PROCEEDINGS OF THE INTERNATIONAL CONFERENCE
OM FIFTH GEMERATION COMPUTER 5YSTEMS 1992,
edited by ICOT. © ICOT, 1992

Parallel Inference Machine PIM

Kazuo Tald

First Research Laboratory
Institute for New Generation Computer Technology
4-28, Mita 1-chome, Minato-ku, Tokyo 108, JAPAN
taki@icot.or.jp

Abstract

The parallel inference machine, PIM, is the prototype
hardware system in the Fifth Generation Computer Sys-
terns (FGOS) project. The PIM system aims at estab-
lishing the basic technologies for large-scale parallel ma-
chine architecture, efficient kernel language implementa-
tion and many aspects of parallel software, that must
be required for high performance knowledge information
processing in the 21st century. The PIM system also
supports an B & D environment for parallel software,
which must extract the full power of the PIM hardware.

The parsllel inference machine PIM is a large-scale
parallel machine with a distributed memory structure.
The PIM is designed to execute a concurrent logic pro-
gramming language very efficiently. The features of the
concurrent logic language, its implementation, and the
machine architecture are suitable not only for knowl-
edge processing, but also for more general large prob-
lems that arise dynamic and non-uniform computation.
Those problems have not been covered by commercial
parallel machines and their software systems targeting
scientific computation. The PIM system focuses on this
new domain of parallel processing.

There are two purposes to this paper. One is to report
an overview of the research and development of the PIM
hardware and its language system. The other is to elarify
and itemize the features and advantages of the language,
its implementation and the hardware structure with the
view that the features are strong and indispensable for
efficient parallel processing of large problems with dy-
namic and nen-uniform computation,

1 Introduction

The Fifth Generation Computer Systems (FGCS)
project aims at establishing basic software and hardware
technologies that will be needed for high-performance
krowledge information processing in the 21st century,
The parallel inference machine PIM is the prototype
hardware systern and offers gigantic computation power

50
Application (Interfaces)
Programs PIMOS
af—— Protocol
PIMOS
— KL1 Language —| <t K]|_1
KL1 Parallel _
Implementation Machine
e LENJUAGE
or
PIM Hardware Microprogram

Figure 1. Overview of the PIM System

to the knowledge information processing. The PIM sys-
tem includes an efficient language implementation of
KL1, which is the kernel language and a unique inter-
face between hardware and software.

Logic pragramming was chosen as the common basis of
research and development for the project. The primary
working hypothesis was as {follows. “Many problems of
future computing, such as execution efficiency (of paral-
lel processing), descriptive power of languages, software
productivity, ete., will be solved drammatically with the
total reconstruction of those technologies based on logic
progromiming.

Following the working hypothesis, B & D on the PIM
system started from scratch with the construction of
hardware, a system softwaere, a language system, appli-
cation software and programming paradigms, all based
on legic programming. Figure 1 gives an overview of the
system structure.

The kernel language KL1 was firstly designed for ef-
ficient concurrent programming and parallel execution
of knowledge processing problems. Then, R & D on the
PIM hardwere with distributed-memory MIMD architec-
ture and the XL1 language implementation on it were
carried out, both aiming at efficient KL1 executicn in

parallel. A machine roughly with 1000 processors was
primarily targeted. Each of these processors was to be a
high-spesd processor with hardware support for symbolic
processing, The PIM systern also focused on realizing a
useful R & D environment for paraliel software which
could extract the real computing power of the PIM. The
preparation of a good R & D environment was an im-
portant project policy.

KLl is & concurrent logic programming language pri-
marily targeling knowledge processing. Since the lan-
guage had to be a commen basis for various types of
knowledge processing, it became a general-purpose con-
current language suitable for symbalic processing, with-
out shifting to a specific reasoning mechanism or a cer-
tain knowledge representation paradigm.

Our R & D led to the language features of KL1 being
very suitable for covering the dynamic end non-uniform
large problems that are not covered by eommercial par-
allel computers and their softwere systems for scientific
computation. Most knowledge processing problemns are
included in the problem domain of dynemic and non-
uniform computation. The PIM hardware and the KL1
language implementation support the efficiency of the
]a.ngua.gn:-. features. Thua; the PIM syatem covers this
new domain of parallel processing.

This paper focuses on two subjects, Oneisthe R & D
report of the PIM hardware and the KL language imple-
mentation on if. The ather iz to clarify and iternize the
features and advantages of the langnage, its implementa-
tion and the hardware structure with the view thaf the
features are strong and indispensable for efficient paral-
lel processing of large problems with dynemic and non-
uniform computation. Any parallel processing system
targeting this problem demain must consider those fea-
tures.

Section 2 scaps the B & D history of parallel process.
ing systems in the FGOCS project, with explanation of
some of the keywords. Section 3 characterizes the PIM
systemn. Many advantageous features of the language, its
paralle! implementation and hardware structure are de-
scribed with the view that the features are steong and
indispensable for efficient programming and execution of
the dynamic ond non-uniform large problems, Section
4 presents the machine architecture of PIM. Five differ-
ent models have been developed for both research use
and actual software development. Some hardware spee-
ifications are also reported. Section 5 briefly describes
the language implementalion methods and techniques,
Lo give & concrete image of several key features of the
KLl implementation. Section 6 reports some measure-
ments and evaluation mainly focusing on & low-cost im-
plementation of small-grain ceneurrent processes and re-
mote synchronization, which suppest the advantageous
features of KL1. Overall efficiency, as demonstrated by
a few benchmark programes, is shown, including the most
recent measurements on PIM/m. Then, section 7 con-

51

cludes this paper.

Several important research issues of parallel softwars
are reported in other papers: the parallel operating sys-
tem PIMOS is reported in [Chikayama 1992] and the
lozd balzneing technigues controlled by seftware are re-
ported in [Nitta ef of 1992,

2 R & D History

This section shows the R & D history of parallel pro-
cesging svstems in the FGCS project. Important re
search items and products of the B & D are described
briefly, with explanations of several keywords. There
are related reports for further information [Uchida 1993
[Uchida et al. 1988).

2.1 Start of the Mainstream of B & D

Mainstream of R & D of the parallel processing systems
started at the beginning of the mtermediate stage of the
FGCS project, in 1985, Just before that time, a concur-
renk logic language GHC [Ueda 1986] Lhad been designed,
which was chosen as the kernel language of the B & D.
Language features will be deseribed in section 3.4,

Development of small hardware and software systems
was started based on the kernel language GHC as a hard-
ware and seftware interface. The hardware system was
used as a testbed of parallel software research, Experi-
ences and evaluation results was fed back to the next R
& D of larger hardware and software system, which was
the bootsirapping of B & D.

It was started from development of the Multi-PSI
[Taki 1988]. Purpose of the hardware development was
not only the architectural resesrch of a knowledge pro-
cessing hardware, but alse a preparation of & testhed for
efficient language implementation of the kernel language.
The Multi-P5I also focused to be a useful tool and envi-
ronment of parallel software research and development.
That is, the hardware was not just 2n experimental ma-
chine, bui a reliable system being developed in short
period, with measvremnents and debugging facilities for
software development, After construction of the Mulki-
PSI/V1 and /W2 with language implementations, various
parallel programs and technology and knowhow of par-
allel software have been accumnlated [Nitta ef al. 1992]
[Chikayama 1992]. The systems have been used for the
advanced software development environment for the par-
allel inference machines.

2.2 Multi-PSI/V1-

The first hardware was the Multi-PSI/V] [Taki 1988
[Masuda et al. 1988], started in operalion in spring
1986. The personal sequential inference machine PSI
[Taki ot al. 1984] was used for processing elements, Jt
was a development result of the initial stage of the

52

project. Six PSI machines were connected by a mesh net-
work, which supported so called wormhole routing. The
first distributed implementation of GHC was built on
it [[chiyoshi ef al. 1987]. (Distributed implementation
means & parallel implementation on a distributed mem-
ory hardware). Execution speed was alow (1K LIPS =
logical inference per second) because an interpreter sys-
tern was written in ESP (the system deseeiption language
of the PSI). However, basic algorithms and technigues of
distributed implementation of GHC was investigated in
it. Several small parallel programs were written and exe-
cuted on it for evaluation, and primary experimentations
of load balancing were also carried out.

2.3 From GHC To KL1

Since GHC had only basic functions that the kernel
concerrent logic language had te support, language ex-
tensions were needed for the next more practical sys-
tern. Kernel language KL1 was designed with considera-
tions of execution efficiency, operaling svstem supports,
and some built-in functions [Ueda and Chikayama 1990]
[Chikayama 1992]. An intermediate language KL1-B,
which was the target language of KL1 compiler, was also
designed [[{imura and Chikayama 1987]. In the Multi-
PSI/V2 and a PIM model, binary code of KL1-B is di-
rectly interpreted by microprogramy; that s, KL1-B is
machine language itself. In the other PIM models, K11-
B code is converted to lower-level machine instruction
sequences and executed by hardware.

2.4 Multi-PSI/V2

The second hardware system was the Multi-PSI/V2
[Takeda et al. 1988] [Nakajima 1992], which was im-
proved in performance and functions enough to be calied
as the first experimental parallel inference machine. It
started in operation in 1988 and was demonstrated in
the FECS'S8 international conference.

The Multi-PSI/V2 included 64 processors, each
of which were equivalent to the CPU of PSI-
I1 [Makashima and Nakajima 1987}, smaller and faster
model of the PSI. Processors were connected with two
dimensional mesh network with improved speed (100
Bytes/s, full duplex in each channel). KL1-B was the
machine language of the system, executed by micropro-
gram. Almost all the runtime functions of KL1 was
implemented in microprogram. The KL1 implemen-
tation was improved much in execution efficiency, re-
ducing inter-processor communication messages, elficient
garbage collections, etc. compared with Multi-PSI/V1,
It attained 130K LIPS (in KL1 append) in single pro-
cessor speed. Table | Lo 4 include specifications of the
Multi-BSI/ V2. Since 1088, more than 15 systems, large
system with 64 processors and small with 32 or 16 pro-
cessars, have been in eperation for parallel software R &

D in [COT and in cooperating companies.

A strong simulator of the Multi-PSI/V2 was also de
veloped for software development environment, It was
called the pseudo Multi-PSI, available on the Prolog
workstation, PSLIT. A very special feature was caused
by similarity of the PSIII CPU and processing element
of the Multi-PSL/V2. Usually, PSI-II executed ESP Jan-
gugge with dedicated microprogram. However, it loaded
KL1 microprogram dynamically at the activation of the
simulator system, The simulator executed KL1 programs
as similar speed as that of the Multi-PSI/V2 single pro-
cessor. Since the PIMOS could be also executed on the
simulator, programmers could use the simulator as sim®
ilar environment as the real Multi-PSI/V2, except for
speedup with multiple processors and process schedul-
ing. The pseudo Multi-P5I was the valuable system for
initial debugging of KL1 programs.

