System), and a parallel genetic algerithm {GA)
(used in the Motif Extraction System) were designed.

The parallel 5A algorithm is not just a parallel ver-
sion of a sequential SA algorithm, By statically assign-
ing temperatures to processors and allowing selutions to
move from processor to processor, the solutions compete
for lower temperature processors: a better solution has a
high possibility of moving to a lower temperature. Thus,
the programmer is freed from case-by-case tuning of tem-
perature scheduling. The parallel SA algorithm is also
time-homogeneous, an important consequence of which
is it does not have the problem in sequential SA that the

187

solution can be irreversibly trapped in a lecal minimam
at a low temperature.

In the parallel HA algorithm, the distribution of the so-
lution costs are monitored, and used to the judge whether
or not the equilibrium state has been reached.

In the go-playing program, the flying corps idea suited
for real-time problem solving was introduced. The task
of the flying corps is to investigate the outcome of moves
that could result in a potentially large gain (such as cap-
turing a large opponent group or invasion of a large op-
ponent territory) or loss. The investigation of a possibil-
ity may take much longer time than allowed in real-time
move making and cannot be done by the main corps.

{4) Performance by Parallel Inference

Some application programs exhibited high perfor-
mance by parallel execution, such as up to L00-fold
speedup using 128 processors. Examples include the
logic simulator (LS) (Figure 4), the legal reasoning sys-
tem (LR} (Figure 18), and MGTP which iz a theo-
rem prover developed by the fifth research laboratory
of ICOT[Fujita et al. 1991] [Hasegawa et al. 1992]. Un-
derstandably, these are the cases where thére is a lot
of parallelism and parallelization overheads are mimi-
mized. The logic simulator (LS), the legal reasoning
system (LR), and MGTP have high parallelism coming
from the data size (a large number of gates in the logic
simulator and & large number of case rules in the le-
gal reasoning system) or problem space size (MGTP). A
good load balance was realized by static even data allo-
cation (LS, LR), or by dynamic load allocation (MGTP).
Either communication locality was preserved by process
clustering (L), or communication between independent
sublasks is small (rule set division in LR or OR-parallel
search in MGTP).

(5) Load Distribution Paradigm

In all our application programs, programs with a static
process structure used a static load distribution, while
programs with a dynamic process structure used semi-
static or dynamic load distribution.

In a program. with a static process structure, a good
load balance can wsually be obtained by assigning
roughly the same number of processes to each processor,
To reduce the communication overhead, it is desirable
to respect the locality in the logical process structure.
Thus, we first divide the processes into clusters of pro-
cesses that are close to each other. Then, the clusters
are mapped onto the processors. This direct cluster-to-
processor mapping may not attain good load balance,
since, at a given point in computation, enly part of the
process structure has a high level of computational ac-
tivity. In such a case, it is better to divide the process

188

structure into srnatler clusters and map a number of clus-
ters that are far apart from each other on one processor,
This multiple mapping scheme is adopted in the short-
est path program and the logic simulator. In the three
dimensional DF matching program, a succession of align-
ment problems {sets of three profein sequences to align)
are fed inte the machine and the alignment is performed
in & pipelined fashion, keeping most processors busy all
the time.

In & program with a dynamic process structure, newly
spawned processes can be allocated to processors with a
light computational load to balance the load. To main-
tain low communication overhead, only a small num-
ber of processes are selected as candidates of load dis-
Lribution. For example, in a tree search program, not
all search substasks but only those at certazin depths
are chosen for interprocessor load allocation. The Pen-
tomine puzsle solver, the Filleen puzzle solver and the
Tsumego solver use this on-demand dynamic load bal-
ancing scheme.

(8} Granularity of Parallelism

T obtain high performance by paralle] processing, we
have to consider the granulavity of parallelism. If the
size of each subtask is small, it is hard to obtain high
performanece, because parallelization overheads such as
process switching and communication are serious. For
example, in the first version of the Logic Simulator, the
gates of the electrical circuit were represented as pro-
cesses communicating with each other via streams. The
performance of this version was not high because the
task for each process was too small. The second ver-
sion represented subcircuits as processes (Figure 3), and
succeeded in improving the performance,

