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Abstract

The Fifth Ceneration Computer Systems (FGCS)
project ie a national project of Japan, aiming at es-
tablishing the basic technology required for high perfor-
mance knowledge information processing systems. The
parallel inference systern subproject is aiming at estab-
lishing parallel processing hardware technology for mas-
sive processing power and software technolegy for effec-
tive utilization of such hardware in the knowledge infor-
mation processing field. The basic software syslem is re-
spensible for providing a programming language suited
for describing knowledge information processing appli-
cations software and providing a comfortable environ-
ment for program execution and software development
on highly parallel computer systems,

A concurrent logic language with extensions to control
program execution on parallel hardware was designed as
the kernel language of the system. An operabing sys-
tem that provides 2 comiortable environment for parallel
application software development was designed and im-
plemented in the kernel language. This paper gives an
overview of the research and development in this area in
the FGOS project.

1 Introduction

The fifth generation computer systems project 1= a na-
tional project of Japan, aiming at establishing the basic
technology reguired for high- performence knowledge in-
formation processing systems. The most important tech-
nologies to be provided to attain Lhe final objective of the
project are the fellowing Lwo.

» Problem sclving methods for knowledge information
processing

# Processing power for implementation of the above
methods

The parallel inference system subproject is aiming at es-
tablishing both hardware and software technologies for
the latter.

With the recent evolution of the hardware technology,
multiprocessor systems are expected to be advantageous

not only in absolute processing power but also in cost
effectiveness early in the next century. There seems to
be no other technology than multiprocessing to provide
the computational power required for high-performance
knowledge information processing systems.

The software technology for parallel processing, on the
other hand, is still quite premature. In particular, the
technology for building paralle]l software to solve com-
plicated problems in the area of knowledge processing
iz far from satisfactory vet. This, we think, is at least
partly due to the problems in the approach to the par-
alle] software technology conventionally taken, that is,
trying to augment already awailable sequential process-
ing technologies. A new system of software technology
totally redesigned for parallel processing, including algo-
rithme, programming languages and operating systems,
has to be established.

As the basis of this new technology, a concurrent logic
language with extensions to control program execution
on parallel hardware was designed as the kernel lan-
guage of the system. An operating system that provides
a comfortable environment for parallel application soft-
ware development was also designed and implemented
in the kernel language, This paper gives an overview of
the research and development in this area of the FGOS
project.

In the following sections, the design principles are de-
seribed in section 2, the design of the kernel language
in section 3, that of the operating system in sectiond.
Experiences with the language and the operating system
are described in section 5. Direction of future work is
suggested in section 6, followed by concluding remarks.

2 Principles

2.1 Middle-Out Approach

When designing a computer system, two extreme ap-
proaches can be considered. One is a top-down ap-
proach, starting from problems to solve, gradually de-
signing downwards to the level of computer architecture
or even to the level of electronic devices, seeking in each
level for a design most appropriate to implement higher
levels. The other is a bottom-up approach, starting from
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available device technologies, seeking for the best use of
the lower level technology, finally finding an appropriate
application area,

Meither of the approaches, however, cannot be success-
ful by itself. In the top-dewn appreach, design in each
level requires insight into appropriate implementation of
all the lower ievel technologies. In the botiomiup ap-
proach, design in each level requires insight into upper
levels, up to application areas appropriate for the chosen
design.

It is too difficult for anyboedy to have such insight for
the broad and rather vague target of a long-term project,
Imowledge information processing. We thus decided to
take a middle-out approach of designing & certain inter-
mediate level first and conduct research and development
towards two directions, upwards and downwards, simul-
taneously. It is not easy, of course, to find an appropriate
intermediate level and to actually design that level. This,
however, seemed to be the only feasible approach for a
project like this one.

2.2 Kernel Language

The intermediate level we chose was the level of program-
ming languages. Choosing this level has the following
merits.

# The programming language level is not too far away
from the both extreme ends of application software
and hardware implementation,

» Relatively rigorous specification in the programming
language level can be given more easily than in other
levels.

The programming langnage designed to be the starting
point of this middle-out appreach is called the kernel
language [Uede and Chikayama 1990].

AL the time the project started in 1982, language de-
sign and implementation technology was still premature
to fix the design of the kernel language, Thus, the re-
search started by investigating sequential systems first.
In the first stage {fiscal years of 1982-84) of the project, a
sequential kernel language based on Prolog, named ESP
[Chilayama 1984], was designed, which formed the basis
of the research and development in most of the research
ellorts in the first siage and sarly in the intermediate
stage.

Design of the next version of the kernel language K11
was starled in the first stage simultaneously. Its pre-
liminary design and implementation were done early in
the intermediate stage and a fuller implementation an
a experimental parallel computer system was completed
within the intermediate stage (1985-88). The language
has been used through the final stage [1989-) for var-
ious application research. In what follows, the kernel
language means this second generation kernel language,
KL1.

2.3 Logic Programming Principle

The logic programming idea gave the basis of the whole
project. ‘he image of logic programming in the originat
project plan seems to have been strongly influenced by
a particular language Prolog. As the research proceeded
from sequential systems to parallel systems, we had cho-
sen a concurrent logic programming approach. The prin-
ciple of placing “logic” as the central design principle,
however, has been kept unchanged.

The principle of logic programming played a impor-
tant role in selecting a particular design among many
cendidates. In designing the kernel language, its sound-.
ess in the sense of mathematical logic has been acted as
a “canon”, although we gave up pursuing completeness.!
Many proposals to extend the kernel language with at-
tractive features were investigated but rejected because
of their unsoundness, On the other hand, features which
do not change the meaning of the programs when inter-
preted as logical formulas were more freely added to the
language. They have only to do with execution efficiency
and nothing to do with the correctness of programs, and
were clearly discriminated from the core part of the lan-
Euage,

These principles based on logical interpretation of pro-
grams have been quite helpful in keeping the language
design coberent and, in its consequence, its implementa-
tion and its programming style coherent, as is described
further in detail below.

2.4 Target Architecture

A processor with performance comparable to a full-size
computer with reasonable amount of memory is now
available on a single circuit board. Recent evolution
of the hardware technology shows four-times increase in
density of circuitry every three years. Extrapolating this,
ene hundred processors with reascnable amount of mem-
ory are expected to reside in one chip early in the next
century, On the other hand, although the performance
of single processor is steadily being improved, it might
be very difficult to attain improvement by two arders of
magnitude within the same time period.

With larger circuilry made practical with higher den-
sity, the design cost is beginning to dominate the total
cost of processors. The design repeatability in multi-
processor systems will have great cost advantage over a
complicated processor occupying cne whole chip or more,
even if the both systems had the same performance.
Early in the next century, multiprocessor systems will
thus be advantageous, not only in absolute processing
power, but also in cost effectiveness even in small sys-
tems such as palm-top or wrist watch type computers.

I Soundness of a system means that any results ebtained are
legical consequences of the given axiom set. Complefencss, on the
other hand, means that all logieal consequences can be ahtajned.



