PROCEEDINGS OF THE INTERNATIONAL CONFERENCE
OM FIFTH GENERATION COMPUTER SYSTEMS 1992,
edited by TCOT. @ [COT, 1992

286

ParaGraph: A Graphical Tuning Tool for Multiprocessor Systems

Seiichi Aikawa Mayumi Kamiko
Fomiko Matsuzawsa

Hideyuki Kubo
Fujitan Limited
1016, Kamiodanaka Nakahara-ku,
Kawasaki 211, Japan

Abstract

Distributing computational load fo many processor is a
etitieal issue for efficient program execufion on multi-
processor systems. Naive even distribution of load, how-
ever, tends to incresse communication overhead comsid-
erably, which must alsc be minimized for efficient exe-
cution. Tt is almost impossible to achieve optimal load
distribution automatically. Tt is especially so on scalable
loosely-coupled multiprocessor systems, since the com-
munication cost #s relatively high. Finding a good load
distribution algorithm is one of the most important re-
search topics for parallel processing.

Tools for evaluating load distribution algorithms are
very useful for this kind of research. This paper de-
scribes a system called ParaGraph that gathers period-
ical statistics of the computational and communication
load of each processor during program execution, in both
the higher level of programming language and lower level
ol implementation, and presents them graphically to the
user.

1 Introduction

In the Japanese Fifth Generation Computer Systems
Project, parallel inference systems have been developed
for promoting parallel software research and dewvelop-
ment. The system adopts a concurrent logic program-
ming language KL1 [Ueda 90] as the kernel and consists
of a parallel inference machine, PIM [Goto 88] and its
operating system, PIMOS [Chikayama 88].

For efficient program execution, the computational
load must be appropriately distributed to each proces-
sor, On scalable loosely-coupled multiprocessor systems,
load balancing and minimization of communication over-
head are essential, but become more difficult compared
to tightly-coupled systems as communication costs in-
crease. Although many load distribution algorithms have
been developed [Furuichi 89, Kimura 89], none have been
sufficient to execute every program effectively. Finding
a good load distribution algorithm is one of the most
important research topics for parallel processing,

Takashi Chikayama
Institute for New Generation
Computer Technology
4-28, Mita 1-chome, Minato-ku,
Tokyo 108, Japan

Tools for evaluating load distribution algorithms are
very useful for this kind of research. The objective of
the ParaGraph system is to help programmers design and
evaluate load distribution algorithms on loosely-coupled
multiprocessor systems. ParaGraph gathers profiling in-
formation during program execution on the parallel in-
ference machine, PIM, and displays it graphically.

Many performance displays have been devised for spe-
cial purpose, processor utilization, communication, and
program execution|[Maleny 90, Heath 91)*. Profiling in-
formation can be viewed as having three axes: what,
when, and where. We have designed graphical views
based on three axes to display every kind of information
with the same form. We also have designed graphical
views to be easy to compare the profiling information.
This is because bottlenecks are often determined by com-
paring with the contents of the information relatively in
overall execution.

In Section 2, how load distribution can be described
in KL1 on PIM are described. Section 3 describes the
implementation of the ParaGraph system and graphical
representation of program execution, and Section 4 dis-
cnsses how useful graphical displays are to detect perfor-
mance bottlenecks with examples of various programs.
Section 5 concludes the paper.

2 Load Distribution Algorithms
2.1 Load distribution in KL1

The parallel inference machine runs a concorrent
logic programming language called KL1 [Ueda 90,
Chikayama 88, Ichiyoshi 88]. A KL1 program consists
of a collection of guarded Horn clauses of the form:

H :_G!.N'-!-Gm | BL---;.BH- Em:“ :: 1}

where H, (G, and B; are atomic formulas. H is called
the head, (4, the guard goals, and F; the body goals.
The guard part consists of the head and the guard goals
and the body consists of body goals. They are separated

'[Meath 91] describes a tool having the seme name as our ays-
tem, but they are quite different.

by the commitment operator(|). A collection of guarded
Horn clanses whose heads have the same predicate sym-
bol P and the same arity N, define a procedure P with
arity N. This is denoted as P/N.

The guard goals wait for instantiaticns to variables
(synchronization) and test them. When the guard part
of one or more clauses succeed, one of those clauses
is selected and its body goals are called. These body
goals communicate with each other through their com-
mon variables. If variables are not ready for testing in
the guard part because the value has not been computed
yet, testing is suspended.