{7) Programming Environment

The first programs to run on the Multi-PSI were devel-
oped before the KL1 implementation on the machine had
been built, The user wrote and debugged a program on
the sequential PDSS (PIMOS development support sys-
tem) on a standard hardware. The program was then
porled to the the Multi-PSI, with the addition of load
distribution pragmas. The only debugging facilities on
the Multi-PSI were those developed for debugging the
implementation itself, and it was not easy to debug ap-
plication programs with those facilities. Gradually, the
PIMOS operating system [Chikayama 1992) added de-
bugging facilities such as an interactive tracing/spying
facility, a static code checker that gives warnings on
single-occurrence variables which are often simply mis-
spelled, and a deadlock reporting facility. The deadlock
reporiing facility identifies perpetually suspended goals
and, instead of printing out all of them (possibly very
many}, it displays only a goal that is most upstream in

the data flow. It has been extremely helpful in locating
the cause of a perpetual suspension {usually, the culprit
is a producer process failing to instantiate the variable
on which the reported goal is suspended).

Performence monitoring and gathering facility was
later added (and is still being enhanced) [Aikawa 1992].
Post-mortem display of processor utilization along the
time exis often clearly reveals that one processor is
being & bottleneck at a particular phase of computa-
tion. The breakdewn of processor time (into comput-
ing/communicatingfidling) can give a hint on how the
process structure might be changed to remove the bot-
tleneck.

- Sometimes knowledge of KL1 implementation is neces-
sary to interpret the information provided by the facility
to tune (sequential as well as parallel) performance. A
similar situation exists in performance tuning of applica-
tion programs on any computers, but the problem seems
to be more serious in a parallel symbolic language like
KLl. How o bridge the gap between the programmer's
idea of KL1 and the underlying implementation remains
a problem in performance debugging /tuning,

7T Conclusion

We introduced overviews of parallel application pro-
grams and research on performance analysis.

Application programs presented here contain interest-
ing technologies from viewpoint of not only parallel pro-
cessing but knowledge processing.

By developing various knowledge processing technolo-
gies in KL.1 and measuring their performance, we showad
that K11 is a suitable language to realize parallel knowl-
edge processing technologies and that they are executed
quickly on PIM, Therefore, PIM and KL are appropri-
ate tools to develop large scale intelligent systems.

Mereover, we have developed many parallel program-
ming techniques to obtain high performance. We were
able to observe their effects actually on the parallel in-
ference machine. These experiences are summarized as
guidelines for developing larger application systems.

In addition to developing application programs, the
performance analysis group analyzed behaviors of par-
allel programe in & general framework., The results of
petformance analysis gave us useful information for se-
lecting paraliel programming techniques and for predict-
ing their performance when the problem sizes are scaled
up.

The parallel inference performances presented in this
paper were measured on Multi-PSI or PIM/m. We need
to compare and analyze the performances on different
PIMs as future works. We would also like to develop
more utility programs which will help us to develop par-
allel programs, such as a dynamic load balancer other
than the multi-level load balancer.

Acknowledgement

The research and development of parallel application
programs has been carried out by researchers of the sev-
enth research laboratory and cooperating manufacturers
with suggestions by members of the PIC, GIP, ADS and
KAR werking groups. We would like to acknowledge
them and their efforts. We also thank Kasuhire Fuchi,
the director of ICOT, and Shunichi Uchida, the manager
of the research department.

References

[Aikawa 1592] S, Alkawa, K. Mayumi, H. Kubo, F. Mat-
suzawa. ParaCGraph: A Graphical Tuning Tool for
Multiprecessor Ssytems. In Proc. Int. Conf. on Fifth
Fenerafion Computer Systems 1898, ICOT, Tokyo,
1992,

[Barton 1990] J. G. Barion, Protein Multiple Alignment
and Flexible Pattern Matching, In Methods in Fn-
symelogy, Vol 185 (1990), Academic Press, pp. 626-
645,

+ [Chikayame 1992] Takashi Chikayama. KL1 and PI-
MOS. In Proc. Int. Conf. on Fifth Generation Com-
puter Systems 1968, ICOT, Tokyo, 18582,

[Date et af. 1992] H. Date, Y. Matsumoto, M. Hoshi, H.
Kato, K. Kimura and K. Taki. LSI-CAD Programs
on Parallel [nference Machine. In Proc, Int. Conf. on
Fifth Generation Computer Systems 1998, 1COT,
Tokyo, 1993.