For application areas such as knowledge mformation
processing that need nen-uniform eomputation, an ar-
chitecture that allows flaxible resource allocation is re-
quired. For highly parallel systems, scalability of the
system architecture is critical. Having these in mind, we
chose a homogensous MIMD architecture with locsely-
coupled processors (or loosely-coupled clusters each with
geveral l.ig]:ll.ly L'uuph-d p‘rﬂr.'t.!aﬂi's} as the target architec-
ture of the software system.

2.5 Level of the Kernel Language

An ideal programming language should allow very high
level description with an implementation optimizing it to
the target architesture without any human help. How-
ever, with the current technolegy, such a language is
nothing more than & dream. [t is especially so when the
programs have to be optimized for execution on a large-
scale loosely-coupled parallel compueter systems where
communication delay is not negligible. The mest dif-
ficult part in the cptimization will be where {on which
pxﬂ:ﬁwr:l to execute certain parts of umrputa.f.iun and
when (in which order). Such a problem is known as the
mapping problem,

As long as problem solving techniques used are rel-
atively simple, required computation can be easily told
beforehand making static mapping by compilers feasible.
For knowledge information processing requiring sophis-
ticated problem solving methods, what to compute next
often depends on the result of the former steps of the
computation, making static optimization of computation
mapping impossible. Many research results have shown
that general-purpose automatic mapping algorithm is
hard to design and the selection of good mapping alge-
rithms depends heavily on the problem solving methed
used.

As knowledge informalion processing is an area where
no single universal and efficient problem solving methed
iz known, providing one single mapping algorithm is not
appropriate. Providing many mapping algorithms that
cover all the known methods may still be insufficient; as
research in the area is still in an early stage, many novel
problem solving methods are sxpected to be proposed in
the near future. Thus, we set the level of the kernel lan-
guage so that mapping of computation can be specified
in programs.

This decision of putting the responsibility of computa-
tion mapping on programmers has the deawbacl of mak-
ing programming a more complicated task. We, however,
vegard this additional effort as unavoidable and essen-
tial in establishing the technology for high performance
knowledge information systems. When a widely applica-
ble mapping algorithm is established, it can be provided
to the application users as a program library. With the
kernel langnage capable of controlling program execu-
tion, writing such a library should not be difficult.
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2.6 Designing a New Language

It might have been possible to take an already existing
logic programming language as the basis of the kernel
language and extend it with several additional features
for concurrent execulion. The logic programming lan-
guage used most widely was (and still is) Prolog, which
was the Primary candidate for such extensions.

There could be two ways to tailor Prolog to a language
for parallel systems. One method was to provide implicit
and automatic computation mapping, which was net
taken by the above-described reason. Ancther possible
way was to meke concurrent execution explicitly spec-
ified with additional language constructs., However, as
the base language Prolog was designed for sequential pro-
cessing, concurrency specification would add some more
complexity to the language and making programs harder
to understand. More importantly, il sequential execu-
tion should have made the default principle, it would
hawve besn more difficult to reorganize programs for bet-
ter mapping, as different mappings require different parts
of programs to run concurrently.

Another problem with such a language was pains in
specifying synchronization. In programming languages
in which synchronization is specified independent from
conditioning, problems arise when decisions on condi-
tional execution are made on incomplete data. On phys-
ically parallel hardware, finding such problems would be-
come very painful because the same phenomenon is often
hﬂ'l'd tﬂ l'ﬂ]:l‘l'UduEl:'. T'L'I- B-ﬂ‘]."."l: th:is P‘rﬂblﬂm1 $J"I:I,EI:I‘.I,'DI]:L$1"
tion and conditioning should not be made separate.

We decided that the kernel language should be de-
signed from scratch so that concorrent execution could
be expressed in & natural way., The language should have
intrinsic concurrency: language constructs imply concur-
rent execution in principle and sequencing is explicitly
deseribed. Synchronization should be integrated with
conditioning in the langoage construet.

2.7 Designing a New OperatingSystem-

Even though the prototype parallel inference system is
an experimental system, an operzting system that pro-
vides a comfortable software development environment
was mandatory. One way o provide the required fune-
tionality might have been to port an already existing
operating system to the paralle]l inference machine.

All the operating systems available then (and probably
meat of them even now) were designed originally for se-
quential systems and augmented afterwards with cerlain
primitives for execution on parallel systems.

There were two major problems with such systems.
One was that the interface of the operating system with
the user programs was still based on sequencing. For
example, the user program is notified of completion of
requested service by the completion of execution of 2 pro-
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cedure, supervisor call, in the user’s thread of execution.
This is acceptable in systems where application software
12 written in basically sequentizl languages, - This, how-
ever, would not go well with software written in the ker-
nel language with intrinsic concurrency.

Anocther problem was that the management policies
of such operating systems were highly optimized for se-
quential processing. In sequential systems or small-scale
parallel systems, centralization of all the management
information is usually the most robust and efficient pol-
icy. This, however, is far from optimal for highly parallel
systems, If the management were centralized on one pro-
cessor in a highly parallel system, that processor would
be responsible for too much management work and would
be the hottleneck of the whole system. Moreover, every
activity within the system would require communication
to and from that processor, resulting in communrication
bottieneck,

We concluded that designing an operating system op-
timized for highly parallel systems was also an unawvoid-
able and essential parl of the technology for high per-
formance knowledge information systems and decided
to design and implement a new operating system from
scratch. The vser interface should be consistent with the
design of the kernel language; sequencing should not be a
part of the design of the interface. Distribution of man-
agement was essential to avoid bottlenecks, which might
also affect the specification of the services provided by
the operating system.

3 Kernel Language: KL1°

The kernel language KL1 has two layers. The basic layer
is defined by Guarded Horn Clauses (GHC), which is a
concurrent logic languege for describing whaet computa-
tiom to perform for desired result, that is, for describing
correct programs. The description lays only those con-
straints on mapping of computation which are required
to obtain the desired result. Based upon this layer is the
full KL1 language for describing how such computation
should actually be carried out with desired mapping of
computation, that is, lor describing efficient programs.
This separation of correciness and efficiency issues or, in
other words, concurrency and parallelism, seems to play
an important role in bridging the gap between parallel
inference systems and knowledge information processing
in a coherent manner.

3.1 Concurrent Logic Language GHC

This section describes the design of & concurrent logic
language CGuarded Horn Clauses, which forms the basis

*This section i a rewrite of en article co-authored with
Kazunori Ueda [Ueda and Chikayama 1980], except for the sub-
section 3.3

| Efficient Program in KLI———
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Figure 1: T'wo Layers of the Kernel Language

of the kernel language KLI.

3.1.1 Concurrent Logic Languages

The design effort of the kernel language was started in
1982 with the start of the project by seeking for an ap-
propriate framework of the language. As the concur-
rent logic programming framework seemed to provide the
characteristics in our need, we investigated many lan-
guages in the family as the basis of the kernel language,
including Relational Language [Clark and Gregory 1981],
Concurrent Prolog [Shapiro 1983] and PARLOG [Clark
and Gregory 1983). This study led us to a design of a
new concurrent logic language, Guarded Horn Clauses
(GHC) at the end of 1984 [Ueda 1986).

