PROCEEDINGS OF THE INTERNATIONAL CONFERENCE
ON FIFTH GENERATION COMPUTER SYSTEMS (992,
edited by ICOT. © 1COT, 1962

269

Resource Management Mechanism of PIMOS

Hiroshi YASHIRO*, Tetsuro FUJISE!, Takashi CHIKAYAMAL,
Masahiro MATSUO!, Atsushi HORI! and Kumiko WADA!

T Institute for New Generation Computer Technology
1-4-28 Mita, Minato-ku, Tokyo 108, Japan
1 Mitsubishi Research Institute, Inec.
1-8-1 Shimomeguro, Meguro-ku, Tokyo 153, Japan

Abstract

The parallel inference machine operating system (PI-
MO3E]) is an operating system for the parallel inference
systems developed in the Japanese Fifth Generation
Compitter Systems project. PIMOS iz written in a con-
current logic language KL1, which adds numerous ex-
tensions to its base language, Guarded Homn Clauses, for
efficient meta-level execution control of programs. Using
such features, PIMOS is designed to be an efficient, ro-
bust and flexible operating system. This paper desceibes
the resource management mechanism of PIMOS, which
is characterized by its unique communication mechanism
and hierarchical management policy.

Hierarchical management of user tasks in a distributed
fashion is mandatory in highly parallel systems so that
the managernent overhead of the operating system can
also be distributed to the processors running in parallel.
The meta-level execution contrel structure, called sheoen,
is provided by the KLI language and is used for provid-
ing such hierarchical management in a natural fashion.

In concurrent logic languages, message streams imple-
mented by shared logical variables are frequently uti-
lized the media of interprocess communication. PIMOS,
based on this programming style, provides multiplexed
slreams with flexible control for communication between
user programs and the sperating system.

1 Introduction

In the Fifth Generation Computer Systems project of
Japan, the parallel inference machines, PIMs, have been
developed to provide the computational power required
for high performance knowledge information systems
[Goto et al. 1988, Taki 1992].

The parallel inference machine eperating system, PI-
MOS [Chikayama et al. 1988), was designed to control
highly parallel programs efficiently on PIMs and pro-
vide a comfortable software development environment
for concurrent logic language KL1.

PIMOS was first developed on an experimental
model of parallel inference machine, called Multi-PSI

"EMAIL : yashiroficot.or. jp

[Nakajima ef al. 1988, consisting of up to 64 process-
ing elements connected via a two-dimensional mesh net-
work., The system was first developed in 1988 and has
been used since then to research and develop various ex-
perimental parallel application software. Later, the sys-
tern was ported to several models of parallel inference
machines with considerable improvements in various as-
pects.

1.1 Shoen Mechanism

The language in which PIMOS and all the application
programs are written is called KL1. KLl is a con-
current logic language based on Guarded Horn Clauses
[Ueda 1986] with subsetting for efficient execution and
extensions for making it possible to describe the full op-
erating system in it.

The greatest benefit of using 2 concurrent logic lan-
guage in writing parallel systems is the implicit con-
currency and data-flow synchronization features. With
these features, one of the mest difficult parts of paral-
lel programming, synchronization, becormes automatic,
making sofiware development much easier than in con-
ventional programming languages with explicit synchro-
nization.

An important addition by the KL1 language to regu-
lar concurrent logic languages is its meta-level execution
control construck named shoen. Shoen enables the en-
capsulation of exceptional events and the description of
explicit execution control over a group of parallel compu-
tational activities. The execution unit of KL1 programs
is a preposition called a goal, which will eventually be
proven by the axiom set given as the program. This
proof process is the execution process of the programs,
as it is with any other logic programming languages. As
the proof process can proceed concurrently for each goal,
the goals are fine-grained parallel processes,

As no backtracking feature is provided in concurrent
logic languages, all the goals in the system form one
logical conjunction. Thus, if no structuring mechanizm
is available, failure in a user’s goal means failure of the
whole system. The shoen mechanism provides a way
of grouping goals, iselating such failure to a particular

270

group of goals. Such a group is called & shoen!
A shoen can be initiated by invoking the foliowing
primitive.
executa{lode, Argv, MinPrio, MaxPrie,
ExcepMask, Contrel, "“Report)

The arguments Code and Argv represent the code and
arguments of the initial goal of the shoen. This goal is
reduced to simpler goals during the execution (or proof)
process, and all such descendant goals will belong to this
shoen.