[de Hleer 1986] J. de Eleer. An Assumption-Based
Truth Maintenance System, Artificial Intelligence
28, (1986), pp.127-162.

[Doyle 1979] J. Doyle. A Truth Maintenance System. Ar-
tificial Intelligence 24 (1986).

[Falkenhainer 86] B. Falkenhainer, K. D. Forbus, D
Gentner. The Structure-Mapping Engine. In Proc.
Fifih Notional Conference on Artifical Intelligence,
1986.

[Fujita et al. 1091] H. Fujita, et. al. A Model Generation
Therem Prover in KL1 Using a Ramified-Stack Al
gorithm. ICOT TR-606 1991.

[Fukui 1989] 8. Fukui. Improvement of the Virtual Time
Algorithm. Transactions of Mformation Processing
Society of Jopan, Vol.30, No.12 (1989), pp. 1547-
1554. (in Japanese)

[Furnichi el al. 1990] M. Fu
ruichi, K. Taki, and N. Ichiyoshi. A multi-level load
balancing scheme for or-paralle]l exhaustive search

189

programs on the Multi-PSL In Prec. of PPaFFP'90,
1390, pp. 50-59.

[Goto ef al. 1988] Atsubiro Goto ef al. Overview of the
Parallel Inference Machine Architecture. In Proc,
Int. Conf on Fifth Ceneration Computer Sysiems
1988, ICOT, Tokyo, 1988.

[Hasegawa et al. 19%2] Hasegawa, R, ef ol MGTP: A
Parallel Theorem Prover Based on Lazy Model Gen-
eration. To appear in Proc. CADE’ (System Ab-
stract), 1992,

[Hirosawa et al. 1991]
Hirosawa, M., Hoshida, M., Ishikawa, M. and T.
Toya, T. Multiple Alignroent System for Protein
Sequences employing 3-dimensional Dynamic Pro-
gramming, In Proc. Genome Informatics Workshop
17, 1991 (in Japanese).

’Hlmﬁawa. et al. 1992] Hirosawa, H., Feldmann, R.J.,
Rawn, D., Ishikawa, M., Hos]:uda M. and I'J.lch-ca.la
G. Fbldmg simulation using Temperature para.]lel
Sirmulated Annealing. In Proc. Int. Conf. on Fifth
Generation. Compuler System 1992, ICOT, Tokyo,
1992,

[lehiyoshi 1988] N. Ichiyoshi. Parallel logic programming
on the Multi-PSL ICOT TR-487, 1988, (Presented
at the [talian-Swedish-Japanese Workshop "90).

[lchiyoshi ef al 1992] N. Ichiyoshi and K. Kimura.
Asymptotic load balanee of distributed hash tables.
In Proc. Int. Conf. on Fifth Generation Computer
Systems 1998, 1992,

[Ishikews ef al. 1991] Ishikawa, M., Hoshida M., Hiro-
sawa, M., Toya,T., Onizuka K. and Nitta X. (1991a)
Protein Sequence Analysis by Parallel Inference Ma-
chine. Informalion Processing Sociely nf.."npq.n TH-
Fi-28-2, (in Japanese).

[Jefferson 1985] D. R. Jefferson. Virtual Time. ACM
T'ransactions on Programming Languages and Sys-
tems, Vol.7, No.3 (1985), pp. 404-425,

[Kimura et ol 1991] K. Kimura and K. Taki. Time-
homogeneous Parallel Annealing Algorithm. In
Prog. IMACS'21,1991. pp. 827-828.

[Kimura et al. 1991) K. Kimura and N. Ichiyoshi. Proba-
bilistic analysis of the optimal efficiency of the multi-
level dynamic load balancing scheme. In Proc. Sizth
Distributed Memory Computing Conference, 1991,
pp. 145-132.

[Kitazawa 1985] H. Kitazawz. A Line Search Alporithm
with High Wireability For Custom VLSI Design, In
Proc. ISCAS'85, 1985, pp.1035-1038,

190

[Koseki ef al. 1990] Koseki, Y., Nakakuli, Y., and
Taneka, M., An adaptive model-Based diagnoatic
system, In Proc. PRICAD'S0, Vol. 1 (1990), pp. 104-
104,

[Kumar et al. 1988] V. Kumar, K. Ramesh, and V. N,
Rao. Parallel best-first search of state space grapha:
A summary of results. In Pror. 4AAI-88, 1988, pp.
122-127.