GHC shares its basic framework with other concur-
rent logic languages. Firstly, a GHC program is a set of
guarded elanses. Secondly, GHOC features no dont-know
nondeterminism (built-in search capability) but features
den’t-care nondeterminism, which allows description of
reactive systems. Reactive systems in coneurrent logic
languages are based on the process interpretation of logic
[van Emden and de Lucena Filho 1982), in which a goal
(or a multiset of subgoals derived from it) iz regarded
as a process and processes communicate by generating
and oheerving hindings (between shared logical variables
and their values). Like most concurrent logic languages,
all bindings are determinate in GHC, that is, they are
never revoked once published to other processes. The
determinacy of bindings is essential in reactive systems,
such as an operating system, because the bindings may
be used for interacting with the real outside world. The
lack of built-in search capability also allows programs to
specify the way of their execution in more detail, which



also matches our principle of making programs specify
mapping of computation.

3.1.2 Guarded Horn Clauses

What then is the relative merit of GHC over other con-
current logic languages? In our study of various concur-
rent Jogic languages, we focused on Concarrent Prolog,
which was the most expressive of them, and built its
prototype implementation [Miyazaki et al. 1985]. The
experience led us to clarify the definition of atomic op-
erations of the language, which in turn led us to & new
language with simpler atomic operations.

Ag explained above, one important aspect of concur-
rent logic languages is the determinacy of bindings. In

general, the execution of a concurrent logic program pro- -

ceeds using parallel input resclution [Ueda 1588a] that
allows parallel execution of different goals, but under the
following rules to guarantes the determinacy of bindings:

(1) The guards (including the heads) of different clauses
called by 2 goal g can be executed concurrently, but
they cannot instantiate g.

(2) The goal g commits to one of the clanses whose
guards have succeeded.

{3) The bady of a clause to which g has committed can
instantiate g. The bodies of clauses to which g has
not committed cannot instantiate g or the guards of
the clauses,

(4) A goal is said to succeed if it commits to some clause
and all its body goals succeed.

That is, before commitment, & goal can pursue twe
or more clauses but without generating bindings. Af-
ter commitment, it can generate bindings but only one
clanse is lefl.

Another impeortant aspect of concurrent logic lan-
guages is how synchronization is achieved. In general,
synchronization is achieved by restricting information
flow caused by unification. Concurrent Prolog uses read-
only annotations, and PARLOG uses mode declarations
which are used for compiling the unification of input ar-
guments into a sequence of one-way unification and test
unification primitives. However, in these languages, ad-
ditional mechanisms are necessary to guarantee restric-
tion (1) above.

The key idea of GHC is quite simple. It uses the re-
striction (1) itself as a synchronization construct. That
is, any piece of unification which is invoked directly or
indirectly from the guard of a clause € and which would
instantiate the caller of C is suspended until it can be ex-
ecuted without instantiating the caller. In other words,
GHC has inlegrated two notions: the determinacy of
bindings and synchronization.
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A kernel language must provide a common framework
for people working on variows aspects of the project in-
cluding applications, implementation, and theory. Be-
fore accepting (GHC as the basis of our kernel language,
we had to convince ourselves that it satisfies the follow-
ng conditions:

» It is expressive enough.

# It can eventually be implemented efficiently, possi-
bly by appropriate subsetting.

[t is simple enough to be understood and used by
programmmers, Also, it is simple enough for theoret-
ical treatment,

We soon made sure that GHC was expressive enough
to write most concurrent algorithms that had been writ-
ten in other concurrent logic languages, but that was
not enough. How to program search problems was also
important, because search problems are & specialty of or-
dinary logic languages. So we have developed a couple of
methods for programming search problems [Ueda 1987,
[Tamali 1987], [Okumura and Matsumoto 1987].

For implementability, we quickly ascertained by rapid
prototyping that GHC can be implemented fairly ef-
ficiently at least on sequential computers [Ueda and
Chikayama 1985].

3.1.3 Flat GHC

For simplicity, we continued to study the properties of
GHC and looked for a simpler explanation of the lan-
guage better suited to process interpretation. Now, our
interpretation is that a GHO process is an abstract entity
which observes and generates information (represented
in the form of bindings) and which is implemented by a
multizet of body goals. The behavior of each body goal
is defined by guarded clauses that can be regarded as
rewrite rules.

A problem with the original definition of GHT is that
guard goals do not fit well into this process interpreta-
tion. We also felt, from a practical point of view, that
the expressive power of puard goals did not justify the
implementation effort even if it could be implemented
efficiently..

These considerations led us fo reduce GHC to a sub-
set, Flat GHC. CGuard goals of Flat GHC are auxiliary
conditions to be satisfied for applying the clauvse. The
gufficient conditions to be satisfied by a gnard goal as
an auxiliary condition are that it is deterministic (that
is, whether it succeeds or not depends only on its argu-
ments) and that it does not produce any bindings, This
restriction simplified the theoretical treatment consider-
ably in the operational semantics [Ueda 1990] and pro-
gram transformation rules [Ueda and Furukawa 1988).

To summarize, & Flat GHC program is a set of guarded
clauses that can be regarded as rewrite rules of goals.
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The guard of a clavse specifies what information should
be ohserved before applying the rewrite rule, and the
bedy specifies the multiset of goals replacing the original.
A body goal is either & unification goal of the form #y =1;,
whose behavior is language-defined, or & non-unification
goal, whose belavior is user-defined. A unification body
goal generates information by unifying 1, and #;, and a
non-unification body goal represents the rest of the work
ard will be reduced further.

d.1.4 Characteristics of GHC

The semantics of Flat GHC can be understood both alge-
braically and logically. The algebraic one is the process
interpretalion mentioned above. A logical characteriza-
tion of communication and synchronization was given
by Maher [Maher 1987), showing that information com-
municated by processes can be viewed 23 equality con-
straints over terms.

Unlike Coneurrent Prolog but like PARLOG, the pub-
lication of bindings is not done atomically upon com-
mitment of a non-unification goal but eventually after
commitment using a unification body goal that can run
in parallel with other goals. This means that commit-
ment in GHC is & smaller and simpler aperation than in
Concurrent Prolog. Moreover, in GHC, the information
generated by a unification body goal is not an atomic
entity but can be transmitted in smaller pieces, possi-
bly with communication delay. We have found that this
liberal computational model of (Flat) GHC is expressive
encugh to program cooperating concurrent processes and
leaves more freedom to implementation.

Another point to note is that GHC has included con-
tral for the correct behavior of processes but excluded
any control for efficient execution. GHC has left the
latter to KL1 described below, in order to clearly dis-
tinguish between the two notions. This contrasts with
PARLOG, which features sequential AND that can be
used for suppressing parallel execution of body goals. We
believe that it is important to learn that synchronization
based on information fow is sufficient for writing correct
concurrent Programs.