In addition to the above basic mechanism, there is a
mapping facility. The mapping lacility includes load dis-
tribution specification®. The programmer can annotate
the program by attaching pragmas to the body goals to
specify a processor (specified by Geal@node(Proc)). The
programmer must tell the KL1 implementation which
goals to execute on which processors.

next_queen(N,I,J,B,R,D,BL):~ J>0, D=0 |
BL = {BLO,BL1},
R = {RO,R1},
BLO = [get{Proc)|BLZ],
try_ext(N,I,J,B,R0,D,BL2}8node(Proc),
next_gqueeniW,I, (J-1),B,R1,D,BL1).

Figure I: A sample KL1 program

Figure 1 shows a part of a KL1 program. If the goal
next.queen/T is committed to this clause, its body goals
are called. The goal try_ext/7 has a processor specifi-
cation, and it is to be executed on processor number
“Proc”. This processor number can be dynamically com-
puted.

2.2 Design Issues

Load balancing derives maximum performance by effi-
ciently utilizing the processing power of the entire sys-
tern. This is done by partitioning a program into muiu-
ally independent or almost independent tasks, and dis-
tributing tasks to processors. Many load balancing stud-
ies have been devised, but they are tightly coupled to
particular applications. Therefore, programmers have to
build load distribution algorithms for their own applica-
tions.

To distribute the computalional load efficiently, the
programmer should keep in mind the following points.
Since load distribution is implemented by using goals,
the programmer should understand the execution behav-
ior of each goal. When goals are executed on a loosely-
coupled multiprocessor, the programmer should investi-

*The other mapping facility is pricrty specification to specily
what priosity the goal should be executed.

287

gate the load on individual processors and the commu-
mication overhead between processors.

For evaluating load distribution algorithms, tools must
provide many graphic displays for the programmer to
aunderstand the computational and communication load
of each processor in both the higher program and lower
implementation levels. No single display and no single
profiling level can provide the full information needed to
detect performance bottlenecks.

3 System Overview

3.1 Gathering Information

To stalistically profile large-scale program execution,
KL1 implementaticn provides information gathering fa-
cilities, processor profiting and shden profiling. KL1 im-
plementation provides these facilities as langnage prim-
itives, to minimize the undesirable influence to ithe exe-
cution behavior of programe. These facilitics have been
implemented at the firmware level. The profiling facili-
ties are summarized as follows.

¢ Processor profiling
Profiles the low-level behavior of the processor, such
as how much CPU time went to the various basic
operations required for program execution.

¢ Shoen profiling
Profiles the higher-level behavior of the processor,
guch as how many times each piece of the program
was executed.

To minimize the perturbation, the gathered profiling in-
formation resides in each processor's local memory dur-
ing program execution, and after execution, ParaGraph
collects and displays this information graphically.

Since profiling information is automatically produced
by the KL1 implementation, programmers do not have
to modify the application programs.

3.1.1 Processor Profiling

The basic low-level activities can be categorized into
computetion, communication, gerbage collection, and
idking. Computation means normal program execution
such as goal's reductions and suspensions, communica-
tion means sending and receiving inter-processer mes-
sages, garbage collection means itself, and finally, idling
mezans doing nothing.

The processor profiling facility measures how much
time went to each category for each processor. Such in-
formation can be periodically gathered to show gradual
changes of behavier, The profiling facility can also mea-
sure frequencies of sending and receiving various kinds
of interprocessor messages [Nakajima 90].

288

* A throw_goal message transfers a KL1 goal with a
throw goal pragma to a specified processer.

» A read message requests for some value from the
remote processor when a clanse selection condition
requires it,

* An answer_value message replies to a read message
when the request value becomes available.

* A unify message requests body unification {giving a
value to a variable).

3.1.2 Shoen Profiling

“Shoen” [Chikayama 88)® is a mechanism provided in
KL1 for grouping goals and controlling their execution
in a meta-level. The shden mechanism can be considersd
to be an interpreter for the KL1 language. It also pro-
vides profiling facility at a higher level than processor
profiling. Processer profiling gathers a number of im-
portant statistics from many aspects that help analyzing
performance bottlenecks, but it provides no information
on where in the program is the root of such a behavior.