2.5 Software Development on the
Multi-PSI/V2

Parallel operating system PIMOS (the first version) and
four small epplication programs {benchmark programs)
Hehiyoshi 1689] had been developed until FGCS5'83.
Much efforts was paid in PIMOS development to real-
ize a good environment of programming, debugging, ex-
ecution and measurements of parallel programs. In the
development of small application programs, several im-
portant research topics of parallel software were inves-
tigated, such as concurrent algorithms with large con-
currency without inerease of complexity, programming
paradigms and techniques of efficient KL.1 programs, and
dynamic and static load balancing schemes for dynamic
and non-uniform computation.

The PIMOS has been improved in several versions,
and ported to the PIM until 1992, The small appli-
cation programs, pentomino [Furuichi ef al. 1990], best-
path [Wada and Ichiyoshi 1990], PAX (natural language
parser) and tsume-go (2 board game) were improved,
measured and analyzed until 1989, They are still used
as test and benchmark programs on the PIM.

These development gave observations that the KLI
system on the Multi-PSI/V2 with PIMOS has reached
sufficient performance level for practical usage, and has
realized sufficient functions for describing complex con-
current programs and for experimentations of software-
controlled load balancing.

Several larpe-scale parallel application programs have
been developed from late 1989 [Nitta et al. 1992] and
still continuing. Some of them have been ported to the
PIM.

2.6 Parallel Inference Machine PINM
2.6.1 Five PIM Models

Design of the parallel inference machine PIM was stacted
in concurrent with manufacturing of the Multi-PSI/V2.
Some research items in hardware architecture were omit-
ted in the development of the Multi-PSI/V2, because of
shorl development time needed for starting the parallel
software developrent. So, PIM tock a greedy R & D
plan, focusing both the architectural research and real-
ization of software development environment.

The first trial fo the novel architecture was the multi-
ple clusters. A small number of tightly-coupled procss-
sors with shared-memery formed 2 cluster. Many clus-
ters were connected with high speed netweork to construct
the PIM systern with several hundred processors. Bene-
fits of the architecture will be discussed in section 3.7,

Many component technologies had to be developed
ar impraved to realize the new system, such &3 parallel
cache memery suitable for frequent inter-processor com-
munications, high speed processors for symbaolic process-
ing, improvement of the network, etc. For R & D of
better component technologies and their combinations,
the development plan of five PIM models was made, so
that different component architecture and their combi-
nations could be investigated with assigning independent
research topics or roll on each model.

Two models, PIM/p [Kumon ¢ al. 1992] and PIM /c
[Nakagaws et al. 1992], took the multi-cluster structure.
They include several hundreds processors, maximum 512
in PIM/p and 256 in PIM/c. They were developed hoth
for the architectural research and software B & D. Bach
investigated different network architecture and processor
structure.

The other two models, PIM/k [Sakai et al. 1981] and
PIM/i [Sato et al. 1992], were developed for the exper-
imental use of intra-cluster architecture. Two-layered
coherent cacke memory which enabled larger number of
processors in a cluster, broadcast-typed coherent cache
memary, and a processor with LIW-Lype instruction set
were tested.

The other model, PIM/m [Nakashima et al. 1992), did
not take the multi-cluster structure, but focused the rigid
compakibility with the Multi-PSI/V2, having improved
processor speed and lasger number of processors. The
maximum number of processors will be 256, The perfor-
mance of a processar will be four to five limes larger at
peck speed, and 1.5 to 2.5 times larger in average than
the Multi-PS1/V2, The processor was similar to the CPU
of PSI-UX, the most recent version of the PSI machine.
A simulator, pseudo-PIM fm, was also prepared like the
peeude Multi-PSL The PIM /m targeted the parallel soft-
ware development machine mostly among the models.

Architecture and specifications of each model will be
reported in section £. ’

Experimental implementations of some LSIs of these

33

models have started in 1989, The final design was al-
most fixed in 1990, and manufacturing of whole system
was procesded with in 1991, From 1991 to spring 1992,
assembly and test of the five models have carried on.

2.8.2 Software Compatibility

KL1 language is common among all the five PIM mad-
els. Except for execution efficiency, any KL1 programs
including PIMOS can run on the zll models. Hardware
architecture is different between two groups, Multi-PSI
and PIM/m as the ore, and the oither PIM models as
the other. However, from programmers' view, abstract
architecture are designed similar as follaws.

The load allocation to processors are fully controlled
by peograme on the Multi-PSI and the PIM/m. It is
sometimes written by programmers directly, and some-
tirmnes specified by load allocetion libraries. Programmers
are often researchers of load balaneing techniques. On
the other hand, load balancing in a cluster is completely
controlled by the KL1 runtime system (not by KL1 pro-
grams) among the PIM meodels with the multi-cluster
structure. That is, programmers does not have Lo think
of multiple processors in & cluster, but specify load allo-
cation to each cluster in their programs. It means that
a processor of the Mulli-PS1 or PIM/m corresponds to a
cluster of the PIM models with the multi-cluster struc-
ture, which simplifies portation of KLL programs.

2.7 KL1 Implementation for PIM

KL1 system must be the first regular system in the world
which can execute large-zcale parallel symbolic process-
ing programs very efficiently. Execulion mechanisms or
algorithms of KL1 language had been developed for dis-
tributed memory architectures sufficiently on the Multi-
PSI/W2. Bome mechanisms and algerithms should be
expanded for the multi-cluster architecture of PIM. Ease
of porting the KL1 system fo four different PIM mod-
els was also considered in the language implementation
method. Only the PIM/m inherited the KL1 implemen-
tation method directly from the Multi-PSI/VE,

To expand the execution mechenisms or algarithms
suitable for the multi-cluster architecture, several tech-
nical topics were focused, such as aveiding data up-
date contentions among processors in a cluster, aute-
matic load balencing in & cluster, expansion of an inter-
cluster message protocol applicable for the message out-
stripping, parallel garbage collection in a cluster, etc.
E_Hira.‘c.a et al.]992}.

For easiness of porting the KLI system to four differ-
ent PIM models, a commmon specification of KL1 system
“WVPIM (virtual PIM)® was written in “C*-like descrip-
tion language “PSL", targeting a common virtual hard-
ware, VPIM was the executable specification of LI ex-
ecution algorithms, which was translated to C language
and executed to examine the algorithms. VPIM has been

54

translated to lower-level machine languages or micropro-
grams antomatically or by hands accerding to each PIM
structure.

Preparation of the description language started in
1988, Study of efficient execution mechanisms and al-
gorithms continued until 1991, then, VPIM was com-
pleted. Forting the VPIM to four PIM models partially
started in sutumn 1990, and continued to spring 1992,
Now, the KL1 system: with PIMOS is available on each
PIM model. On the other hand, KL1 system on the
PIM/m, which was implemented in microprogram, was
made fram conversion of Multi-PSI/V2 microprogram by
hands or partially in automatic translation. Prior fo the
other PIM models, PIM/m started in operation with the
KL1 system and PIMOS in surmmer 1991,

2.8 Performance and Systemn Evalua-
tion

Measurements, analysis, and evaluation should be done
on various levels of the system shown below.

1. Hardware architecture and implementations

2. Execution mechanisms or algorithms of KL1 imple-
mentation

3. Concurrent algorithms of applications (algerithms
for problem solving, independent from mapping)
and ther implementations

4. Mapping (load allocation) algorithms

5. Total system performance of a certain application
Program on a certain syslem

Various works have sean
done an the Multi-PSI/V2. 1 and 2 were reported in
[Masuda st al. 1988} and [Nakajima 1992]. 3 to § were
reported in [Nitta ef af. 1992], Furvich ef el lQQDI,
[lchiyoshi 1989] and [Wada and Ichiyoshi 1990].

Primary measurements have just started on each PIM
models. Some intermediate results are included in
[Nakashima et al. 1992] and [Kumon e ol 1992].

Total evaluation of the PIM system will be done in the
near future, however, some observations and discussions
are included in section 6.

3 Characterizing the PIM and
KL1 system

PIM and KL1 system have many advantagesus features
for very efficient parallel execution of large-seale knowl-
eidge processing which often shows very dynamic runtime
characteristics and non-uniform computation, much dif-
ferent from numerical applications on vector processors
and SIMI} mechines.

This section clarifies the characteristics of the tergeted
problem domain shortly, and describes the various ad-
vantageous features of PIM and KLl sysiem, that are
dedicated for the efficient programming and processing
in the problem demain. They will give the total system
image and help to clarify the difference and similarity
of the system with other large-scale multiprocessors, re-
cently available in the market.

3.1 Summary of Features

The total image of PIM and KLl system are briefly
scanned as follows. Detailed features and their bene-
fits, and reasons why they were chosen are presented in
the following sections.

Distributed memeory MIMD machine:

Global structure of the PIM iz the distributed mem-
ory MIMD machine in which hundreds computation
nodes are connected by highspeed petwork. Scala-
bility and ease of implementations are focused. Each
computation node includes single processor or sev-
eral tﬁht]y-muplad processors, and large memory.
Processors are dedicated for efficient symbolic pro-
Cessing.

Logic programming language: The kernel language
K11 is a concurrent logic programming language,
which is single language for system and application
descriptions. Langeage implementation and hard-
ware design are based on the language specification.

KL1 is not a high-level knowledge representation
language nor a language for eertain type of rea-
soning, but & general-purpose language for concur-
rent and parallel programming, especially suitable
for symbelic computations.

KLl has many beneficial features fo wrile parallel
programs in these application demains, deseribed
below.

Application domain: Primary applications are large-
scale knowledge processing and symbelic computa-
tion. Howewer, large numerical computation with
dynamic features, or with non-uniform data and
non-uniform computation (non-datz-parallel com-
putation) are also targeted.

Langnage implementation: One L1 system is im-
plemented on & distributed memory hardware,
which is not & collection of many KL1 systems
implemented on each processing node. A global
name space is supported for code, logical variables,
etc. Communication messages between computa-
tion modes are handled imphctly in KL1 system,
not by KLL programs. An efficient implernentation
for small-grain concurrent processes s taken.

These implementations focus to realize the benefi-
cial features of KL1 language for the application do-
mains described before.