[Maruyama 1938) F. Maruyama et al. co-LODEX: a co-
operative expert system for logic design. In Proc.
Int. Conf on Fifth Generation Computer Systems,
ICOT, Tokyo, 1988, pp.1299-1306.

[Maruyama 1990] F. Maruyama et al. Logic Design Sys-
tem with Evaluation-Redesign Mechanism. Flec-
fromics and Communications in Japan, Part III:
Fundamental Electronic Science, Vol 73, Ne.s,
Scripta Technica, Inc. (1990).

[Maruyama 1881] F. Maruyama et al, Solving Combi-
natorial Constraint Satisfaction and Optimization
Problems Using Sufficient Conditions for Constraint
Violation. In - Proc. the Fourth Int, Symposium on
Artificial Intelligence, 1991,

[(Matsumoto 1987] ¥. Matsumoto. A parallel parsing
system for natural language analysis. In Proe
Third International Conference on Logic Program-
ming, Lecturel Notes on Computer Science 225,
Springer-Verlag, 1987, pp. 396-409,

[Matsumoto ef al. 1992] Y. Matsumote and K. Taki.
Parallel logic Simulator based on Time Warp and
its Evaluation. In Proc. Int. Conf. on Fifth Genera-
ton Compuler Systems 1998, ICOT, Tokyo, 1992,

[Minoda 1992] Y. Minoda et al. A Cooperative Logic De-
sign Expert System on a Multiprocesser, In FProc.
Int. Conf. on Fifth Generation Computer Systerns
1998,1COT, Tokyo, 1992,

[Nakakuki ef ol 1990) Nakakuki, Y., Koseki, Y., and
Tanaka, M., Inductive learning in probabilistic do-
main, In Proc. AAAI-90, Vol. 2 (1990), pp. 809-814.

[Needleman et al. 1970] Needleman,S.B. and
Wunsch,C.I). A General Method Applicable to the
Search for Similarities in the Amine Acid Sequences
of Two Proteins. J. of Mol Biol, 48 (1970), pp.
443-453.

[Nitta et al. 1992) K. Nitta et. al. HELIC-I A Legal
Reasoning System on the Parallel Inference Ma-
chine. In Proe. Inl. Conf. on Fifth Generation Com-
puler Systems 1992, ICOT, Tokyo, 1092,

10ki 1989] H. Oki, K. Taki, §. Sei, and M. Furuichi.
Implementation and evaluation of parallel Tsumego
program on the Multi-PSL. In Pree. the Joint Paral-
lel Processing Symposium (JSPP'§9), 1580, pp. 351-
357, {In Japanese).

[Skolnick and Kolinsky 1991] Skolnick, J. and Kolin-
ski,A., Dynamic Monte Carlo Simulation of a New
Lattice Model of Globular Protein Folding, Struc-
ture and Dynamics, Journal of Molecular Biology,
Vol 221, Nof, pp.499-531.

[Susaki ef al 1989] K. Susaki, H. Sato, R. Sugimura,
K. Alasaka, K. Taki, S. Yamazaki, and N. Hirota.
Implementation and evaluation of parallel syntax
analyzer PAX on the Multi-P31. In Prec. Joint Par-
allel Processing Symposium (JSPP'89), 1989, pp.
342-350. (In Japanese).

[Uchida et al. 1988 Shunichi Uchida et al. Research and
Development of the Parallel Inference System in the
Intermediate Stage of the FGCS Project. In Proc.
Int. Conf. on Fifth Generation Computer Systems,
1COT, Tokyo, 1988,

[Ueda et al. 1878] Ueda, Y., Taketomi, H. and Go, N.
(1978) Studies on protein folding, unfolding and
fluctuations by computer simulation. A three dimen-
sional lattice model of lysozyme. Bilpolymers Vol 17
pp.1531-1548.

{Wada and Iehiyoshi 1990] K. Wada and N. Ichiyoshi. A
study of mapping of locally message exchanging al-
gorithms on a loosely-coupled multiprocessor. ICOT
TR-387, 1990

[Wada et al 1992)
M. Wada, K. Rokusawa, and N. Ichiyoshi. Paral-
lelization of iterative deepening A* algorithm and
its implementation and performance measurement
on PIM/m. Teo appear in Joint Symposium on Par-
allel Processing JSPP'92 (in Japanese).