A shoen has a pair of streams pamed the control
stream and the report stream, which are represented here
by the two arguments Contrel and Heport respectively.
The control stream is used to send commands to control
the gross execution of the goals belonging to the shoen,
such as starting, stopping, resuwming or aborling them
as a group. Excepiional events internal to the shoen,
such as failure, deadlock, exception such as arithmetical
averflow, or termination of computation are reported by
the messages received from the report siream (Figure 1).

Report
Stream

Cantrol
Stream

Shoen "

v_

Figure 1: Shoen

The two arguments ¥inPrie and MaxPrio specify the
priovity range of the goals belonging to the shoen. PI-
MOS does not try to control scheduling of each fine-
grained parallel process, but controls them s a group
using the control stream and this priority mechanizm.

Shoen can be nested Ly arbitrary levels. Stopping &
shoen, for example, will make all the children o grand-
children shoen inside it. The argument ExcepMask is
used to determine which kinds of exceptional events
should be reported to this particular level of the hier-
archical structure of the shoen.

PIMOS supervises user pregrams using this shoen
mechanism. The exception reporting mechanism is used
to first establish the communication path from the user
progrems to PIMOS. An exceptional event to be re-
ported can be intentionally generated using the following
primitive.

raise(Tag, Data, Info}

"The shoen mechanism is ar extension of the meta-call con-
siruct of Parlog [Foster 1988) and can be considered to be a
language-embedded version of the mela-interpreters seen in sve-
tems based on Coneurrent Prolog [Shapire 1884]

The argument Tag specifies the kind of event gener-
ated by this primitive, This, along with the mask speci-
fied when the shoen is created, determines at which level
in the shoen hierarchy this event should be processed.

The two arguments Data and Info are passed as de-
tailed information of the event, The Data argument can
be any data, instantiated, uninstantiated or partly in-
stantiated, while the Info argument has to be instan-
tiated before the event is generated. The above primi-
tive will be suspended until this argnment is completely
instantiated to be a ground term without any logical
variables,

Dy monitoring the report stream, PIMOS can receive.
the requests from the user as messages coming from the
stream in the following format.

axception(Kind, EventInfo, “Newlode,
“WewhrgV)
The Kind argument indicates the kind of exceptional
event. In this case, the fact that the event was inten-
tionally generated can be recognized.

The EventInfo argument is more detailed information
of the event. In the ahove case, the Data and Info argu-
ments of the raise primitive will be combined together
theongh this argument. S SST0 G :

The NewCode and NewArgV arguments specify an al-
ternative goal to be executed in the object level in place
of the goal that generated the event. PIMOS utilizes
such a goal for inserting a protection filter, which will
be described later.

1.2 Resources

In conventional systems, memory management and pro-
cess matiagement are two of the most important tasks of
the operating system. In the case of PIMOS, as the un-
derlying language implementation of KL1 provides prim-
itives for those fundamental resources, PIMOS da not
have to be concerned with such low-level management.

KL1 provides automatic memory management feature
including garbage collection, as iz the case with Lisp
or Prelog. Thus, basic memory management is auto-
matic in the language implementation. KL1 provides
implicit concurrency and data-flow synchronization, con-
text switching or scheduling is already supported by the
language. Thus, PIMOS does not deal with low-level
fine-grained process management, but controls larser-
grained groups of processes using the priority system
provided by the language.

As memory and process ere managed in the KLI1
language implementation level, we call them language-
defined resowrces. On the other hand, other higher-
level resources, such as virtual I/0 devices, are more
directly controlled by PIMOS. We call them 0S5-defined
reseurees. In what follows, we will concentrate on the
management of such 05-defined resources.

2 Communication Mechanism

The basic principles of the communieation mechanism
are deseribed ia this section. This lays the basis for the
foundation of the PIMOS resource management mecha-
mism.

2.1 Stream Communication

In & parallel environment, efficient management of vari-
ous resources becomes much more difficult than in a se-
quential environment. When data in a particalar mem-
ory area should not be everwritten while being processed
by the operating system, the operating system can sim-
ply suspend the execution of user programs in a sequen-
tizl system. In o highly paraliel environment, this will
seriously spoil the merit of fine-grained parallelism, &s
all the user processes sharing the memory space musk be
stopped irrespective of whether they actually have any
possibility of changing the data.