Policy of load balancing: Load balancing belween
camputation nodes should be eantrolled by KL1 pro-
grams, not by hardware nor by the language sys-
tem automatically. Langnage system has to support
enough functions and efficiency for the experiments
of verious loadbalancing schemes with software.

3.2 Basic Choices

(1) Logic programming: The first choice was to
adopt logic programming as the basis of the ker-
nel language. The decision is mainly due to the
insights of ICOT founders, who expected that logic
programming was suitable for both knowledge pro-
cessing and parallel processing. A history, from
vague expectations on logic programming to the
concrete design of the KL1 language, is explained
in [Chikayama 1992].

{2} Middle-out approach: A middle-out approach of
R & D was taken, placing the L1 language 25 the
central layer. Based on the language specification,
design of the hardware and the lenguags implemen-
tation started downward, and writing the PIMOS
operating system and parallel software started up-
wa[d.

{3) MIMD machine: The other choices concerned
with basic hardware architectire,

Dataflow architecture before mid 1980 was con-
sidered not providing encugh performance egainst
hardware costs, according to observations for re-
search results in initial stage of the project.

SIMD architecture scemed inefficient on applica-
tions with dynamic characteristics or low date-
parallelism that are often seen in knowledge pro-
cessing.

MIMD architecture remained without major demer-
its and was most attractive from the viewpoint of
ease of implementation with standard components,

(4) Distributed memory structure: Distributed
memory structure is suitable to construct very large
systemn, and casy fo implement.

Fecent large-scale shared memory mechines with
directory-based cache coherency mechanisms claims
good scalability, However, when the bleck size
(the coherency management unit) is large, the inter-
processor communication with frequent small date
transfer seems inefficient. KL1 programs require the
frequent smal! data transfer. When the block size

55

becomes small, large directory memory is needed,
which increases the hardware cost.

Single assignment lanpuages need special memory
management such as dynamic memory allocation
and garbage collection. “These management should
be done as locally as possible for the sake of effi-
cieney. Local garbage collection requires separation
of lacal and global addresa spaces with some indirect
referencing mechanism or address translation, even
in a scalable shared memory architecture. Merits of
the low-cost commuaication in the shared memory
architecture decrease significantly for such the case.

These are the reasons to choose the distributed
mermory structure,

3.3 Characterizing the Applications
(1) Characterization: Characteristics of knowledge

processing and symbolic computation are often
much different from those of numerical computation
ol vector PrOCCEE0rs dﬂd SHI"ID mach.iﬂes. P:ﬂb'
lem formalizations for those machines usually based
on data-parallelism, parallelism for regular compu-
tation on uniform data.

However, the characteristics of knowledge and sym-
bolic computations on parallel machines tend to
be very dynamic and non-uniferm. Contents and
amount of computation vary dynamically depend-
ing on time and space. For example, when a heuris-
tic search problem is mapped on a parallel machine,
workload of each computation nede changes dras-
tically depending on expansion and pruning of the
search free. Also, when a knowledge processing sys-
tem is comstructed from many heterogeneous eb-
jects, each object arises non-uniform computation.
Computation loads of these problems are hardly es-
timated before execution.

Some classes of large numerical computation with-
out data-parallelisrn also show the dynamic and
non-zniform characteristics.

Those problems which has dynamism and non-
uniformity of computation are called the dinamic
and nen-uniform problems in this paper, implying
not only the knowledge processing and symbolic
computation bul also the large numerical compu-
Lation without data-parallelism.

The dynamic and nen-uniform problems tends lo
include the programs with more complex program
structure than the date-parallel problems.

(2) Requirements for the system: Most of the soft-

ware systems on recent commercial MIMD ma-
chines with hundreds of processors target the data-
parallel computation, but they almost don’ care
other paradigms.

36

The dynamic and non-uniform problems arise new
requirements mainly on software systems and a few
on hardware systems, which are listed below.

1. Descriptive power for complex concurrent pro-
grarms

2. Easy to remove bugs
3. Ease of dynamic load balancing

4. Flexibility for changing the load allocation and
scheduling schemes to cope with difficulty on
estimatbing actual computation loads before ex-
ecution

3.4 Characterizing the Language

This subsection itemizes several advantageous features of
KL1 that satisfy the requirements listed in the previous
section. Features and characteristics of the concurrent
logic programming language KL1 are described in detail
in [Chikayama 1992],

The first three features have been in GHC, the basic
specifications of KL1. These fealures make descriptive
power of the language large enough to write complex con-
current programs. They are the features of concurrent
programming to describe logical esacerrency, indepen-
dent from mapping to actual processors,

(1) Dataftow synchronization: Communication ane
synchronization between KL1 processes are per-
formed implicitly at all within a framework of usual
unificabion. It is based on the dataflow model. Im-
plicitness is available even in a remote synchroniza-
tion, The feature drastically reduces bugs of syn-
chronization and communication compared with the
case of explicit description using separate primitives,
The single-assignment property of logic variables
supports the feature,

(2) Small-grain concurrent processes: The unit of
coneurrent execution in KL1 is each body goal of
clauses, which can be regarded as a process invoca-
tion. KL1 programs can thus involve a large amount
of concurrency implieitly.

(2) Indeterminacy: A goal (or process) can test and
wait for the instantiztion of multiple variables con-
currently. The first instantiation resumes the goal
execution, and when & clanse is committed (selected
from clauses that succeed to execute guard goals),
the other wait conditions are thrown away. This
funetion is valuable to describe “non-rigid" process-
ing within a framework of side-effect free language.
Speculative computation can be dealt with, and dy-
namic load distribution can be also written.

The next features have been included in KL1 as exten-
sions o GHC. (4) was introduced to deseribe mapping

{load allocation) and scheduling. They are the features
for parellel programming to control actual parallelism
among processing nodes. () is prepared for operating
system supports. (6) is for the efficiency of prectical
programs.

{4) Pragma: Pragma is 2 notation to specify goal allo-
cation to processing nodes or specify execution pri-
ority of goals. Pragmea doesn't affect the semantics
of a program, but controls parellelism and efficiency
of actual parallel execution. Pragmas are usually at-
tached to goals after making sure that the program
iz correct anyway. It can be changed very easily.
because it is syntactically separated from the cor-
rectness aspect of a program,

Pragma for load allocation: Goal allocation is
specified with a pragma, @node{X). X can be caleu-
lated im programs. Coupled with (1) and (2), the
ivad allocation pragma can realize very flexible load
allocation. Also coupled with (3) and the pragma,
KL1 can deseribe a dynamic load balancing program
within a framework of the pure logic programming
language without side-effect. Dynamie load balanc-
ing programs are hard to be written in pure fune
tienal languages without indeterminacy.

Fragma for execution priority: Execution pri-
ority is specified with a pragma, @priority(). Mare
than thousands priority levels are supported to con-
trol goal scheduling in detail, without rigid ordering,

Combination of (3) and the priority pragma realizes
the efficient contrel of speculative computations.
Large number of priority levels can be utilized in
e.g. parallel hevristic search to expand good branch
of the search tree at first.

(5) Shoen function (meta-control for goal group)
The sheen function is designed to handle a set of
goals as & task, a unit of execution and resouree
management. It is mainly used in PIMOS, Start,
slop and abortion of tasks can be controlled. Limit
of resource consumption can be specified. When er-
rors or exception conditions ocour, the status are
frozen and reported outside the shoen,

{6) Functions for efficiency: KL1 has several built-
in functions or data types whose semanties is un-
derstood within the frameweork of GHC but which
has been provided for the sake of efficiency. Those
functions hide demerits of side-effect free languages,
and alse avoid an increase of computational com-
plexity compared with sequential programs.

3.5 Characterizing the Language Im-
plementation

Language features, just deseribed in the previous section,
satisfy the requirements for a system by the dynamic and
non-uniferm problems discussed in section 3.3. Most of
special features of the language implementation focused
to enlarge those adventageous features of KL1 language.

(1) Implicit communication:
Communication and synchronization among concur-
rent processes are implicitly done by unifications on
shared logical variables, They are supported both
in a computation node and betweer nodes. [t is es-
pecially beneficial that a remote synchrenization is
done implicitly ag well az local,

A process (goal) can migrate between computation
nodes only being attached a pragma, @node(X).
When the process has reference pointers, remote ref-
erences are generated implicitly between the compu-
tation nodes. The remote references are used for the
remote gynchronizations or communications.

These functions hide the distributed memory hard-
ware from the “concurrent programming”. That is,
programmers can design concurrent processes and
their comemunications, independent from their al-
locations o a same computation node or different
nodes. Only the “parallel programming” with prag-
mas, a design of load allocation and scheduling, has
to concern with hardware structure and network
topology.

Implementation features of those functions are sum-
marized below, including the features for efficiency.

Global name space an a distribufed memory
hardware — in which implicit pointer manage-
ment among computation nodes are supported
for logical variables, structured data and pro-
gram code

o Implicit data transfer caused by unifications
and goal (process) migration

» Implicil message sending and receiving involed
with data transfer and goal sending, including
message composition and decomposition

» Message protocols able Lo reduce the number
of messages, and also protocols applicable to
meszage cutstripping

(2) Small-grain concurrent processes: Efficient im-
plementation of small-grain concurrent processes are
realized, coupled with low-cost communications and
synchronizations among them.

Process scheduling with low-cost suspension and re-
sumption, and priority management are supported.

57

Efficient implementation allows actual use of a lot
of small-grain processes to realize large concurrency,
A large number of processes also gives flexibility for
the mapping and load balancing.

Automatic load balancing in a cluster s also sup-
ported. It is a process (goal) scheduling function in
a cluster implemented with priority management,
The feature hides multiprocessors in a cluster from
programmears, They do not have lo think about
load allocation in a cluster, but only have to pre-
pare enough concurrency.

(3) Memory management: These garbage collection

mechanisms are supported,

» Combination of incremental garbage collection
with subset of reference counting and stop-and-
collect copying garbage collection

o Incremental releasing of remote reference
pointers between computation nodes with
weighted reference counting scheme

Dynemic memory management including garbage
collections Jooks essential both for symbelic process.
ing and for parallel processing of the dynamic and
nen-uniferm problems. Because the single assign-
ment feature, strongly needad for the problems, re-
guires dynamic memory allocation and reclamation.

Efficiency of garbage collectors is one of key features
for practical language system of parallel symbolic
processing.

(4) Implementation of shoen function: Shoen rep-

resents & group of geals (processes) as presented in
the previous subsection. Shesn mechanism is im-
plemented not only in & computatica node but also
among nodes. Mamely, processes in a task can be
distributed among computation nodes, and still con-
trolled all together with shoen funclions.