Important topics on theoretical aspects of Flat GHC
include the relationship with other theoretical models of
concurrency such as CC5 [Milner 1989] and theoretical
CSP [Hoare 1985). Although concurrent logic languages
differ from CCS and CSP in their asynchronous commu-
nication and dynamically reconfigurable processes, sim-
ilar mathematical techniques can be used to formalize
them. We have not yet obtained a completely satisfac-
tory formal semantics, but we are fairly confident that
Flat GHC is theoretically simple enough, while it can be
used for practical programming without any modifica-
fon.

3.2 Practical Parallel Language KL1

As described above, we have designed a concurrent logic
language Flat GHC as the basis of the kernel language.
The descriptive power of the language, however, is not
sufficient when efficient program execution is our con-
cern, which was the original motivation of parallel com-
puters.

As Flat GHC programs do not say anything about
where (iLe., on which processor) the atomic operations
making up a computation should be performed, there
are many ways to distribute the operations over avail-
able processors. As Flat GHC programs only specify the
partial ordering of atomic operations, there are many
possible total orderings conforming to it. To make sure
that the distribution and the ordering employed are not
far from oplimal, we must be able to specify physical
detailz of execution to some extent.

We thus designed a parallel programming language
based on the concurrent programming language Flat
GHC, in which we can specify in certain detail how a
program should be executed. This section describes the
outline of this language, named KLI.

2.2.1 Mapping of Computation

Flat GHC programs implicitly express any potential par-
allelism in the sense that no ordering between atomic op-
erations exists except for those essential for correctness,
On real-world computer systems with a limited number
of processors and non-negligible cost of interprocessor
communication, faithful exploitation of this parallelism
will almost never show optimal efficiency. To achieve rea-
sonable efficiency, control is required on when and where
each atomic operation should be performed. This cantrol
is called mapping.

Mapping is often implicit in sequential eystems. With
two possible methods te solve a problem, a good strategy
on a sequential system would be trying more efficient but
less reliable one first and trying less efficient but reliable
cne second oaly when the first one fails. This may not
be the best for parallel systems, when the first method
will not require all the computational resource (such as
processors) for its execution. In such a case, the second
methed should be tried in parallel with the first. This
computation may or may not be required depending on
the result of the first method. Such computation is called
speculative [Burton 1985]. For efficiency, computation by
the second method should not interfere the execution of
the first by snatching required resources. This is effected
by giving priority te the first method over the second.
From this viewpoint, the original sequential algorithm
uses sequencing of two methods not for correctness but
for efficiency to implicitly specify priority.

Sometimes more sophisticated mapping is desirable.
Suppose that there are two methods to solve a problem
and that, although at least one is known to find a so-
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Figure 2: Shoen Construct

lution efficiently, we cannot tell which beforehand. In
such a case, the best scheduling strategy may be to give
both methods approximately the same amount of com-
putational resource. Resource management is thus an
important part of an algorithm in parallel computation.

In sequential computer systems and in parallel com-
puter systems as extensions of conventional sequential
systems, operating systems are primarily responsible for
mapping. This s acceptable as far as application pro-
grams are mostly sequential and the mapping strategy is
often specified by sequencing implicitly. In parallel sys-
tems where explicit mapping operations are much more
frequently required, requesting each mapping operation
to the operating system would incur intolerable over-
head.

3.2.2 Mapping Features of KL1

To solve this problem, we have introduced into KL1 the
following features, which are intended to be efficiently
implemented:

Shoen: Shoen® represents a group of goals. This group
is used as the unit of execution control, namely the
initiation, the interruption, the resumption and the
abortion of execution. Exception handling and re-
gouree consumption control mechanism are also pro-
vided through this shoen construct. Tt has two com-
munication sireams as its interface: one directs from
outside of the shoen, called control stream, for sending
messages bo control execation in the shoen; the other,
called report stream, has the reverse direction for re-
porting events internal to sheen. The shoen construct
is an extension of the mefacall construct proposed by
Clark and Gregory [Clark and Gregory 1984).

Priority: A (body) goal of a KL1 program is the unit of
priority control. Bach goal has an integer priority as-

sociated with it. Each shoen keeps the maximum and .

the minimum priorities allowed for goals belonging to

% Shoen is a Japanese word corresponding te *manor’ in English.
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it, and the priority of each goal is specified relative to
these. The language provides a large number of log-
ical priority levels, which are translated to physically
available priority levels provided by each implementa-
tiom,

Processor specification: Each (body) goal may have
a processor specification, which designates the proces-
sor (or a group of processors) on which to execute the
zoal.

This straightforward mechanism provides the basis
aof research in more sophisticated computation map-
ping strategies. Aclually, several sutomatic mapping
strategies have been developed for diverse problems,
and relatively universal ones are provided as libraries
[Furuichi et al. 1990].

One of the most notable characteristics of the KL1 lan-
guage is that these priority and processor specifications
are separated from concurrency control. We call these
specifications pragmas. Pragmas are merely guidelines
for language implementations and may not be precisely
obeyed. The same is true of the controlling mechanism
of shoen; abortion of computation, for example, may not
happen immediately. This relaxation makes distributed
implementation much easier.

In many parallel programming languages, the specifi-
cetion of parallel execution is often mixed up with other
language construcis, especially with constructs for con-
currency control. A major revision iz often required for
revising only the mapping of computation to improve
efficiency, which is lizble to introduce new bugs.

Although pragmas are specified within the program
in L1, they are clearly distinguished syntactically from
other language constructs. Pragmas will never change
the correctness of the programs,® though the perfor-
mance may change drastically. As it is not uncommen
that more than half of the effert to develop a program is
devoted to the design of appropriate mapping, it is most
advantageous that mapping specifications can be altered
without affecting correctness of the program,

3.2.3 Keeping up with Sequential Languages

What criterion is appropriate for comparing peraliel al-
gorithms? Assume that a parallel algorithm has sequen-
tial execution time ¢(n) (n being the size of the prob-
lem) and average potential parallelism p(n). Then the
total execution time by this algorithm on an ideal par-
allel computer is given by ¢(n)/p{n). This means that
an algorithm with more sequential execution time but
with still more parallelism is considered to be a better
algorithm on an ideal parallel computer.

“To be precise, the pricrity specification may be wsed for gnar
antesing cortain properties of diverging {Le., sutonomeonsly non-
terminating) programs.
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‘This, however, does not hold when the potential par-
allelism, which may vary over time, can exceed the phys-
ically available parallelism. As physical parallelism is al-
ways limited in the real world, a parallel algorithm with
sequential time complexity worse than a sequential al-
gorithm will be beaten by that sequential algorithm for
sufficiently large n, no matter what p(n) 4. To sum-
marize, parallel languages must be able to express any
algoritlims with the same sequential time complexity as
in sequential languages to be really useful.