To correlate execution behavior with a portion of the
program, shoen profiling measures how many times goals
associated with each predicate are reduced or suspended
(due to unavailability of data required for reduction).
Transition of behavior can be chserved by periodically
gathering the information.

3.2 Graphic Displays

The profiling information can be viewed as having three
axes: what, when, and where. In sequential execution,
“where” is a constant and the “when” aspect is not im-
portant, since the execution order is strictly designated.
Therefore, simple tools like gprof provided with UNIX*
suffice. However, all three axes are important when par-
allel execution is concerned.

I such massive information is not presented carefully,
the user might be more confused than informed. There-
fore, ParaGraph provides a variety of graphic displays.
We named each representation using the terms “What,"
"When,” and “Where.” The term “What” is the visu-
alization target corresponding to the type of profiling
information such as low-level processor behavior, higher-
level processor behavior, and interprocessor message fre-
quencies. The term “When” indicates time expressed by
an integer that is a cycle number. The term “Whers”
indicates the processor number and is expressed by an
inkteger.

Figure 2 shows the graphic displays of ParaGraph.
These displays are execution behavior of all solution
search program of N queen problem.

*The word "shfen” in & Japanese word that means “manar®.
*UNTX is a trademark of ATET Bell Laboratories

Every type of profiling information can be easily dis-
played with the views described below with a menu-
oriented user interface such as the bottom-right window
in Figure 2. If the window size is too.small to display
everything in detail, coarser display apgregating several
cycles or several processors together is possible to see
the overall behavior at a glance. Scrolling on the verti-
cal and horizontal directions are also possible if details
are to be examined. It is also possible to display only
sefected “What" items.

3.2.1 A WhatxWhen View

There are two kinds of views in terms of "What" and
“When" items. One is a What xWhen view which shows
the behavior of each “What” item during execution. A
graph is displayed of a “What” item in order of the total
volume. The x axis is the cycle numbers, and the ¥
axis is the rate of processor utilization, the number of
messages, and the number of reductions or suspensions
corresponding to the type of profiling information. Since
every graph is drawn with the same scale on the vertical
axie, it is easy to compare with "What” items.

The other is an overall What x When view which shows
the behavior of all “What" items during execution. Each
“What” item is stacked in the same graph and dizplayed
as a line, The ¥ axis represents the average rate of pro-
cessor utilization, the total number of messages, and the
total number of reductions and suspensions correspond-
ing to the type of profiling information,

These views are helpful for example, if a program has
sequential bottlenecks such as tight synchronization. In
this case, the number of goal reductions will be down at
some portion during program execution. Such a problem
will be detected easily by observing program execution.

The top-left window in Figure 2 shows received mes-
sage frequencies on all processors with What % When
view. In this window, four kinds of received message fre-
quencies are displayed on each graph. These Messages
are displayed in order of the total number of received
messages. The other messages are displayed by scrolling
vertically,

From this, we know that each received message fre-
quency on all processors is less than 6,500 times/an inter-
val (an interval is 2 second). As this program is divided
almost mutually independent subtasks, communication
message frequency is very low.

3.2.2 A WhenxWhere View

A When x Where view shows the behaviors of all “What®”
items on each processor. Bach processor is displayed with
various color patterns that indicate volume, The rela-
tionship between color patterns and volume are shown
in the bottom right corner, The darker the pattern, the
busier the processor. Volume means the rate of PIOcessor
utilization, the number of messages, and the number of

; queanz(llR.5.4)

pmm s s

H =

H sl

i e

f feE)
o=

1 LI

i

5

e

289

aqueens (LRS54
: e e o

[el=H
Elracaive
El 3end

i compute

".-!..t-_.-':-. R

sodn

S AU

PPN RN e

{7 Whaixukaen [l
S0 puerall EhataMben || I'
Yhatx@hars |

frearal | Shatxbibhers [

mesulr | [caeimeed] o

“do i1 [mem_uin| what |Mistergl il Gl

Figure 2: Sample graphic displays: a What < When view (top-left window), an overall What x Where view {top-right
window), and a Whenx Where view (bottom-left window) and a menu-oriented user interface (bottom-left window)

reductions or suspensions that correspond to the type of
profiling information. It’%s also pessible to display only
selected “What” items instead of all of them.