A frequently used programming technigue in concur-
rent logic languages is the object-oriented programming
style [Shapiro and Takeuchi 1983]. In this style, a pro-
cess (actuelly a goal which becomes perpetual by recur-
sively calling itsell) can have internal data which can-
not be accessed from outside and shared data containing
variables which can be used for interprocess communica-
tion. Interprocess communication is effected by gradu-
ally instantiating the data shared between processes, In-
stantiation corresponds to sending data and cbserving it
corresponds to receiving the data. When the shared data
is instantiated gradually to a list struclure of messages,
Lhe structure can be considered to be a communication
stream. PIMOS also utilizes this technique for commu-
nication between the user programs aned the operating
gysiem.

For example, reading a character string from the key-
board can be effected by a program shown in Figure 2
(after establishing a communication path by generating
an exceptional event as explained in a previous section).
The user sencls a message getb/2, that requests the read-
ing of H characters. When PIMOS receives the message,
it reads ¥ characters from the kevboard to the variable
EBDString (readFromKBD/2). Then, the user receives
the String instantiated to KBDString, As the cdr of
the list, ReqT, will be a new shared variable after this
operation, it can be used for successive such communi-
cation.

2.2 Protection Mechanism

In & system based on a concurrent logic language, many
of the problemns that might arise in & conventional oper-
ating systern will never be a problem. As the communi-
cation path between the user programs and the system
programs can be restricted to shared logical variables,
there is no way for user programs to overwrite the mem-
ory area used by the system programs.

271

7- pimes(Req), user(Req).

usar(feg) :-
true |
Req = [getb{,5tring)|ReqT],

pimes{ [getb(W,5tring) [ReqT]): -
trye |
readFromKbd (N, KEDString) ,
KBDString=8tring,
pimes (RegT).

Figure 2: An example of interprocess communication
between user and PIMOS

With the simple mechanism described above, how-
ever, intentional or accidental error in user programs
may cause system failure in the following ways.

Multiple Writer Problem When both the system
and user programs write different values to the same
variable, a untfication failure may occur. In a con-
current language like KL1, unifications by PIMOS
and the user may be executed concurrently. Thus,
this contradiction may cause PIMOS to fail if it tries
to instaniiate the varnable later,

Forsaken Reader Problem The user program may
fail to instantiate the arguments of the message sent

to PIMOS, in which case PIMOS may wait forever
for it Lo be mstantiated.

To solve problems, a filtering process called the protec-
tion filter is inserted in the stream between PIMOS and
the user program. This filter is inserted in the object-
level (within the user’s shoen) using the above described
MewCode and NewirgV arguments of the exceplion re-
porting message. To solve the forsaken reader problem,
the filter will not send a message to PIMOS untii its
armirments are properly instantiated. To solve the mul-
tiple writer problem, the filter will not unily the resuit
from the operating system with the varable supplied by
the user until it is properly instantizted by the operating
system (Figure 3).

In the actual implementation, such filtering programs
are sutematically generated from the message protocol
definitions.

2.3 Asynchronous Communication

Stream communication is simple, yet pawerful enough
for simple applications, but it does net provide sufficient
flexibility and efficiency at Lhe same time when contral-
ling various 1/Q devices.

As communication dﬂla}r is a crucial facltor in dis-
tributed processing, it is desirable to send messages in a

272

filter([get(C)|Usaz] ,08):-
true |
0s = [get{C)lOs1],
wait_and_unify(C1,C),
filter(lizer, 051).
wait_and_unify(0SV,UserV) :-
wait(DsV) |
UgarV = DSV,

Figure 3: An example of the protection filter

pipelined manner for better throughput. To allow this,
it is desirable to allow messages to be sent before being
sure thai they are really needed and to allow them to be
canceled if they are found to be unnecessary afterwards.
If only one communicetion stream is available between
the operating systemn and the user, this cancellation is
not possible (Figure 4).

S

Blocked!!

Figure 4: Blocked stream

To solve the problem, PIMOS provides another com-
munication path for emergencies. We call the path abort
line. This communication path is implemented as a sim-
ple shared variable, Instantiation of this variable notifies
cancellation of commands already sent to the stream.

Ancther prablem s that, with only one communica-
tion stream from the user to the operating system, there
is no way for the devices to send asynchrenous infor-
mation to the users. To solve this, besides the abowve-
mentioned two communication paths, 2 communication
path in the reverse direction called the attention line is
provided (see Figure 5).

siream
TR -
nser {' device
process driver
abert _
- attention

Figure 5: Asynchronous communication with a deviee

These two “lines” are one-time comrmunication paths

in their nature. After they are used, new paths can
be established by sending the reset message described
below through the main communication stream.