(5) Built-in functions for efficiency: Several built-

in functions and data types are implemented to lkeep
up with the efficiency of sequential languages.

(6) Including OS kernel functions: Figure 2 shows

the relation of KL1 implementalion and operating
system functions. KL1 implementation includes so
called 08 kernel functions such as memeory manage-
ment, process management and scheduling, commu-
nication and synchronization, virtual single name
space, message composition and decomposition, etc,
While, PIMOS includes upper OF functions like pro-
gramming enviropment and user interface.

The reason why the 08 kernel functions are included
in the KL1 implementation is that the implementa-
tion peeds to use those functions with as light cost
as possible. Cost of those functions affect the actual

58

Application
Programs

R

FIMOS

=HL1 Language —

Load distribution libraries, etc.
ity programs { eg. shall)
Frogramming environment { eg. complier, tracer,
performance analizer)

Program code management

User task management

Resource management { eg. 1O resources)

/

KL Parallal -
Implemeantation

OS Kernel | -
Functions i <-:

——
i
¥
i
P

systam
FPIM Hardwara

L

Mamory management

Frocess management

Communication, synchronization, and scheduling
Single name space on a distributed memary

= Metwork message composition and
decomposition J

Figure 2: KL1 Implementation and O5 Functions

execution efficiency of the advantageous features of
KL1 language, such as large number of small-grain
concurrent processes, implicit synchronization and
communication ameng them (even between remote
processes), indeterminacy, scheduling contrel with
large number of priority levels, process migration
specified with pragmas, etc. Those features are
indispensable for concurrent and paralle! program-
ming and efficient paralle! execution of large-scale
symbolic computation with dynamic characteristics,
or large-scale noa-data-parallel numerical computa-
tione.

Considering & construction of similar purpose pat-
allel processing system on a standard operating sys-
tem, interface level to the OS kernel may be too high
(or may arise too much overhead). Some reconstruc-
tion of 08 implementation layers might be needed
for Lthe standard parallel operating systems for those
large-scale computation with dynamic characterts-
tics.

3.6 Policy of Load Balancing

Such & basic policy has been taken that load balancing
belween computation nodes should be completely con-
trolled by KL1 progrems, not by hardware nor by lan-
guage system automatically. There are two reasons.

One is that KLI can describe load balancing srograms
within usval logic programming features. Since many
research topics on load distribution have been remained
unsolved especially on dynamic problems, experiments
on software controlled load balancing is advantageous
in an aspect of flexibility. Tt does not include significant
overhead because the KL language system realize a very
low-cost implementation.

The other is that distributed memory architecture

needs strong locality of computation, for which some pro-
grammers' help is important for better load balancing.
Language sysiem has to suppert encugh functions and
efficiency for the experiments of various load balancing
schemes by software,
Some load balancing schemes are prepaced as utility
programs, available for application programmers,

3.7 Characterizing the Hardware Ar-
chitecture

Features of PIM hardware architecture are listed below.
Some of them are specialized for symbolic processing and
large-scale parallel computation of dynamie problems,
and some of them are standard.

{1} Distributed mermory MIMD machine:

Target hardware is the large-scale MIMD machine
with distributed memery structure. Hundreds pro-
cessing nodes are connected by highspeed network.
It was a basic choice of the B & D. The structure
was considered to have large scalability, to be mostly
easy for implementation, and to be suitable to sep-
arate local garbage collections and global.

(2) Cluster structure: Eight processors, that are
tightly coupled with shared bus and shared mem-
ory, form a cluster. Many clusters are connected
with highspeed network to form the total system.
Programmers deal with a cluster as a computation
node with large computation power and large mem-
ory, since automatic load balancing is supported by
languege aystem within a cluster,

Cluster iz a substructure of the PIM, realizing a
low latency and high bandwidth connection between
processors. There are two major advantages of

the cluster structure. The first is its applicability
to those problems which have less locality, while
distributed memory architecture hardly processes
those problems efficiently. The second is higher ef-
ficiency of memory usage compared with full dis-
tributed memory systems with the same memory
size, A substructure with higher bandwidth infer-
processor connection is effective to reduce needs of
memory size per processor, keeping the same effi-
ciency of parallel processing. [t affects the total sys-
tem cost significantly.

A disadvantage is heterogeneous inter-processor
connections that increase the complexity of hard-
ware implementations, however, the cluster with
tightly coupled processors will be a standard com-
ponent in the near future.

{2) Large memory against processing power:
Non-uniform computation or dynamic computation
with wide variation of grain sige require larger mem-
ory to keep the processing efficiency, compared with
data-parallel computation. Because exira work is
needed to fill the idling time caused by irregular syn-
chronization, which requires more working space in
a memory.

{4) Highspeed network: Highspeed network connec-
tion between processing nodes has already become
standard. However, the ratic of network load and
processor load, caused by network communications,
is different from the case of numerical processing.
Management of virtuel single pame space usually
arises extra processor loads for each communica-
tions, compared with the case of simple data trans-
fer in numerical processing, [t causes less needs to
network bandwidth against processing power.

On the other hand, parallel symbolic computation
with dynamic features often arises remete synchro-
nizations with small data transfer. Response of
the network communication is more important than
bandwidth for such cases.

{5) Coherent cache memory: Each processor in a
cluster has coherent cache memory with write back
strategy. Basic technology is similar to the stan-
dard coherent cache memory used in commercial
tightly coupled multiprocessors. However, the oc-
currence of cache to cache data transfer, caused by
inter-processor communications, is larger than the
usual time sharing use of commercial multiproces-
sors. Optimizations of cache commands and bus
protocols for such usage 15 importent to reduce bus
traffic.

{6) Dedicated processors: Processors include special
features of tag bandling, data type checking and
branching, and dereferencing pointers for efficient

59

KLl execution. These features are useful not
only for symbolic processing, but also for an ef-
ficient implementation of a single-assignment lan-
guage needed for the parallel processing of the dy-
namie and nen-uniform problems.

The processors have dedicated imstruction sets de-
rived from the abstract instruction set KL1-B.

Pipelining and RISC-like instruction sets are also
used, that are standard techniques.

4 Machine Architecture and

Hardware

Overall structure and [eatures of the PIM system were
presented in the previous section. This section shows

the machine architecture, hardware implementations and
some technical data of each PIM models in detail,

4.1 Owverview of Five PIM Models

Five PIM models have been developed, that have differ-
ent architectures or different combinations of component

technologies, and have different rolls of R & D.

PIM/p : PIM/p is the largest PIM model which con-
tains maximum 512 processors. PIM/p focuses both
archifectural research and actual use in software R

&D.

PIM/p took the multi-cluster architecture shown in
Figure 3. Maximum 64 clusters can be connectéd.
Connection network took hypercube topalogy. Two
independent networks are connected to each clus-
ters.

Each cluster contains eight processors connected
with a shared bus and shared memory. A proces-
sor has coherent cache memery, 2 network interface
unit *NIU", aad an [/0 device interface {SCSI bus)
[Kumon ef al. 1992],

Processors in all PIM models have SCSI buses, which
are used to connect FEPs (Front End Processors) and
hard disks, The PSI-UX [Nakashima et al. 1992] is used
for the FEP, as an intelligent 1/0 device for human-
machine interface.

FIM,/m : PIM/m targets the software development
machine and rigid compatibility with the Multi-
P3IfV2. 236 processors are connected with two
dimensional mesh network, The structure is
shown in Figure 4. 32 hard disks, which are
2038 in total, and many FEPs are connected
[Nakashima et al. 1992].

60

Double Hypercube

Network)

-

B ——

-

o . —————— m

"
¥
i
]
i
i
L

m
m
o

Figure 3: Overview of PIM/p Architecture

18

M

[Fep

-0 . JE"[I
“@m pam

= Watwirk

e

1
PE
255
W

PE

31
PE

15

FEF

=1
&

=—— SCSlbis

Figure 4: Overview of PIM/m Architecture

PIM/c : PIM/c also takes the multi-cluster archi-
tecture including 256 processors in total A
cluster contains eight processors. 32 clusters
are counnected with a crosshar switch network
{Nakagawa et ol. 1992).

PIM/k : PIM/k focuses on architectural research
within a cluster. Hierarchical cache system has been
investigated to connect larger mumber of proces-
sors in a cluster [Sakai ef al. 1991]. Four processors
share 2 local bus and second cache. They form a
mini-cluster. Four mini-clusters are connected to a
shared memory-bus and shared memory (Figure 5).

PIM/i : PIM/iis alsc a research use system. LIW-type
imstruction set and cache protocol with broadeasting
type has been investigated {Sato ef ol 1992].

The global configuration of five PIMs are summarized
i table 1.

Specifications of components, that are processors, net-
works, and cache systems, will be reported in the fallow-
ing subsections.

6l

FEP - L] L L] L
{1/0)
Mini-Cluster 0 -+ ¢ | } ¢ ,
PEsli i i HP
st [P D Min-FiMink G Mink
achg) i ! Cluster | | Cluster} | Cluster |
I T - N
..................
I]]

Shared Mamory

Figure 5: Overview of PIM/k Architecture

Table 1: Global Configuration

Topology Nurmnber of Clusters | Total Number of PEs [| Memery Size/Cluster
BIM/p hypercabe % 3 64 513 356 MB
PIM/m mesh 256 256 g0 MB
PIM/c crosabar 32 256 160 MB
FIM /X — 17 16 1GB
PIM[3 p— 3 16 320 MB
Multi-Pgi; ﬁﬂ mesh 64 64 B0 MB

l:f : four mini-clusters indudbd]

4.2 Processing Element

Since KL1 implementation requires frequent runtime
type checking, all CPUs of PIM models are designed as
the tagged-architecture similar to the Multi-PSI.

PIM/p, PIM/i and PIM/k have RISC-like instruction
set whereas PIM/m and PIM/c have CISC-ike micro
programmable instruction set (Table 2). The former pro-
cessore execute machine instructions which are at a level
still lower than KL1-B. The latter processors interpret
KL1-B code by horizontal micro program.

The CPU of PIM/p [Kumon et ol 1992] has a unique
feature called macro-call [Shinogi et al. 1988] instruc-
tions for light-weight subroutine calls. The instructions
enable the size of compiled user program codes to be kept
small and to reduce the overheads of subroutine calls. It
also has some more instructions dedicated to KL1 im-
plementation, such as dereference instructions and MRHE
{Chikayama and Kimura 1987 incremental garbage col-
lection instructions. The CPU takes four-stage pipeline

shructure.