The bottom-left window in Figure 2 is a When x Where
view. The x axis is the cycle number, and the y axis is
the processor number. This view displays the execution
behavior of all goals on a %2-processor machine. The
color patterns indicate the number of reductions. The
relationship between the number of reductions and color
pattern is displayed on the hottom right corner,

From this, we know that the work load on each pro-
cessol was well balanced, and this program was executed
about 50,000 reductions/an interval on each processor at
each moment in time,

3.2.3 A WhatxWhere View

There are two kinds of views in terms of "What" and
“Where” items. One is a WhatxWhere view which
shows the load balance of each “What" item on each
processor. A bar chart is displayed of a “What” item in
order of total volume. The x axis represents the proces-

gor numbers, the y axis represents the rate of processor
utilization, the number of messages, and the number of
reductions or suspensions that correspond to the type
of the profiling information. All bar charts are drawn
with the same scale on the vertical axis, so it is easy to
compare with the volume of each “What" item.

The other is an overall Whatx Where view which
shows the load balances of all “What" items on each
processor. Each “What" item is stacked in the same bar
chart and displayed by a certain color pattern. The y
axis represents the average rate of processor utilisation,
the total number of messages, and the number of total
reductions or suspensions that correspond to the type
of profiling information. The relationship between each
category and color pattern was displayed an the top-right
corner.

The top-right window in Figure 2 shows the low-level
behavior of the processor with an overall What x Where
view. In this window, each categories of low-level behav-
ior is displayed with several color pattern.

From this, the average of computation took more than
80% of total execution time, and the average of commu-

250

nication on each processor was less than 5%. Thus, this
view shows most of the processors run fully, and this
example program was executed very efficiently on each
PrOCessor,

4 Examples

This section discusses which views to use to view various
performance botilenecks. For efficient program execu-
tion on multiprocessor systems, the following phases are
usually repeated until a solution is reached: 1) a program
is partitioned into subtasks, 2) the subtask is mapped to
vach processor dymamicaily, and 3) each processor runs
subtasks while communicating with each other.

Various problems are often encountered when execut-
ing a program on multiprocessor systems. We will show
how graphic displays in hoth the higher program and
lower implementation levels are helpful with performance
prablems.

4.1 Uneven Partitioning

When the granulerity between subtasks is very differ-
ent, it is wseful to observe the low-level processor be-
havior with a WhenxWhere view and the higher-level
processor behavior with 2 What x Where view. From the
When x Where view, we will find which processors run
fully and which are idle. From the What x Where view,
we will determine which goals caused the load imbal-
ances,

The left window in Figure 3 shows the low-level be-
haviors on each processor with a WhenxWhere view,
while the right windew in Figure 3 shows the higher-level
behaviors of the same processors with a What x Where
view on a 16-processor machine. An example program
is a logic design expert system which generates a circuit
based on a behavior specification. The strategy of paral-
lel execution is that first, the system divides a behavior
specification into sub-specifications, next designs subcir-
cuits based on the sub-specifications on each processor,
and finally gathers partial results together and combines
them.

The WhenxWhere view suggests that proeessors
around No. 11 run fully, but mest of the other processors
were idle. The What x Where indicates the top six goals
were mainly exccuted on processor No. 11,

From this, we know that very complicated tasks are
allocated to processor No. 11, that is, uneven partition-
ing of behavior specification must cause a bottleneck in
performance.

4.2 Load Imbalance

If 2 mapping algorithm has problems such as allocating
subtasks to the same processor, it is useful to sbserve

low-level behavior of the processor with a When x Where
view and higher-level behavior with a What x Where
view. From the WhenxWhere view, we see which pro-
cessors aze running fully and which arg idle, and from
the What x Where view, we see the load balance of each
goal. Using both views, we can determine how to dis-
tribute the goals that are imbalanced to each processor,

The bottom-lefl window of Figure 4 shows low-level
behavior of the processor with a WhenxWhere view,
the top-left window and the top-right window show the
higher-level behavior of the processor with an overall
What x Where view, a What x Where view respectively.

An example program is a part of the theorem prover -
which evaluates whether an input formula is a tautelogy.
The strategy consists of 2 steps: 1) convert an input
formula to clause form (i.e, conjunctive normal form), 2)
evaluate itz clause form and determine whether it is a
tautology.

The step 1 is executed in parallel as follows. First,
main task partitions an input formula into subformu-
las. Second, it generates subiasks to comvert subclause
forms, and finally, distributes subtasks to many proces-
sors dynamically. These steps are repeated recursively
until subformulas are converted to subclause forms. The
step 2 is executed in sequential on processor No. 0.