Pure languages such as pure Lisp and pure Prolog cen-
not express certain kinds of efficient algorithm due to
the lack of the notion of destructive assignment. GHC
also is a pure language with the same inherent problem.
To write efficient algorithms in these pure languages, we
must be able to somehow mimie the efficiency of array
aperations in conventional languages,

For this reason, KL1 introduced a primitive for updat-
ing an array element in constant time without disturbing
ihe single-assignment property of logical variables, The
primitive can be used as {ollows:

set_vector.element (Vect, Index,
Elem, NewElem, NewVect)

When an array Vect, an index value Index and a new el-
ement value ¥ewElem are given, the predicate binds Elem
to the value of the Index’th element of Vect, and New-
Vect to a new array which is the same as Vect except
that the Index'th element is replaced by NewElem.

Because some other goals may still have references to
the old array Vect, a naive implementation might allo-
cate a completely new array for NewVect and copy all but
one elements. However, when it is known that no goals
other than the above set_vector_element goal have ref-
erences to Yect, there will be no problem in destructively
updating it. In the actual implementation of KL1, a sim-
plified, efficient version of the reference counting scheme
[Chikayama and Kimura 1987} detects such a situation,
in which event the new array NewVect is obtained in con-
stant time.

This means that any imperative sequential algorithm
can be rewritten in KL retaining the same computa-
tional complexity, as random aceess memory can always
be emulated using a single-reference array. Of course, al-
lowing omly one reference to & data structure can decrease
the possibility of parallel execution considerably. How-
ever, this requirement of the computational complexity
becomes essential only after physically available paral-
lelism iz wsed up.

3.3 Higher-Level Languages

Although the keenel lanpuage KLI allows relatively
higher level description of programs than imperative lan-
guages, its description level is in the same level as Lisp,
which is still too low for certain application programs

in the area of knowledge information processing. This
section describes research on providing higher-level lan-
guage constructs upon KLI1.

3.3.1 Macro Expansion

A powerful macro expansion mechanism similar to the
one available in ESP [Kondoh and Chikayama 1988] is
designed and implemented. This macro allows not ooly
in-place expansions of macro invocations but also inser-
tion af terma into the program in the levels of arguments,
goals or clauses. The following are possible using these
features.

¢ Simple in-place expansion
» Conditional compilation

s Funeciional notations including but not restricied to
arithmetical expressions

s Implicit arguments

A poal of Flat GHC programs has very short lifetime,
as it consists of only one reduction to its subgeals. Ta
realize a process with longer lifetime, a programming
style is used in which a goal recursively calls the same
predicate with almost the same arguments. This pro-
gramming style is used almost everywhere in the oper-
ating system and application programs. In such a pro-
gramming style, the state of the process or any paths
to communicate with other processes (shared variables)
have to be passed as the arguments of the recursive goal.
This ensures higher modularity, but always describing
such arguments is too verbose, making it harder to un-
derstand or to revise programs. The implicit argument
passing mechanism can be conveniently used to describe
PI'CH:H.HE 11 & MOore CONCIEE TNANNET.

The macre expansion mechanism of KL1 is so pow-
erful that functions beyond mere syntactic sugaring can
be provided using its features. However, programmers
can freely choose any programming style allowed in KL1.
Although this is advantageous in certain cases, resfric-
tion on the usage of the language features is profitable
in making programs easier to understand and maintain.
We thus started designs of higher-level languages to be
compiled into KL1, which will be described in the fol-
lowing sections.

3.3.2 A'UM

The programming style of KL1 most frequently used is to
descrike a set of processes communieating through mes-
sage streams [Shapiro and Takenchi 1983]. Streams are
realized by gradually instantiating a list structure con-
sisting of binary cells. Processes are realized using tail
recursion. A'UM is a programming language designed
to deseribe such programs more directly than explicitly



writing such realization of message streams and processes
[Yoshida and Chikayama 1990].

A prototype implementation of the language was a
translator to KL1. As a thoroughly object-oriented lan-
guage, every entity of the language A'UUM, an integer
value for example, appears as a process. We could find
ne other way than to actually implement them as pro-
cesges in KL1. The choice then was whether to aban-

don thorough object-orientationer to implement it dif- -

ferently, not as a part of the parallel inference zystem.
A'UM took the latter choice and research on its more
direct implementation is onpoing (Konishi ef al. 1992].
A prototype implementation is already operational on a
system of network-connected workstations. The former
approach was taken by another language with similar
objectives, called AYA, which is described in the next
section.

3.2.2 AYA

The design of the language AYA was initiated after we
decided to let A'UM seek for pure object-orientation
rather than pursue practical efficiency on the parallel
inference system [Susaki and Chikayama 1991}

The design objective of AYA is the same as the initial
motivation to design A'UM, namely, providing & more
concise way to describe programs in object-oriented pro-
gramming style of KL1. In design of AYA, a higher prior-
ity is given to practical efficiency and freedom of descrip-
tion than uniformity as an ebject-oriented languages.
Mot all entities are “objects™: integers will not respond
to "add” messages. Its design was mostly bottom-up;
most of the language features were chosen based on our
programming experiences in KLL

Processes of AYA can have multiple streams to receive
messages, making it impossible to interpret one single
message stream Lo be representing an object. Commu-
mication patterne besides sireams such as asynchronous
interrupts are also allwoed.

A characteristic feature of AYA is the notion of scenes,
corresponding to the macroscopic context of a process.
A process can have meny scenes to act in and its reaction
ko messages from outside will depend on in which scene
it is currently acting.

Implementation effort of AYA iz ongoing and 2 proto-
type translator to KL1 is already operational,

4 Operating System: PIMOS

As described above, an operating system tuned to con-
trol highly parallel programs effectively is vital for fully
exploiting the power of highly parallel computer sys-
tems. The system should also be user-friendly and robust
enough for. practical and extensive use in parallel soft-
ware rescarch. The Parallel Inference Machine QOperat-
ing System (PIMOS) was designed to fulfill the require-
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ments and implemented in the kemel language, This
section describes the overall design of PIMOS.

4.1 Prior Works

The possibility and advantages of writing a complete op-
erating system in a concurrent logic language were sug-
gested by Shapire [Shapiro 1986]. Based on this principle
but with much improvements in various aspects, several
experimental systems such as the Logix system [Hiresh
el al. 1987] and the Parlog Programming System (PPS)
[Foster 1987} were implemented.

PIMOS resembles PPS in many aspects. This resem-
blance is partly due to the resemblance of the implemen-
tation languages (IKL1 and PARLOG) and partly due to
frequent exchange of ideas among the two groups.

A notable difference between PIMOS and the other
above-mentioned systems lies in the underlying language
implementations and the way the system is used. PI-
MOS is designed to be efficiently executed on a parallel
hardware to be practically used in the research and de-
velopment of application software, while other systems
are built as experimental systems upon commercially
available systems. In other words, PIMOS shares with
other systems the objective of seeking for a novel method
of constructing an operating system in concurrent logic
language, but has an additional objective of providing
a comfortable and efficient environment for application
software development. This considerably affected wvari-
ous design trade-offs.

4.2 Objectives

In designing PIMOS, the following items were set as the
design objectives.

Robustness: As PIMOS is to be used on a stand-alone
parallel computer system, the robustness of the system
is more impertant than in systems build upon another
established system.