The CPU of PIM/m [Nakashima et al. 1992] is a mi-
croprogram controlled processor with five-stage pipelin-
ing. The instruction set is KL1-B itself, which is binary
compatible with Multi-PSI/V2. Sephisticated data type
checking and the automatic dereference mechanism are
special features.

The CPU of PIM/i tries the LIW(long instruction
word)-type instruction sst.

4.3 Network

Metworks are summarized 1 table 3,

In PIM/p, each processor has a NI and four NIs are
connected to a router. The router works as 2 node in the
network. There are two hypercube networles to attain
large band width.

PIM/m has a two dimensional mesh network, similar
to the Multi-P5I, The networks of PIM/p and PIM/m
realize so-called the worm-hole routing.

62

Table 2: Specification of Processing Elerment

Instruction set Cyele time | L5I {abrication | Line interval
PIM/s RISC 4 macro instruction 60 nsec 1 | standard-cell 0.96 pm
PIM/m CISC {micro programmable) | 65 nsee gtandard-cell 0.8 pm
PiM/c CISC {micro programmable) | 50 nsec { gate.arrays 0.8 um
PIM/k RISC 100 nsec euston 1.2 um
PIM/i i RISC 100 nsee | standard-cell 1.2 pm
Multi-PSI/V2 || CISC {micre programmable) | 200 nsec gate-arrays 2.0 pm |

(f are design specifications. They aze under testing with longer cyele time.)

Table 3: MNetwork

7t PEs in a cluster | #& Nis in a cluster | Transfer Hate t
PIM/p B B 33 MB/fsect =2
PIM m 1 1 B ME/sec
PIM/c 2 1 40 ME/sec |
PIM k& 16 -— —-
PIM/i] 1 —
Multi-PSI/V2 1 1 10 MB/sec |

{PE = processing element, NI = network interface)
it: per channel, full duplex §: design specifications)

PIM/c has one special processor named cluster con-
troller in each cluster. The cluster contraller is connected
to & shared bus and works as a network interface to 2
crosshar networl. The cluster controller has overall re-
sponsibility for network communications.

4.4 Cache System

Sinee KL] programs arise asynchronous communica-
tions among processors very frequently, shared bus traf-
fic tends to become very heavy. To solve this prob-
lem, an optimized coherent cache protocols were de-
signed [Goto et al. 1989])[Matsumoto et al. 1987], which
can keep the locality high and reduce the shared bus traf-
fic [Nishida et al. 1990]. All PIMs have write-back type
coherent cache protocols (Table 4). Low cost locking
mechanisms are also supported with utilizing the cache
block status.

5 KL1 Language Implementa-
tion
KL1 language has many beneficial features to write ef

ficient concurrent and parallel programs of the dynamic
and non-uniferm problems, which was explained in sec-

tion 3.4. The KL1 implementation is focused to realize
the execution efficiency of these language features. This
section looks at the language implementation methods
and techniques briefly, that correspond to the implemen-
tation features presented in section 3.5. The purpose of
thiz section is to give a concrete image of several key fea-
tures of the KL1 implementation. Detailed information
are presented in [Hirata of al. 1582] [Nakajima 1992].

5.1 Execution Model of KL1

For the help of getting the image, the execution model
of KL1 is shown briefly. KL1 program is made up of a
collection of clauses, whose form is:

H:—Gyys G | Bryovey Ba,

guard parf bedy part

where H 1z the head, (7; the guard goal, that are collec-
tively called the guard part. The B; are the body goals
and. the vertical bar [|) is the commitment operator.
The guard part can be considered as a p&irtern match
and condition teats. If there are alternative clauses, their
guard parts are tested sequentially. When & clause suc-
ceeds the pattern match and the condition fests, the
clause commits. The caller goal iz reduced to the body

63

Table 4: Specification of Cache System

I Coherence Control Mapping ~_Cache Size
| Protocol # States f | | Instruction | Data
| PIM/p invalidation i+ 4 way 64 KB
PIM/m — — direct-map 5KB| 20KB
FPlM/c invelidation [2 way 80 KB
PiM/k hierarchical 4 {1st) direct-map 128 KB | 256 KB
invalidation (2nd) 4 way 1 MB 4 MB
PIn broadeasting 6 direct-map 160 KB | 160 KB
{ Malti-PSI1/V2 | — -— direct-map 20 KB |

[t does not include locking state.)

Processing Element

Curre(% Goal

—

Creation by
goal rewriting

Suspunsiun]'.rJ.r
guard unification

© — ©
@ @ Resumption by @ @

body unification
Suspended Goals Ready Goals

Figure 6: Execulion Medel of KL1

goals of the committed cdause. These body goals are ex-
ecuted concurrently (AND-parallal). A KL1 elause can
be considered as a rewrite rule, which rewrites the caller
goal to the body goals.

An execution model of IKXL1 is shown in Figure 6.
There is & goal peol which holds the ready goals to be
rewritten. One of ready goals is taken from the goal pool
for the execution, which is the current goal. When there
is & clause, which matehes the current goal and succeeds
the condition tests, the current goal is rewritien. The
rewritten goals are placed back to the goal pool.

Goals may have common variables, that are used for
the communication and synchronization. Let us assume
that there are two goals sharing a logical vadable. A
bady unification, produced in a goal rewriting, can in-
stantiate the variable. Guard unifications, that appear in
& execution of the other goal, test the instantiated value
of the variable. This is the communication between the
goals, When the verizble iz not instantiated before the

guard unification, and no other clause can commit, the
current goal is suspended. Instantiation of the variable
resumes the 3115penu:'|ed EI'DEJ. This 15 the synchmnizatinn
[Ueda and Chikayama 1990].

5.2 Supports for the Implicit Commu-
nication

There are several important mechanisms that realize the
implicit communication hetween computation nodes.

Let us assume that there are two goals sharing a vari-
ahle in & computation node. Fach goal has a reference
to the variable. When a goal is sent to the other compu-
tation node, a remote reference has to be generated im-
plicitly. The implicit communication between the goals
in the different nodes will be performed along with this
remole reference.

The important mechanisms are shown briefly.

5.2.1 Global Name Space

The implicit reference management across the computa-
tion nodes are supported for logical variables, structured
data and program code. It is a support of the virtual
global name space on a distributed memory hardware.

The export/import tables realize the feature. The
export/import tables are the indirect reference tables
that separate the local address space in a computation
node and the global space for the remote reflerences (Fig-
ure 7). The remote reference (external reference) is iden-
tified by the peir {A.e), where A is the node number
in which the referenced data resides, and e is the entry
number of the expart table. Registration to the tables
are performed dynamically when a new remote reference
is made [Ichiyoshi et al. 1987).

The entry number ¢ does not change even when a lo-
cal garbage collection occurs which moves the location
of the axported cell. When a duplicated exporta-
tion/importation occurs, the same table entry num-
ber is used (reducing & new registration to the table)

64

which eliminates useless data transfer between nodes
[lehiyoshi ef ol 1288].

Export Table | Import Table
o ‘ :r—['HEF]
| <h e EX
axparbad 1 REF
cell, X | —
Node A Node B

Figure 7: Export and Import Tables

5.2.2 Implicit Data Transfer

Data Transfer by Unifications: The implicit data
transfer between computation rodes is initiated by uni-
fications.

A guard unification tties to test an instantiation of
& logical variable, When it i3 an external refsrence
{EX in Figure 7}, a read request message, hread(X,
Returndddress), 15 sent to the node A, Where X is the
external reference {A.e), and Returniddress is a newly
created exporl table entry in the node B,

The goal execution, which initiated the guard unifica-
tion, is suspended when no other clause can commit.

When the referenced cell has & concrete value
¥, it is returned by the message, Yanswer_walue(
ReturnAddress, V). The message resumes the sus-
pended goal, which waits for the value V. If the refer-
enced eall is not bound to a fived value, the read request
is suspended until the variable is instantiated.

When a bady unification tries to unify a2 remote cell
A with a term ¥, a message Yunify{X, ¥) is sent to
the referenced cluster. When ¥ is an atomic data or a
slructure, a simple data transfer occurs,

The unifications between two uninstantiated variables
in different clusters may make reference loops between
clusters. This problem can be solved by controlling the
direction of reference pointers [[chiyoshi ef of. 1988).

Lazy Transfer: When a structured data is transferred
between nodes, one-level transfer s performed. The com-
ponents of & structure may be atomic dala or nested
structures. The atomic data are copied and transferred
directly, while the nested siructures are remained as
pointers and transferced as external references. This is
called the one-level transfer. The policy is that the data
transfer should be delayed as lazily as possible, until the
data is really needed for some operation.

Code Transfer: Program codes are handled as large
structured data. They are loaded on one cluster by a

loader program at first. Any KL1 goal hold the refer-
ence to the corresponding code object. When a goal is
sent to a cluster and the cluster does not contain the cor-
rezsponding code object, the goal execution is suspended
and the code is dyvnamicaliy transferred from the cluster
which is pointed by the external reference held in the
goal.

5.3 Small-Grain Concurrent Processes
5.3.1 Process Group Management

KL1 goals can be considerad as lightweight processes,
For the efficient parallel processing, a user task hawve
to include a lot of lightweight processes. Ib is needed
for the parellel cperating system that a group of goals
(lightweight processes) can be handled all together as &
task. The shoen supports the meta control facilities of
execution control, resource management and status mon-
itoring for the goal group.

Shoen and Foster Parent: Any goals have to belong
to a certain shoen. The foster-parent fp is a proxy shoen,
which iz created in every eomputation nodes where the
goals of the shosn are executed. Fach goal points their
foster-parent in the node, and test the request for meta-
controls in & certain interval (e.g. in every goal redue-
tions). Figure 8 shows the relationship among shoens,
[osttr-parcuhs and gua|$.

A shoen and a foster-parent keep their environments,
such as status, resources, and the number of goals
Foster-parents reduce the communication between each
goal and their shoen, to avoid an access bottleneck at the
shoen.

Termination Detection: The termination detection
of 2 goal group is one of the difficult subjects in parallel
computation systems, especially when messages may be
in transit on the network. Ewen if all the foster parents
report their terminations, the shoen should not terminate
when there are goals in transit.

One of the solutions is the Weighted Throw Couni-
ing {WTC) scheme [Rokusawa ¢t ol. 1988, which is an
application of the Weighted Reference Counting [WRC)
scherme [Watson and Watson 1587].

5.3.2 Goal Scheduling

The goal scheduling, discussed here, is a different concept
with the goal group management by shoen. The goal
scheduling is the state transition management of =ach
goals, among ready, erecution, and suspension stales.
Execution priority is also managed.