The When < Where view of the bottom-left window in
Figure 4 suggests that only certain processors (processor
No. 6-15 and No. 23-31) mun fully and that the others
were mostly idle. The overall When x Where view of the
top-left window also suggests that most of the goals were
executed on certain processors and the number of redue-
tion of top five goals were higher than the other goals.

We can check the load of each goal on each processor
from the What x Where view of the top-right window in
Fugure 4. These goals were executed on certain proces-
sors and were the canse of the load imbalances. From
this, we have to change its mapping algorithm to be flat-
ten the shape, to use all processors efficiently.

4.3 Large Communication Overhead

When subtasks are not muiually independent and must
communicate with each other closely, the program is less
efficient becawse of communication overhead. In this
case, the low-level behavior of the processor with an over-
all WhatxWhere view and frequencies of sending and
receiving messages with a WhatxWhere view are help-
ful. From the overall What » Where view, we will learn
how much time has been consumed on message handling
for each processor, while the What x Where view shows
us what kind of messages each processor has sent or re-
ceived,

Figure 5 displays an execution behavior of an improved
version of the program described in Section 4.2, The left
window shows the load balances of all goals on a 32-
processor machine with an overall WhatxWhen view.

omp i 9% Msg i li

IS
£l 1] M ¥
BE

EERIENNENAT DEERMRENEE]

1- ey

1% [2] test: &

This view shows that the work load on each processor was
balanced in overall execution, but was not efficient be-
cause of large communication overhead. It will be proved
from low-level behavier of the processor with an overall
Whatx'Where view shown in the right window.

The right window of Figure 5 suggests the load average
on each processor was about 80 - 5%, but the average
of compuiation on each processor was about 20%. Most
of he processing power was consumed sending and re-
ceiving message handling time more than 60% of total
execution time,

Fignre 6 shows the same program execution as Fig-
ure 5. The left window shows the receiving and sending
message handling time rate with What xWhere view, the
right window shows the frequencies of four received inter-
processor messages with a What x When view,

The left window of Figure 6 shows the message han-
dling time on each processor at each moment in time was
almost equally, the right window shows that the read
message was received about 180,000 times, answer_value
message was about 165,000 times, wnify message was
100,000 times, and throw_goal message was about 64,000
times per inferval on all processors, The tasks gen-
erated in this program communicated with each other
closely among processors as compared with the result of
N queen's message frequencies (see the top-left window
of Figure 2),

"From this, we know that as work loads are distributed
more and more, it becomes easier to balance work loads
on each processor, but communication overhead also in-
creases and performance is thus lowered. As a result, we
have to redesign or improve how to divide into subtasks.
Because the generated subtasks that were not mutually
independent, and it cansed such a problem we menticned
abowve.

291

Uverall Whakt = Where

Reduction

hE

G

LB R

T TE

Cysritio.al terna
addsE

D pimos: i hasker:
hashids

& pimos: | keyed_ ba
do_get 1§ _ang.

B yori:te_nlierng
ndd _FAVi e -4

W subk e

M yori: :ageni_add

O pimsgs : hoynd_ba
- hygnd_bag R
B pimest @ hayed_ba
rFahosh_asch_sn
M pimos: : knshers
hanhed

5 Conclusion

We developed the ParaGraph system on parallel infer-
ence machines to provide graphic displays of processor
utilization, interprocessor communication, and execution
behavior of parallel programs. Experiments with varions
programs have indicated that graphic displays are help-
ful in dividing work loads evenly and determining where
ihe bottienecks are on multiprocessor systems.

We released a version last year as a tuning tool of
PIMOS, but have experienced some problems. In the
future, we will improve the system considering the fol-
lowing points.

First, real-time performance visnalisation tools are
needed. Although displaying execution behavior in real-
time perturbs the program being monitored, it is useful
not caly in early tuning but alse in debugging such as
detecting deadlock status and infinite loops, To develop
such a tool, low overhead instrumentation techniques and
new displays that programmers would not be pressed to
understand appearing in real-time must be devized.

Second, tools which can visualize the portion of the
performance bottlenecks directly are needed. Massively
parallel machines that have thousands of processors and
programs for long runs produce a large amount of pro-
filing information, but it is difficult to process or dis-
play for simple expansion of our system because of a
vast quantity of information. To solve such problems,
analysis techniques indicating bottlenecks directly will
be needed. We will stndy automatic analysis techniques
and graphical displays of its result {we call this bottle-
neck visualization). One such approach is critical path
analysis, which identifies the path throngh the program
that consumed the most time [Miller 90].