Internal Parallelism: The ultimate objective of PI-
MOS is, as stated above, to provide features for fully
exploiting the power of parallel inference hardware
Warious computation required in such an operating
systern should also be executed in parallel. Other-
wise, the operating system will be the bottleneck of
the whole system.

High Locality: The target architecture has loosely-
coupled processors where inter-processor communica-
tien is much more costly compared with communica-
fien within one processor. Thus, the amount of com-
munication between processors should be kept as low
as possible.

Flexibility: As the hardware parameters are expected
to change, the aystemn should have enough flexibility
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to be funed to the given parameters. When tuning by
changing parameters of the operating system becomes
insufficient, non-trivial re-design of the system may be
reguired. Thus, a system on whose improvement is
easy s desirable.

4.3 Resource Management

Management of resources is the most fundamental and
important role of an operating system. This section de-
scribes fhe design of the resource management mecha-
rism of PIMOS®

4.3.1 What Resources to Manage

In conventional systems, memery management and pro-
cess management are the most important tasks of oper-
ating eystems. As in other high-level langnage for sym-
bolic manipulation, KL1 provides an automatic memory
management feature including garbage collection. Thus,
basic memery management is by the language implemen-
tation rather than PIMOS. As KL1 provides implicit con-
carrency and data-flow synchronization, context switch-
ing and. scheduling are already supported. by the lan-
guage. Thus, PIMOS does net have to manage low-level
fine-grained processes, but controls larger-grained groups
of processes usimg the shoen feature of the kernel lan-
EUAEE.

On the other hand, PIMOS has full responsibility on
the management of resources such as input and cutput
devices. In the lowest level, 1/ devices are provided
as primitives of the kernel language to contral physi-
cal device interface. Thanks to the descriptive power
of the kernel language for reactive systems, such devices
have a disguise of an ordinary process in the kernel laa-
guage level. Their functionality, however, is at & level too
low for application programs. Like any other operating
svstems, PIMOS virtualizes such devices, allowing ap-
plicetion programs to control virtual devices with much
higher-level functionality. .

These victual devices are actually a process that con-
verts higher-level requests from user tasks into lower-
level requests that physical deviess can understand. The
user tasks send their request messages to a stream con-
nected to such a process. Thus, management of devices
is management of the communication streams connected
to them. Protection mechanisms are realized by insert-
ing a filtering process to such streams, which examines
messages going through the stream and rejects any illegal
requests to the devices.

As mentioned above, process management by PIMOS

is through the sheen construct. PIMOS virtualizes shoen

also as a task with higher-level functionality for resource
management. Tasks are a virtual device with the func-
tion of program execution with resource management

*More detailed description can be found in [Yashiro «f ol 1993).

Figure 3: Distribution of Management. Jobs

facility. They can be controlled from user programs
only through streams connected to it. The same protec-

tion mechanism of inserting message filtering processes
;E uar_‘d ]'"'_']'E.

4.3.2 Hierarchical Resource Management

In most conventional operating systems, all the vital
management information is centralized to the kernel,
which is usually implemented as a single process. This
centralization policy makes it easy to keep the manage-
ment information consistent, '

In a highly parallel system, however, such centraliza-
tion of management information would become problem-
atic, Ewven if the overhead of the kernel is only one
percent, Lhe processing speed of the kernel will be the
bottleneck of the system in & system with only one hun-
dred processors. Moreover, all the management requests
will be targeted to the processor where the kernel pro-
cess runs, resulting in a hot spot in the communication
mechanism. In an operating system for highly parallel
computer systems, management jobs also have to be dis-
tributed.

Random distribution of management jobs, using hash-
ing technique for example, would relieve the bottleneck
problem, but introduces a new problem of frequent com-
munication, as the requests for operating system services
arise everywhere without regard to where the service is
provided.

To aveid the bottleneck and frequent communication
at the same time, it is essential to distribute manage-
ment jobs keeping the locality of information. PIMOS,
thus, adopted hierarchical resource management policy.
User tasks and rescurces allocated by the operating sys-
tem form a hierarchical structure. As the design prin-
ciple leaves computation mapping to application pro-
grarms, processes of PIMOS responsible for management
jobs will be allocated where requests for services arise,
and those management processes also form & hierarchi-
cal structure corresponding to the structure of user tasks,
called resource tree, This resource tree is the kernefl of
PIMOS.

No centralization of resource management information
is made and no total crdering of resource allocation is



Figure 4: Task and Management Hierarchies

tried. A management precess, which is a node in the
resource tree, knows only of its parent and children. Al
location of & new resource is handled locelly at one level
in the hierarchy without reporting it to upper levels nor
lower levels. When necessary, statistical summaries of
management information is exchanged in the rescurce
tree, but there is no single process that knows the state
of the whole system precisely. The state of the whole sys-
tem can be investigated by traversing the tree structure,
but that would be costly and, because of the concurrent
activities in the system, obtained information mig]!lt al-
ready be obsolete when the the traversal completes. We
found this loose management policy works fine without
any problems.

4.82.3 Servers

All the services of PIMOS are provided by servers, which
correspond to virtualized devices. Servers are realized as
usual tasks to make the kernel compact and to enable
easy addition of services,

An application program (client) requiring a service (to
open a display window, for example) can ask for the ser-
vice by requesting to the kernel with the name of the
service, The kernel will look for the named service in a
table it maintains and establishes a stream connection
between the server task and the chent task, inserting a
fillering process for protection in the client task at the
same time, Onee the connection is established, the kernel
will not look into messages passed through the stream;
the server is protected by the inserted filter rather than
a kernel process. When the service become no longer
needed, the client process normally closes the communi-
cation streamn. The remaining responsibility of the ker-
nel is to netify the server of abnormal terrmnation of the
client.
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4.4 File System

Earlier versions of PIMOS operating on an experimental
model Multi-PST [Takeda et al. 1990] left all the exter-
el input and output to its I/O front-end processor, P51
[Nakashima 1987]. This was profitable in rapidly con-
structing a software development environment for appli-
cationg research. For massive external storage, such as
diels, the imbalance of the low throughput communica-
tion with the I/Q front-end and high performance pro-
cessing power of the parallel hardware, however, became
more apparent with PIM [Taki 1992).

We thus decided to connect disks more directly to pro-
cesgors of PIM for higher throughput and shorter delay.
To minimize hardware development effort, we adopted
SCS1 (small computer standard interface) to inferface
disks available in the market. Although single SCS1 can
provide rather low throughput, PIM can have many of
them, providing reguired total threughput.

As the interface provides only low-level blodk 1/0 to
disks, we designed a file system fo provide higher-level
interface to application programs. In designing the file
system, we tock the following principles.