Basic Goal Scheduling Scheme: The ready goals in
a computation node are linked into a list forming a ready-
goal-stack. In principle, a current goal is popped from the

shoean

= oL
& ‘l..*I-I'II'.._‘-F.‘

AN VN

@@

AN

|

shoen

/o\

@@

clusier 2

gumnm=etl

@@

cluster 1

cluster 0

shoan : shoen record
fp : foster-parent record

G : goal

Figure 8: Relationship of shoen and foster-parents

ready-goal-stack, then the goal rewriting is performed.
The rewritten goals are pushed to the ready-goal-stack,
which is the depth-first scheduling in a computation
node,

When any unification suspends, the goal is linked as
a suspended goal to the variable which caused the sus-
pension. Here, the non-busy waiting method has been
adopted. That is, the suspended goal is not scheduled
uniil the variable will be instantiated. When a suspended
goal is resumed, it is linked to the ready-goal-stack again,

Execution priority of goals can be specified by
pragmas, The ready-goal-stack is managed with the pri-
ority of goals.

Goal Distribution within a Cluster: An antomatic
load balancing scheme is tried within a cluster. An indi-
vidual ready-goal-stack is provided for the highest prior-
ity goals in each processing element, to avoid conflicts of
access to the common goal-stack {Sato et al. 1987). The
highest-priority goals are distributed to keep the proces-
sor loads in good balance [Hirata ef ol 1092],

Inter-cluster Goal Distribution: A body goal,
goal@node(CL}, is thrown with a message Ythrow to a
node CL when the clause commits. The node [more pre-
cisely, a certain processing element in the cluster CL),
that received the ¥throw message, links the goal to its
ready-goal-stack as well as to the foster-parent. If there
is no foster-parent, one will be created on the spot.

65

5.4 Memory Management

Memeory management like dynamic memory allocation,
reclamation, and garbage collection are indispensable for
eoncurrent symbolic processing languages.

5.4.1

The MREB method is a subset of the reference counling
scheme which maintains one-hit information n pointers
indicating whether the pointed data object has muiti-
ple references to it or not [Chikayama and Kimura 1987)
[lnansura ef al. 1988]. Garbage cells that have only a
single reference can be reclaimed incrementally.

The MRB is also useful to optimize the updating of
siructured data. Structured data must be copied in prin-
ciple when it is updated partially, because of the single-
assignment feature. However, it can be rewritten de-
gtructively when the structure has only & single reference,
leeping 2 semantics of the single-assignment language.

Incremental Garbage Collection by MERDB

5.4.2 Garbage Collection within a Cluster

Another garbage collection is implemented, which is per-
formed locally within a cluster accompanied with the in-
cremental garbage collection by MEB. Because the MEB
scheme leaves some garbages.

So-called stop and copy scheme is adopted basically.
The parallel mechanism has been investigated to collact
garbages by all processing elements in parallel in a cluster
[lmai and Tick 1991].

5.4.3 Inter-Cluster Garbage Collection by WEC

An ineremental inter-cluster garbage collection scheme,
the weighted export counting (WEC) scheme is em-
ployed [lchiyeshi ef el 1988, It is an application
of the weighted reference counting (WRC) scheme
[Watson and Watson 1987]. The scheme has several ad-
vantages, One is the incremental garbage collection ca-
pability with fewer message exchanges compared with
the full reference counting. The other iz also a capabil-
ity of reducing the messages for the case when a imported
data has to be exported again to the different clusters.

5.5 Abstract Instruction Set KL1-B

KL1-B is the abstract instruction set which is common
in PIM models. The rele of KL1-B is similar to that of
WAM [Warren 1983, An explanation of each KL1-B in-
struction can be found in {Kimura and Chikayama 1987],

Most of the L1 implementation schemes, presented
in previous sections, are realized as runtime routines that
are invoked by certain KL1-B instructions implicitly.

The K11 compiler for PIM has twe phases. The first
phase compiles a KL1 program into an KL1-B eode. The
second phase translates the KL1-B code into a native
code, making a linkage with runtime routines.

6b

6 Measurements and Ewvalua-
tion

This section describes some measurements results end
evaluations for the parallel inference machines and the
language system. The measursments focused on a low-
cost implementation of small-grain concurrent processes
and remole synehronization and communication. Mea-
surements on 2 few benchmark programs are also re
ported, including the most recent measurements on
PIM/m.

6.1 DMeasurements and Evaluation on
the Multi-PSI/V2

The KL1 language implementation includes so-called
85 kemnel functions, az shown in section 3.5. Most of
the implementation features, that were presented in sec-
tion 5, concern with the O5 kernel functions. Efficient
implementations of these funciions enable the actual use
of the beneficial features of KL1 language (presented in
section 3.4) to write efficient parallel programs of the dy-
namic and non-uniform problems for large-scale parallel
machines,

The actual execulion cost of some of these functions
have been measured on the Multi-PS1/V2, Goal schedul-
ing cosk within a computation node, communication
cost between nodes, and communicalion overhead in
benchmark progeams are reported. Measurements re-
sults shows the quite low-cost implementations.

Mote that the Multi-PSI/V2 has a mesh structure with
64 processing elements (PEs). There are 64 computation
nodes each of which is one PE.

6.1.1 Goal Scheduling Cost in a Nede

Goa! scheduling and synchronization cost within
a processing element (PE} have been measured
[Onishi ef al. 1990).

The enqueue and dequeue cost of a simplest poal
is 5.4 ps (27 micro-instruction steps). When a goal is
rewrliten to several goals in a goal reduction, they are
pushed on the read}r-gaal-stm;k Onese I::c;mpept for one gﬂal
which can be executed directly). The enguene and de-
queue cost is the summation of the pushing and popping
cost of a goal to the ready-goal-stack. The engueue and
dequeue cost can be considered as a part of the process
fork cast.

The single-suspension cost of a simple goal is 14
s (70 steps). When a goal is suspended waiting for a
variable instantiation, the goal is hooked to the variable
cell. When the variable is instantiated, the goal hecomes
executable and is pushed on the ready-goal-stack. The
single-suspension cost is a summation of the hook, en-
queune, and dequewe cost. The single-suspension cost can

be considered as the synchrorization cost between pro-
cesses in A Processor.

The two-way multiple-suspension cost of a simple
goal is 28 pe (140 steps). A goal can wait for the vasi-
able instantiation of several different variables. The firat
mstantiation resumes the goal execution. If the instan-
tiation causes a comitment of a clause, the other wait-
ing conditions are thrown away, The two-way multiple-
suspension i3 a case of two variables, The feature is a
combination of the indeterminacy and the synchroniza-
tion. Cost increase from the single-suspension corre-
sponds to the implementation cost of the indeferminaecy.

These low.cost implementations encourage the actual
use of a lot of small-grain processes. These costs of the
goal scheduling also give a guideline for the lower bound
of process grain size for efficient execution within a com.
putation node,

6.1.2 Communication Cost Between Nodes

Cost of the communication primitives have been mea-
sured on the Multi-PSI/V2
systern [Makajima and Ichiyoshi 1990]. A goal sending
to another PE {a remote call of 2 lightweight process) is
realized by Wthrow.goal message. Inter-PE reading of
values (used for remote synchronization and cormnmuni-
cation) is realized by Wread & Yanswer_value protocols.

Figure 9 shows the cost of handling those three mes-
sages al bolh sending and receiving PE.

The
cosk 15 broken down into three parts. Enceda/decode
KL1 term, etc. is for encoding and decoding message
packets to/from internal representations of KL1 term. It
aizo includes the maintenance of the export/import ta-
bles and the foster parent records {c.f. section 5). It is
the essential part of the message hand]ing,

Basic message handling routine in Figm:g 9 cor-
responds to the simple data conversion between 40-bit
tagged words and byte-serial messages. The routine in-
cludes data transfer to/from the hardware buffer. The
cost can be potentially reduced by hardware supports.
Copy-RPKE stands for copying a message packet from the
hardware buffer to the software buffer. It is only exe-
cuted when the hardware buffer tends to be full.

The network transfer speed is 0.2 us/byte. It takes
below 1 ps to hop one network node. It means that the
message handling cost, just explained before, is dominant
in the communication cost,

Send_throw (a) shows the cost of sending a 65 byte
%throw.goal message containing a goal with three ar-
guments. It takes 419 micro-instruction steps or 85 us
{eyele time = 200 ns). Beceive.throw (b) shows the cost
of receiving the same Ythrow_goal message and storing
it in 2 goal stack.

The bar graphs (c), (d), (e} and () describe the
cost of sending and receiving a Yread message and

Send_throw (goal { atom,EXREF,EXREF) | [65 bytes |

fa) R | 85 psec (419 staps)
Receive _throw
) NN [

Send_read (EXREF] [14 bytes]
o) posy | 25 psec (417 steps)
Receive_read

(@ sy | 95 uses (175 steps)

Send_answer_value | [atom | EXREF] } [24 bytes |

RN | 42 ysec (208 steps)

Recelve_answer_value
It -R\\\\\ﬂ | 80 psac (397 sleps)
I I l i I i i {
0 20 40 6 80 100 120 140 { psac)

EXREF Exterral pointer
Bl Cooy to APKE
Basic message handling routing
[Encodedecode KL1 term, elc.

Figure 9: Message Handling Cost

Table 5: Message Frequency and Reductions

Pentomino (39.3 KRPS on | PE}
: Num of PEs | 4 PEs | 16 PEs | 64 PIs |
! execution Lime I{sr:c;'l Hd.63 14.62 1.55
total reductions (= 1000) | 3317. 8,332, 8,340,
| reductions/sec (KRPS) 152.2 5701 10194

{ reductions/msg 2321, 108. 83,
msg bytes/sec [x1000) 11.5 108.1 140.5

Bestpath (234 KRPS on | PE)
Numof PEs | 4 PEs | 16 PEs | 64 PEs |
execution time (sec) 10.G55 4.062 1.691
total reductions [= 1000) | 987.7 1213.6 L.505.2
reductions/sec (KRPS) 027 205.8 §00.1
reductionsmeg 21.9 11.7 .2
msg bytes/sec (x1000) 114.0 G92.5 358503

(KRPS: Kile Reductions Por Second)

Table 6: Single Processor Performance of PIM /i

benchmark | condition PIM/m | Multi-PSI/v2 | TRl]
append 10O elements || 1.63 msec 7.80 msec 18]
hest-path 90,000 nodes | 142 zec 213 see 1.5
pentoming | & x5 box 107 sec 240 sec 2.2
15-puzzle | 5,885 K nodes || 9,283 scc 21,660 sec 23

67

68

Qi
g
£
Mum of PEs O idle Mum of PEs
B cache miss
feg handling
B Computing
&0 4
g g
g %
8 B o
L L T T 0 T T T
9 20 40 60 0 2 0 &0
Mum aof PEs Mum of PEs
+ Speed-up
-+ |deal
Pentomino Bestpath
Figure 10: Decomposition of Processor Time and Spesd-up
Table T: System Performance on Pentomine {8 = § box)
[No. of PEs | PIM/m Multi-PSI/v2 bR R
_ Time | apeedup Time | Sr.-&::dup o
256 PE] 1,124 ms| 95.41 '
[28 PE || 1,200 ms | 8313 .
64 PE || 2162 s 40.60 4,679 ms ;. 51.20 2.16
32PL | 3694ms| 2003| 82iSms| 2804 224
16 PEY 6910 ms 15532 | 15,686 ms | 15.27 2.27
| PE | 107,238 ms L.00 | 239,545 ms | 1.00 2.23
hanswer_value message. cost of the remote synchronization.