292

Heduction

& (5. 4)

1] bmtp_dacthl:

al tar_radcd fe_

Ety, 3808
Bt pmmmtp dapthgl] e
rulasd
Mma: tbmip depthl
aftar_rawe e

W cthars

i T s AR RAR] §Re P | B P B

o B

ok ik BB AR B TR] D f BT PR | b e PR

™ nsu'1 - -
dnds

[] b i e rp.smtnl reladd) EEET)

AT

"
§a EALFE

e Py

E;L-‘ —
E

¥ oaucEnass;

T L T R T Tl

F] []

Tuwaral | EhatwWhean
Wha t sWbers
Ovarnll WhotxEher

Figure 4: Low-level processor behavior (bottom-left window), the load balances of all goals (top-left window), and the

load of each goal (top-right)

6 Acknowledgments

We thank K. Nakao and T. Kakuta who helped us to
develop this tool, and all the researchers of [COT and
other companies who tested our tocl.

References

[Ueda 90] K. Ueda and T. Chikayama, “Design of the
Kernel Language for the Parallel Inference Ma-
chine,” The Computer Journal, December 199{.

[Goto 88] A. Gote, M. Sato, K. Nakajima, K. Taki, and
A, Matsumoto, *Overview of the Parallel Inference
Machine (PIM) architecture,” In Proceedings of the
International Conference on Fifth Generation Com-
puter Systems, pages 208-229, 1088,

[Chikayama 88] T. Chikayama,
H. Sate, and T. Miyazaki, “Overview of the Paral-
lel Inference Machine Operating System (PIMOS),”
In Proceedings of the International Confersnce on

Fifth Generation Computer Systems, pages 230-251,
1988,

[Furuichi 89] M. Furnichi, K. Taki, N. Ichiyoshi, “A
Multi-Level Load Balancing Scheme for OR-Parallel
Exhaustive Search Program on the Multi-PSI,"
ICOT TR-526, 1989,

[Kimura 89] K. Kimura, and N. Ichiyoshi, “Probabilis-
tic Analysis of the Optimal Efficiency of the Multi-
Level Dynamic Load Balancing Scheme,” In Pro-
ceedings of the Sixth Distributed Memory Comput-
ing Conference, 1989,

[Heath 91] M. T. Heath, and J. A. Etheridge, “Visual-
izing the Performance of Parallel Programs,” IEEE
Software, pages 20-39, September 1991,

[Malony 90] A. D. Maleny, D. A. Reed, D. C. Rudolph,
“Integrating Performance Data Collection, Analy-
sig, and Visualization," Addison-Wesley Publishing
Company, pages 73-87, 1590,

B undly

rulosd

W ethars

L I I LT L

i

PR TTTTFT]]

i

CIme: i batp_dapthi
after_romrito.
EEimas i betp_dapth
pafsra_rearite

W =int beitpodapth

M =i [bmtpadapthl
aftar reacites

293

oo (5. Ad

L2] :-ru |1-| thi
P n . -

Bracaive

B sand

B compute

L e 1

Figure 6: Low-level processor behavior about message handling (left window) and message frequencies (right window)

[Ichiyoshi 89) N. Ichiyoshi, “Research Issues in Paral-
lel Knowledge Information Processing,” 100T TM-
0822, November 1989,

[Nakajima 89] K. Nakajima, Y. Inamura, N, Ichiyoshi,
T. Chikayama, and H. Nakashima, “Distributed Im-
plementation of K11 on the Multi-PSI/V2," In Pro-
ceedings of the Sixth International Conference on
Logic Programming, 1989,

[Nakajima 90] K. Nakajima, and N. Fchiyoshi, “Evalua-
tion of Inter-processor Communication in the KL1
Implementation on the Multi-PSL" ICOT TR-531,
1990,

[Miller 80] B. P. Miller, M. Clark, J. Hollingsworth,
5. Kierstead, 5. Lim, and T. Torzewski, *TPS-2:
The Second Generation of a Parallel Program Mea-
surement System," IEEE Trans. Parallel and Dis-
tributed Systems Vol. 1 No. 2, pages 206-217, April
1580.