2.4 Multiplexing Communicatiorf Paths

It is sometimes mandatory to share some (virtual) re-
sources among several processes. A typical example is
with the terminal device shared among processes run-
ning under a shell. In such cases, only one process should
be able to use the device at a time, but quick switching
among processes (when a process is suspended by a ter-
minal interrupt, for example) iz essential for comfortable
operation. On the other hand, the pipelining of 1/0-
request meseages is mandatory for better throughput.
With only the mechanism of the ®abort™ and “atten-
tion™ lines mentioned above, the aborted requests will
merely disappear. This does not provide more flexible
control, such as suspending a process and resuming it
afterwards.

PIMOS provides the following 1/0 messages to solve
the problem,

reset("Result): The variable Result is instantiated
to a term normal{~Abort, Attention, ID). The
arguments Abort and Attention correspond to
new abort and attention lines. An identifier for
a sequence of commands subsequently sent on this
stream is returned in the argument ID.

resend(ID, "Status): When [/O request messages are
aborted using the abort line, the device drivers re-
member the aborted messages associated with the
identifier. The resend command tells the device
driver to retry the aborted messages associated with
ID.

cancel(ID, “Status): This cancel message tells the
device driver to forget about the aborted messages
associated with ID.

Suppose that a certain device, such as a window de-
vice, is shared by two user processes, A and B. Each user
process has one communication path to the device. The
communication paths connected from the user processes
are merged to a “switch® process, which has another
communication path connected to a “control” process
{Figure 6{a)).

The control process is usually a part of a program such
as a command interpreter shell that lets twe or mere
programs share one display window. When a program
running under the shell is suspended by an interruption,
there may remain I/ O messages that have been already
sent from the interrupted program to the device driver
but have not been processed yet. In such a case, the con-
trol process suspends the processing through the abor-
tion line and sends a reset message to the device through

the switch process (Figure €(b)). The suspended mes-
sages are kepl in the device driver with ID. If the pro-
gram resuimes communication with the device, the con-
trol process commands the switch process to send a re-
send message with ID as its argument to make it resume
the suspended 1/ 0 requests.

{a.} switeh for multiplexing streams

abort reset , resend
Process A —~——————.iiiarenrnrns e

In =1 ID=1
reset, resend abort
Precess B e —————— L e
In = 2
Example: --- : connected communication path

' : disconnected communication path
(b) commands between the switch and the device driver

Figure f: Multiplexing streams

3 HResource Management Mechanism

All the devices provided by PIMOS have the stream in-
terface described above, with attention and abort lines
when required. Thus, management of resources in PI-
MOS is management of these communication paths,
This section describes the mechanism of the manage-
ment by PIMOS,

The following are the keywords to understand the
mechanism.

Task: Tasks are the units of management of user pro-
grams. A task consists of an arhitrary number of
goals (fine-grained processes) corresponding to a
shoen in the langnage level, and forming & hierar-
chical structure.

General Reguest Device: The general request device
is the top level service agent. ‘This is the stream user
programs can obtain direetly from PIMOS, Request
streams to all cther deviees are oblained by sending
messages to this devies,

273

Standard I/0 Device: A task is associated with its
standard I/0 devices. Standard 1/0 devices are
alisses of some devices they are amociated with.
The correspondence is specified when the task is
generated. The resource sharing mechanism de-
scribed above iz attached to these tasks.

Server: [JO subsystems of PIMOS are actually pro-
vided by corresponding tasks called servers. They
are made relatively independent of the kernel of PI-
MOS, making the modularity of the system better.
The file subsystem is typical of such servers,

3.1 Resource Management Hierarchy

As mentioned above, tasks are the unit of management
of user programs. All communication paths from user
program to PIMOS are associated with certain tasks,
Resources obtained by requests through such paths are
also associated with the taska.

Tasks are implemented using the shoen mechanism of
KL1. A taskis ashoen with its supervisor process inside
the PIMOS kernel. The kernel controls the utilization

of resources within the task.

Tasks are handled just like ordinary I/O devices, A
task handler is a device handler whose corresponding
device happens to be a shoen. Tasks are unique in that
they may have children resources. As its consequence, a
task can have tasks as its children resources forming a
nested structure. Corresponding to this, taslk handbers
and other resource controlling processes inside PIMOS
also form a hierarchical structure, called the resource
tree. This resource tree is the kernel of resource man-
agement by PIMOS.