Sending and receiving cost of the Ythrov_goal mes- Comparing these value with the cost of local opeva-
sage, 210 ges (LO3G sleps) in total, can be consicercd as Ltions in the previous seetion, the remote synchronization
the cost of & process fork to a different PE, or a remote tales around 10 times higher cost than lacal. The remote
procedure call. Cost of the %read and Yanswer value procedure call costs more but below 40 times of the local

messages, 182 ps (897 steps) in total, correspend to the process fork, These remote/local ratio seems low encugh

69

Table &: System Performance on Pentomino (10 x & box)

Mulli-F5TfuvI

to encoursge the small-grain concurrent processing be-
tween PEs. Measurements of the communication cost
give a guideline for the process grain size (communication
rate) to keep the communication overhead low, When a
process garin size decreases, becorning close to the com-
munication cost, communication overhead increases sig-
nificantly (close to 50% of CPU time).

6.1.8 Measurements on Benchmark Programs

Benchmark Programs: The followings are the two
benchmark programs used here,

e Peptomino: A program to find out all solutions of a
packing piece puzzle (Pentomino) by exploring the
whale OR tree. Two-level dynamic load balancing
is emplayed [Furuichi ef of. 1990].

s Bestpath: A 160 = 160 grid graph is given together
with non-negative edge costs. The program deter-
mines the lowest cost path from a given vertex to
all vertices of the graph by performing a distributed
shortest path algorithm [Wada and Ichiyoshi 1990).
The vertices are represented by KL1 processes, and
they exchange shortest path information along the
edges. 25,600 small processes wark cooperatively.

Message & Heduction Profile: Table 5 shows
the execution time, the reduction and message rates,
etc, [Nakajima and Ichiyoshi 1990). Average time of one
reduction in & PE is an inverse of the KRPS value. 25
ps (127 steps) in Pentomine, and 43 ps (214 steps) in
Bestpath. They are almost the grain size of concurrent
processes in a PE. The message sending rates on 64 PEs
are: one message per 88 reductions in Pentomine, and
one per § reductions in Bestpath.

The Average network traflic was re-
poted in [Nakajima and Ichiyoshi 1990], caleulated from
these figures, Relative to the 10 Mbyte/s network chan-
nel bandwidth, the average traffic on a channel 15 very
small: 0.08% (Pentomino) and 0.3% (Bestpath) of the
bandwidth.

Mo. of PEs PIM/m Multi-PST/v2 e
Time | Speedup Time | Speedup
956 PE 103,655 ms | 234.20
128 PE 188,452 ms | 128.87
54 PE 759.268 ms 67.60 | 886,325 ms 247
32 PE £94,553 ms 3496 | 1,729,430 ms | 340
16 PE || 1,367,240 ms 17.76 o
1 PE || 24,285,015 ms 1.00

Communication Owerhead: Profiling data ol pro-
cessor ¢xecution bas been measured on the twe bench-
mark programs [Nalajima 1992]. The execution time is
broken down into the lour calegaries in Figuze 100 com-
puting time (reduction eperations), message handling
time, cache-miss penalty, and idling time. The average
of all PEs are shown in the bar graph. The resultant
speed-up is also shown with the ideal one.

Two-level dynamic load distribution is used in Pen-
tomino. Several thowsands small processes are dis
tributed to 64 PEs in 4.35 seconds adaptively, The graph
shows low communication overhead and good speedup.
The degradation of processor workrate in §4-PE exeon-
tion is mainly caused by the latency of load feeding 1o
PEs.

In Bestpath, 25600 small processes are distributed
statically on 64 PEs. They exchange messages Lo per-
form an distributed algorithm. The inter-PE corne-
nication and the cache-miss penally degrade the per-
formance because of the high communication rate and
the large working sef. As the number of PEs grows,
the grid graph is divided into smaller blocks to keep the
workrate high, and it makes the inter-PE cormunication
rate higher. Best path includs speculative computation,
which inereeses with the large number of PEs. [t canses
lower speedup than a calculated value from the processor
workrate.

Measurements results in table 3 and Figure 10 show
the actual communication rite and commumcation over-
hezad. Programmers can use relatively large comrm-
nication rate, one message per & reductions {nweasurel
in Bestpath), with non-large CPU overhead of approsi-
mately 15%. Considering a network load of 0,35 at tha
time. it is observed that CPU load {(15% at that titne)
will lirmit the communication band width when commu-
nication rate increases. The language mplementation,
which supports Lthe global name space on a distributed
memary hardware, tends Lo increase the CPU load con-
cerned with network communication.

70

6.2 Preliminary Measurements on the

PIM

6.2.1 Single Processor Performance

Table 6.1 shows the single procesor performance of
PIM /m for four henchmerks. The table glso inciudes the
performance of Multi-PS1/V2 and the ratio of PIM/m
and Multi-PSI/V2 [M/P-speedup).

M/P-speedup is 1.5 to 2.3 in average. Programs with
large working set tends to show low M/P-speadup.

G.2.2 System Performance

Table 7,8 show the preliminary measurements of system
pecformance on PIM . The benchonark program is
Pentomine.

speedup saturation in Table 7 is caused by small prob-
lem size. Better speedup {234 folds speedup with 2506
processors) was attained with larger problem in Table 8,
It is also surprising that the small problem (executed
it 1.1 second) show 93 folds speedup, which uses the
multi-level dynamic load distribution distributing sewv-
eral thousands of small processes. The facts shows an
effictent language implementation suitable to handle a
lot of small-grain processes with less overhead.

7 Conclusion

This paper described two subjects. One is an overview
of the research and development on the parallel inference
machizne PIM and the language implementation of the
kernel language KL1, a concurrent logic programming
lanpguage.

The wiher 5 the clarification ol the features and advan-
teges of KL1 language, its parallel implementation, and
thee havdware architecture from the viewpoint that the
[ealures are suitable and may be indispensable lor «ifi-
cient parallel processing ol the dynamic and non-uniform
problems with large computation. Knowledge processing
is included in the problem domain. These problems have
not been covered by cormnercial parallel machines and
their software systems that target Lhe scientifie compu-
tation. The PIM svstem focuses on this new domain of
parallel processing.

PIM is a distributed memery MIMD machine with a
global view, connecting a maximum of 312 processors.
It includes shared-memory substructures. Many compo-
nent technologies have been developed that suppert effi-
clent parailcl processing on the targel pruh]cm domain,
especiﬁ]ly I 5-}'I:JLE.'I!:J“.E Ijrur_'r:zising.

LI language also has very strong features for efficient
programming and execution of the dynamic and non-
uniform large problems. Major features are {1} small-
gram concurrent processes. (2) implicit synchireniszation
and comummication, {3} sepacation of concurrency de-
gign and mapping (load allocation and seheduling), ete

They support highly concurrent programming with com-
plex structures and support large flexibility for load bal-
ancing. The efficient language implementation made ac-
tual use of the langnage features possible, The PIM and
KL system have realized a strong research and develop-
ment environment for parallel software in that problem
domain.

Measurements and evaleations showed a very low-
cost lenguage implementation for handling small-grain
concurrent processes and their remote communications.
Good speedup by paralle! processing on benchmark pro-
zrams was also reported. A lot of small-grain processes
were handled during this processing. These results prove
the efficiency and usefulness of the system to the dynamic
and non-uniform problems.

Further measurement and evaluation s continuing,
and the results of this will be reported soon. On the
other hand, many problems of paraliel software remain
unsolved. Continuous research must be carried out to
construct 1.,3“: I‘f.‘a] l.L'EI]IlL'I‘].DE!." U[tﬂTEL‘—EC':‘L]L" pa.ra“.c] F"I'D-
cesging for the dypramic ond non-uniform preblems in
cluding the knowledge information processing in the 21st
century. The parallel inference machine PIM and the
KLl language system will be ulilized &5 the best research
environment.

Acknowledgment

The R & D of PIM system have been carried out by re-
searchers in Lhe first research laboratory and cooperat-
ing companies, supported with valuable suggestions and
helps by members of the second, seventh and the other
ICOT laboratories and the PIM working growp. The
author would like to thank all of these people for their
continuous efforts and cooperation.

References

[chikeu:,rama and Kimura IQBTI T. Chjl-;a:,.'nma, and Y.
Kimura. Multiple Reference Management in Flat
GHC. In Proc. of the Fourth Int. Conf. on Lagic Pro-
gramming, 1987, pp.276-293.

|[Chikayama 1992] T. Chikayvama. Operating Systemn PI-
MOS and Kernel Language KL1. In Proc. of the Int.
Conf. on Fifth Generation Compufer Systems, 1992,

[Furuichi el al. 1980] M. Puruichi, K. Taki and I,
lehivashi. A multi-level load balancing scheme for or-
parallel exhaustive search programs on the Multi-I'SL
In Froc, of PPaPP90, pp. 50-58, 1900,

[Gote of ol 1988] A. Goto, M, Sato, I, Nakajima, K.
Taki and A. Matsumoto. Overview of the Paralle! In-
fevence Machine Architecture (PIM). In Prec. of the

Int. Conf. en Fifih Ceneration Computer Systems,
ICOT, Takyo, 1988, pp.205-228.