IDhstributed Cache: To lower imterprocessor commu-
nication frequency, each processor should have its own
cache of data in file. The cache mechanizm should
provide “Unix semantics™ When one process writes
into a ﬁ].e, the data should become available to other
processes immediately. This i a constraint severer
than in many distributed file systems where some de-
lay iz allowed [Levy and Silverschatz 1588, but it is
mandatery in a system like PIMOS, where processes
are usnally cooperatively solving one problem. Thus,
a distributed and coherent caching mechanism was de-
signed, which is similar to cache coherence mechanisms
p-rcwidcrl IJ}' EI].EJ'U]'.I}" CE’E]IE [ﬁfﬂll.i.hﬂl.d ii-ﬂd Bﬂl."':- IQBG]
but allows delay of communication.

Robustness: As all the system components, ineluding
the hardware, the operating svetem and the file sys-
tem itself, are experimental and subject to damage
caused by bugs, sufficient backing up mechanism is re-
quired to provide a comfortable software development
environment. Logging of information vital to the file
system and quick recovery mechanism using the logged
information were designed.

More detailed description of the file system can he found
in [Itoh et al. 1992],

4.5 Software Development Tools

Development of parallel seftware has many aspects dif-
ferent from development of sequential software. PIMOS
provides various tools to support development of parallel
software, described in this section.
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4.5.1 Program Code Management

Executable programs are provided as data objects of type
module by the kernel language and can be manipulated
through language primitives by authorized software. Al-
though the representation of executable programs differ
in each hardware models, & common interface to manip-
ulate programs is provided by PIMOS to encapsulate the
differences.

Executable programs are stored in a database, which
is a virtual device realized by & server task. ‘To maintain
the logical soundness of the specification, it is not de-
sirable to introduce the notion of modification, not enly
for usual data but also for programs which are also data.
Updating & program module does ned mean modification
of an already existing program, which might be running
in parallel somewhere in the system; it merely means
updating of the correspondence of module names and
executable programs kept in the program database, The
existing processes that are executing the program will
not be affected by this update, except that, when the up-
dated module is referenced by its name and the database
is searched for, a new version of it will be found. Mul-
tiple versions of the same program can thus coexist in a
system. This not only keeps the semantics clean but also
allows efficient distributed implementation.

4.5.2 Debugging Tracer

The mast frequently used tools in debugging programs
are tracers that allow programmers to look inte the de-
tails of program execution. PIMOS also provides a pro-
gram tracer for this debugging purpose,

Execution of programs in a high level language form
a hierarchical structure such as nested subroutine calls.
In case of subroutines in sequential languages, substruc-
tures corresponding to subroutine invocations directly
correspond to a time interval, such as “during execution
of & subroutine.” Tracing or not tracing that particular
substructure can be effected by switching tracing on and
off during that time interval. In concurrent languages,
such direct correspondence does not exist as many such
substructures are executed concurrently. If the number
of processes is limited, providing multiple windows, one
for ench process, and switching tracing on each of them
might be a good idea. In case of KL1 programs, the
number of processes Lypically goes up to millions, much
more than tractable this way, The tracer of PIMOS also
provides a feature to direct the trace information to mul-
tiple windows, but their role is only auxiliary.

The shoen construct of the kernel language is used to
control tracing, to obtain trace information and to con-
trol execution of traced programs. Each goal executed in
a shoen can be macked as a fraced goal. When the lan-
guage implementation finds reduction of such a goal to
its subgoals, the newly created subgoals will be reported
from the report stream of the shoen as a message. The

tracer observing the stream presents the information to
the user and queries what to do with the goals, that is,
whether to simply execute them or execute them with
trace marks again. The goals can also be suspended for
a while to control their execution order.

The tracer also has interface with the deadlock de
Lleclion mechanism provided by the KL1 implementation
[Inarura and Onishi 1930].

4.5.3 Performance Tuning

As stated above, a strong point of the kernel language
KL1 is that mapping of computation, both over proces.
sors and over Lime, can be altered without affecting the
correctness of programs. Finding a mapping which real-
izes efficient computation is ene of the most important
research topics in application software research on the
parallel inference aystem.

However, conjecturing mapping only by statically an-
alyzing programs is a very difficult task. In many cases,
actually running the programs and gathering statisti-
cal information reveals many aspects of programs that
are easily overlooked. To belp such experimentation, PI-
MOS provides a tool for evaluating load distribution al-
gorithms.

Profiling information of parallel programs has three
axes: whal, when, and where. In sequential execution,
“where” is a constant and the “when” is not important,
since the execution order is strictly designated. Simple
profiling tools that can tell “what® (which part of the
program) took how much time will thus suffice. How-
ever, all three axes are important when parallel execu-
tion is our concern. The kernel language implementation
has the feature to provide three-dimensional statistics on
what (which part of the program, or, in a lower level,
whether usual computation, mterprocessor communica-
tion or garbage collection) is executed where (on which
processor) and when,

As it is not easy for a human to understand massive
raw data from hundreds of processors, a profiling tool
named ParaGraph is provided to analyze the data and
present it to the user graphically (Figure 5). The sys-
tem provides displays from several different viewpoints,
making the analysis easier. The ParaGraph system is
described in more detail in [Aikawa 1992 et al.).

4.54 Virtual Machine

As all the communication between user programs and PI-
MOS is initiated through the control and report streams
of shoens, a user program can emulate PIMOS by run-
ning programs within a shoen and observing its interface
streams.

The sarne technique also can be used to debug PIMOS
itself by writing an emulator of the whole parallel com-
puter system, a virtual machine. This facility provides
a way to debug PIMOS under the software environment



Figure 5: Sample Qutput of ParaGraph

provided by PIMOS itself. As the virtual machine is no
more than a usual task in PIMOS, the protection mech-
anism of PIMOS prevents bugs of the debugged version
from propagating to the real PIMOS. Also, the profiling
system ParaGraph can be used for performance tuning
of PIMOS. This facility has besn conveniently used in
debugging and tuning of the kernel of PIMOS.

5 Experiences

The first version of PIMOS was implemented on Multi-
P51 [Takeda ef al. 1890] in 1985 [Chikayama et al. 1588].
It has been revised with wvarious enhancements and m-
provements since, through experiences with research and
development of experimental scftware on many applica-
tion sreas. As the experiences with application software
are reported elsewhere (see [Mitla of al 1891} for exam-
ple), this section mainly reports the experiences of the
development of PIMOS itsell in the kernel language KL1.

5.1 Automatic Synchronization

The automatic data-flow synchronization mechanism of
KLl assured portability of PIMOS to hardware systems
with different architeclures.

The first version of PIMOS was developed in parallel

with the development of the experimental parallel infer-

ence machine Multi-PSL During its early development
phase when no physically parallel system running the
keroel language was available yet, a sequential imple-
mentation was used in the development. The sehedul-
ing of goals was fixed on the implementation. We could
not completely deny the possibility of any crucizal syn-
chronization problems in the system hidden by the fixed
scheduling of the emulator; that was our first experience
of actually writing a large-scale software in KL1.
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PIMOS was ported to Multi-PS1 when its KL1 im-
plementation got ready. We found almest no synchro-
nization problems there {except for & small number of
higher-level design problems) although the scheduling on
the real parallel machine is quite different from the em-
ulator. We were certain that this should be the case,
but actually experiencing this made ws more confident
of the great merit of writing a system in a language with
automatic data-flow synchronization.

In 1991, the first model of the parallel inference ma-
chines, PIM/m and its KL1 implementation was made
available for software installation. After revising the
fow-level [fO mechanism to fit the system to this new
platform, PIMOS began working almost immediately on
this systemn without revealing any problems. This was
not surprizing as the kernel language implementation on
the systern used the identical scheduling pelicy as the
Multi-P51 system.

Later in the same year, the system was ported to an
emulator of PIM running on a commercially available
paralle]l processor. The emulator was primarily for de-
bugging the desipn of kernel language implementation
for models consisting of loosely-coupled clusters, each
of which has several processors sharing a memory bus.
The schedufing policy of this emulator was completely
different from Multi-PST or PIM /m, as the language im-
plementation distributes goals automatically among pro-
cessors in & cluster. As we expected, and also to our
surprise, PIMOS ran without any problems in itself but
revealing some problems with the language implementa-
tion in stead.

Currenily (February 1992), the kernel language imple-
mentation and PIMOS are being ported to other models
of PIM. We are now certain that there won’t be any fun-
damental problems in perting PIMOS to thoss models.

5.2 Fine-Grain Concurrency

It is true that most human algorithm designers are li-
able to regard computation as a sequential process and
some extra effort is needed to think of many cooperat-
ing processes for a single job. This fact is sometimes re-
garded as against parallel processing, that designing par-
allel computation is unnatural for homan. The implicit
concurrency of the kernel language, however, resulted in
interesting phenomena.

Most algorithms in fact are designed having sequen-
tial processing in mind or limited aspects of the par-
allelism., Once & program for the algorithm is written
down in the kernel |an5ua.gc1 the ProOgram u'l't.gn ahuws
much more concurrency than the destgner had in mind,
as the language reveals implicit fine-grain concurreney.
The designer can lopk into the program more objectively
and find different aspects of concurrency implied there.
Sometimes, the concurrency so found is a good candidate
for obtaining larger physical parallelism for increased ef-
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ficiency. Mapping pregmas exploiting the concurrency
cen then be added to the program to make it run with
higher parallelism and more efficiently. This should not
have been possible if the language had only larger-grain
mﬂ.cul’l’cllc}'.

5.3 Descriptive Power

Througl the development of PIMOS, the descriptive
power of KL1 for both concwrrency and parallelism was
proved to be sufficient.

The ability of describing reactive systems allowed the
language to provide primitives to control external I/0
devices in & coherent manner; external devices could
be modeled as an ordinary proeess without introduc-
ing any extralogical features to the language. This al-
lowed straightforward implementation of a virtual ma-
chine, which helped the development considerably.

The shoen construct and the prierty control mecha-
nism of the kernel language provided sufficient funetion-
ality required to control execution of various activities
in the system. For example, in cage a user program ran
mto an infinite loop, the following steps will enable in-
terruption of such a program.

» As the device handlers are given higher priority than
user processes, an interrupt from the keyboard can
be sensed.

* As the command shell, which is a user task, leis jobs
under its control run o a priority lower than itself,
the shell can sense the interrupd.

» Using the shoen construct, the shell can stop the
task in an infinite loop.

5.4 Ease of Programming

Many programmers seem to have felt uneasiness with the
kereel language when the system first began utilized in
application seltware development. The largest source of
the problem seems to be in too much freedom of pro-
gramming styles,

The bare kernel language allows multiple inputfoutput
modes of logical variables; the same process can read or
write the same shared variable, depending on situations.
Although this is allowed in the language, it often in-
troduces race conditions which become problematic only
with specific scheduling. Such a bug is hard to fix as trac-
ing the execution or modifying the program to report in-
formation for debugging may change the scheduling, hid-
ing the problem away. Gradually, a programming style
has been established where 1/ modes of logical vari-
ables are statically fixed. This indicated the direction of
subsetting of the langnage (see section 6).

Another problem was how o organize numerous con-
current processes.  Many styles have been tried and

the object-criented programming style [Shapiro and
Takeuchi 1983] has been accepied as the de facte stan-
dard. Many programming idioms have been estab-
lished upon this object-oriented style through experi-
ences [Chikayama 1921], which suggested the direction
of the design of higher level languages (see section 3.3).

Automatic data-flow synchronization wiped away low-
level synchronization problems, allowing programmers to
concentrate on higher-level issues., With the program-
ming style established and the software development en-
vironment enhanced based on the experiences, describ-
ing parallel software in the kernel language has now be-
come not much more difficult than programming sequen-
tial programs in other languages for symbolic processing,
such as Lisp.

The largest difficulty remaining is that of designing al-
gorithms of computation mapping for efficient execution,
Separation of correctness and efficiency issues in the lan-
guage design and the visual performance analysis tool
facilitated experimentations of mapping algorithms con.
siderably, but still the task is not easy. Further research
in this direction seems mandatory.

6 TFuture Work

A problem with the current parallel inference system,
consisting of parallel inference machines, KL1 implemen-
tations and PIMOS, is that the systemn runs only on
specially devised hardware. Although the systerm can
execute L1 programs very efficiently, requiring special
hardware is a serious obstacle in sharing the environment
with researchers world-wide, A portable implementation
of the kernel language working en Unix systems is avail-
able and was utilized in early stages of software develop-
ment, but, as it is implemented as an abstract machine
interpreter, its limited performance makes it inappropri-
ate for serious experimental studies,

To solve the problem, research in subsetting the lan-
guage to allow more concise and efficient implementa-
tions has been condueted with promising preliminary re-
sults [Ueda and Morita 1990]. A separate effort of im-
plementing KL1 by translating to C also indicated that
reasonable performance can be obtained with very high
portability [Chikayama 1992]. These results indicate the
possibility of implementing the language on stock hard-
ware efficiently for use in parallel software research. In
addition to such an implementation, PIMOS, especially
its software development environment, should also be
ported to stock hardware to provide common basis of
research and development of highly paralle]l knowledge
information processing systems.



7 Conclusion

An overview of the research and development of the basic
software for the perzllel inference system of the FGQOS
project is given,

The system aims at establishing the basis of software
technology for highly parallel computer systems. The re-
search and development adopted a middle-out approach
of designing & programming language first and then con-
tinuing the design both upwards to the application soft-
ware and downwards to the hardware architecture simul-
taneously. The kernel language KL1 and the operating
system PIMOS were designed and implemented.

The systems working on experimental perallel infer-
ence hardware Multi-PST and a model of parallel infer-
ence machine PIM have been used in the research and
development of application software since 1988, Our ex-
periences have proved that the kernel language is expres-
sive enough for describing an operating system for paral-
lel processing systems and various application software,
The features of the language that separated correctness
and efficiency issues, along with the programming envi-
rentient provided by the operating system, made em-
pirical research of parvallel software much easier than in
conventional environments.

Further research in computation mapping is needed in
Tuture. Development of an efficient and comfortable en-
vironment on stock hardware is another impeortant work
to be done.
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