[Goto el of. 1989] A. Goto, A. Matsumoto and E. Tick,
Design and Performance of a Coherent Cache for Par-
allel Logic Programming Architectures. In Proceedings
of 16th Annual International Symposium on Computer
Architecture, pages 25 — 33, Jerusalem, Israel, 1980,

[Hirata et of. 1992] K. Hirata, R. Yamamelo, A. Imai,
H. Kawai, K. Hirano, T. Takagi, K. Taki, A, Nakase
and K. Rokusawa. Parallel and Distributed Implemen-
tation of Concurrent Logic Programming Language
KLi. In Proc. of the Int. Conf. on Fifth Generalion
Computer Systems, 1992,

[Ichiyoshi ef al. 1987) M. lchiyoshi, T. Miyazaki and
. Taki. A Distributed Implementation of Flat GHC
on the Multi-PSI. In FProcesdings of Fourth Inferna-
tonal Conference on Logic Programming, pages 57—
275, University of Melbourne, MIT Press, 1987,

[Ichiyoshi et al. 1988] N, Ichiyoshi, K. Rokusawa, K.
Nakajimz and Y. Inamura. A New External Ref-
erence Management and Distributed Unification for
KL1. New Generation Computing, Ohmsha Ltd. 1890,
pp. 158-177.

[Ichiyoshi 1989) N. Ichiyoshi. Parallel logic program-
ming oo the Multi-P31 ICOT Technical Report TH
£a7, ICOT, 1989, (Presented at the Italian-Swedish-
Japanese Waorkshop "90).

[lmai et of. 1991] A. Imai, K. Hirata and K. Taki. PIM
Architecture and Implementations. In Proc, of Fourth
Franco Japansese Symposium, [COT, Rennes, France,
1931,

[Imai and Tick 1991] A. Imai and E. Tick. Evaluation
of Pazallel Copying Garbage Collection on a Shared-
Memory Multiprocessor, [COT Technical RHeporf, TR-
650, 1991, {To appear in IEEE Transactions on Paral-
lel and Distributed Systems)

[lnamura ef al. 1088] ¥. Inamuea, N. Ichiyoshi, K.
Rokusawa and K. Nakajima. Optimization Te-
chinigues Using the MRD an< Their Evaluation on the
Multi-PSI/V2, In Prec. of the North American Conf.
on Logic Programming, 1989, pp. 907-021 (alse JCOT
Technical Report, TR-4066, 1989},

[Kimura and Chikayama L1987] Y. Himura
and T. Chika-vama. An Abstract KL1 Machine and
its lpstruction Set. Im Proc. of Symposivm on Logie
Programming, 1987, pp463-47T.

[Kurnnn el al, lﬂgg] K. Kumon, A. Asato, 5. Ara, T.
Shinogi, A. Hattori, H. Hatezawa and K. Hirano. Ar-
chitecture and Implementation of PIM/p. In Proc. of

71

the Int. Conf. on Fifth Generation Computer Systems,
1992,

[Masuda et al. 1983] Y. Masuda, Y. Ishizuka, Y.
Iwayama, . taki and E. Sugino., Preliminary Eval-
uation of the Connection MNetwork for the Multi-PSI
System. In Proc. Buropian Conference on Artificinl [n-
tellipence 1988 (ECAI-E8), August 1988,

[Matsumoto et al. 1987] A. Matsumoto, T. Nakagawa,
M. Sate, K. NMishida and A. Gote. Loeally Parallel
Cache Design Based on KL1 Memory Access Charac-
teristics. ICOT Technical Heport 327, 1987,

Nakagawa el al. 1989] T. Nakagawa, A. Goto and T.
Chikayama. Slit-Check Feature to Speed Up Interpro-
cesgor Software Interruption Handling. In JPSJ S1G
Reports, 80-ARC-77-3, 1989 (In Japanese).

[MNakagawa ef al, 1992] T. Makagawa, N. Ido, T. Tarui,
M. Asaie and M. Sugie. Hardware Implementation of
Divnamic Load Balancing in the Parallel Inference Ma-
chire PIM/e. In Proe. of the Int. Conf. on Fifth Gen-
erntion Compuler Systems, 1993,

[MNakajima et ol 1989) K. Nakajima, Y. Inamura, M.
Ichivoshi, K. Rokusawa and T. Chilayama, Dis-
tributed Implementation of KL1 on the Multi-PSI[/V2.
In Proc. of the Sizih Ini. Conf. on Logic Programaming,
1985, pages 43M-451.

[Makajima and Ichiyoshi 1990} K. Nakajima and N,
[chiyoshi. Evaluation of Inter-processor Commmunica-
tion in the KLI Implementation on the Multi-PSI. Tn
IoOT TR-531, 1890,

[Makajima 1892} K. Nakajima. Distributed Implementia-
tion of KL1 on the Mulii-P5SL In fmplementation of
Distributed Prolog, edited by P Kaesuk and M. Wise,
John Wiley & Sons, Lid., 1992,

[Makeshima and Nakajima 1987] H. Nakashima and .
MNakajima. Hardware Architecture of the Sequential
Inference Machine : PSI-IL. In Procecdings of 1987
Sympostum on Logic Programming, Sepi. 1987, pp
104-113.

[Makashima ef af. 1892] H, Nakashima, K. Nakajima, 5.
Kondo, Y. Takeda, ¥. Inamura, 5. Onishi and I, Ma-
suda. Architecture and Implementation of PIM/m. In
Proe. af the fnt. Conf. on Fifth Generation Compulior
Sysfems, 1992,

[Nishida et al. 1980] K. Nishida, Y. Kimura, A. Alal-
sumoto and A. Goto. Evaluation of MRE Garbage
Collection on Parallel Logic Programming Architec-
tures. In Pree. of the Seventh fal. Conf. on Logic Pro-
gramming, 1990, pages 83-93.

Mitta ef ol 1892) K. Mitta, K. Taki and M. Ichiyoshi.
Experimental Parallel Inference Software. In Prac. af
the Int. Conf. om Fifth Generation Computer Sysiems,
1992,

[Dnishi ef al, lggﬂ] 5. Onishi, Y. Matsumoto, K. Naka-
jima and K.Tald. Evaluation of the KL1 Language Sys-
tem on the Multi-PS1. In Proc. of Workshop on Par-
allel Implementation of Languages for Symbolic Com-
putation, July 30-31, 1990, Oregon, USA. Also ICOT
TR-585.

Rokusawa ef al. 1988] . Rokusawa, N. Ichiyoshi, T.
Chikayama and H. Nakashima. An Efficient Termi-
nation Detection and Abortion Algorithm for Dis-
tributed Processing Systems. In Proc. of fhe 1088
fut. Conf. on Parallel Processing, Vol. 1 Architecture,
1938, pp. 15-22.

[Rokusawa and lehiyoshi 1992 K. Rokusawa and N.
Ichiyoshi. A Scheme for State Change in a Distributed
Environment Using Weighted Throw Counting. In
Frec. of Sizik Inl. Perallel Processing Symposium,
IEEE, 1992,

[Sato ef al. 1087] M. Sate, A. Goto, et al. KL1 Execu-
tion Model for PIM Cluster with Shared Memory, In
Proceedings of the Fourth fnternational Conference on
Logic Programming, pages 338-355, 1987,

[Sato and Goto 1938] M. Sato and A. Goto. Evaluation
of the KL1 Paralle! System on a Shared Memory Mul-
Liprocessor. In Proc, of [FIP Working Conf. on Par-
alle! Processing, 1988, pp. 305-3145,

[Sato ef el 1992] M. Sato, K. Takeda and T. Qhara. De-
sign of the Parallel lnference Machine PIM/i Proces-
sor, In Trans, of IPSJ, Vol33, Ne 3, 1392, pp. 278-257
(In Japanese),

{Shimogi et af, 1988] T. Shinogi, K. Kwnon, A. Hattori,
A, Goto, Y, Kimura and T. Chikayama. Macro-call
Instruction for the Efficient KL1 Implementation on
PIM. In Proceedings of the International Conference
on Fifth Generation Computing Systems 1988, Tokyo,
Japan, pages 933-961, 1933,

[Takagi and Nakase 1991] T. Takagi and A. Nakase,
Evaluation of VPIM: A Distributed KL1 Implementa.
tion - Focusing on Inter-cluster Operations =, [n JFSS
810 Reports, 91-ARC-89-27, 1991 {In Japanese).

[Takeds ef of. 1988] Y. Takeda, H. Nakashima, K. Ma-
sude, T. Chikayama and K. Taki, A Load Balanc-
ing Mechanism for Large Scale Multiprocessar Sys-
tems and its Implementation. In Proceedings of the
Mternational Confersnce an Fifth Generation Com-
puler Systems, ICOT, Tolora, 1O8S,

{Taki et al. 1984] K. Taki, M. Yokota, A. Yamamoto,
H. Nishikawa, 5. Uchida, H. Nakashima and A. Mit-
suishi. Hardware Design and Implementation of the
Personal Sequential Inference Machine (PSI). [n Proe.
af the Inf. Conf. on Fifth Generation Computer Sys-
tems 1984, pp.398-409, Toekvo, Nov. 1954,

[Taki 1988] K. Taki. The Parallel Software Research and
Development Tool; Muolti-PSI System. In Proegrom-
ming of Future Generation Computers, K.Fuchi and
M.MNivat (Editors), pages 411-426, Elsevier Science
FPublishers B.V., North Holland, 1988,

[Uchida et al. 1988] S. Uchida, K. Taki, K. Nakajima,
A. Goto and T. Chikayame. Research and Develop-
ment of the Parallel Inference System in the Interme-
diate Stage of The FGCS Project. In Froc. of the Int,
Conf on Fifth Generation Computer Syslems 1048,
pp-16-36, Tokye, Nev. 1928.

[Uchide 1582 5. Uchida. Summary of the Parallel In
ference Machine and its Basic Software. In Proc. of
the Int. Conf. on Fifth Generation Computer Systems,
1992,

[Ueda 1086] K. Ueda. Guarded Horn Clauses: A Parallel
Logic Programming Language with the Concept of a
Guard, ICOT Technical Report 208, 1984,

[Ueda and Chikayama 1990] K. Ueda and T. Chika-
yama. Design of the Kemnal Language for the Paral-
lel Inference Machine. The Computer Journal, (33)6,
19890, pp.494-500,

[Wada and Ichiyoshi 1990] K. Wada and N. Ichiyoshi.
A study of mapping locally message exchanging al-
gorithms an a loosely-coupled multiprocessor. [COT
Technical Report TR-387, 1990,

[Warren 1983] D. H. D. Warren. An Abstract Prolog In-
struetion Set. Technical MNote 309, Artificial Tntelli-
rence Center, SRI, 1983,

[Watson and Watson 1987] P. Watson and I Watson,
An Efficient Garbage Collection Scheme for Parallel
Computer Architectures, In Proc, of Parallel Architec-
tures and Languages Burope, LNCE 250, Vol I, 1987,
pp.432-443.