One layer of the resource tree is represented hy the
task handler and device monitors corresponding to its
children resources connected by streams in a loop struc
ture (Figure 7). Device monitor processes are commeon
with all kinds of devices. Associated with each device
monitor is a device handler, which depends on the cate-
gory of the device. Device monitors and device handlers
are dynamically created when a new virtual device is
created and inserted in the loop structure.

The device handlers can be classified as follows,

Task Handler: A task handler corresponds lo a shoen.
As described above, usnal shoens whose control and
report streams are directly connected to their ere-
ator. Those streams of shoens corresponding to a
task are connected to the task handler. The creator
of the task (user programs) cen only contrel and
observe the behavior of tasks indirectly through re-
quests to PIMOS,

General Request Handler: (General request devices
are the primary devices provided by PIMOS.
Through them, information on the task itself is ob-

274

7

Figure T: Respurce tree

tained and various other devices {including children
tasks) can be created.

Standard IO Handler: Standard [/O devices are
alizses corresponding to some other device, They

provide the resource sharing mechanism described
above,

Server Device Handler: Server devices are the most
common form of virtval devices]'.Il'C!-'I."i.(]{.‘Tl h_-,r Pl-
MOS, The device handlers watch the status of the
client task and rotify its termination to the server
Lask.

3.2 Providing Services

To minimize the “kernel” of PIMOS, the kernel provides
its fundamental resource managemenl mechanism only.
Other services, such as virtual devices such as files or
windows, are provided by tasks called *servers®.

Figure & shows an overview of the management hier-
avely of PIMOS. The basie [JO system (BIOS) provides

the low-level 1/0, but it does not provide the protec-
tion mechanism. To protect the system, basic IO ser-
vice is provided only for the kernel. The kernel provides
the above-described resource tree, which provides the
resource management mechanism for tasks. Tasks here
include both user program tasks and server tasks.

As described above, communication between the user
programs and PIMOS can be established using the raise
primitive. However, this mechanism only establishes a
path to the kernel {the resource tree) and not to a server
task.

The communication path between a client task and a
server task can be established as follows (see Figure 8,
also).

1. To start the service, servers register their service to
the service table kept in the kernel of PIMOS. The
table associales service names to a stream to the
corresponding server, The code for the stream filter
for protecting the server from clients’ malfunction
is alzo registered in the table.

Taszk

Client |-»{ Server
||=if t ¥

Kermneliresoarce res)

Y
BIOS

Figure 8 An overview of the management hierarchy

2. The client task establishes a communication path
to the PIMOS kernel and requests a service by its
TLaIne,

3. The kernel searches for the name in the service ta-
ble, and if a matching service i found, connects the
client and the server, inserting a protection filter
process inside the client.

Although the above writlen arder is typical, The order
of 1 and 2 is not essential. Requests made prior to reg-
istration of the service will simply be suspended,

In step 3, PIMOS inzeris & device monitor and & de-
vice handler corresponding to the server device, The
device handler watches for termination of the client task
and notifies it to the server (Figure 10) for finalizing the
service provided.

This separation of the kernel and the servers in PI-
MOS allows flexible configuration of the system and as-
sures system robustness. Failures in a server will not be
fatal to the systemn; the services provided by the server
will become unavailable, but the kernel of the system
not to be affected.

Table 1 lists standard services in the most recent wer-
gion of PIMOS (Version 3.2). Fach of these services is
implemented uzing the above client/server mechanism,
Various other servers, such as database servers, can be
added easily and canonically to these standard servers.

Table 1: Standard service in PIMOS| Version 3.2)

Name | Service

Database of atom ideatifiers and their
unique prinfable names.

atom

file | File and directory service,

module | Database of executable program codes.
sacket | Internet sockst service.
timer | Timer service.

user Database of user authentication mformation.

window | Display window service,

275

3.3 Standard I/0

PIMOS provides & management mechanism for sharing
resources, which enables the sharing of resource streams
between a parent task and its children tasks {(and sub-
sequent children tasks). When a task is generated nor-
mally, standard [/ devices of the parent task are in-
herited to the child task. Multiplexing of the request
bstream iz implemented as described previously.
Standard /0 devices ate not a usnal device but a kind
of alias of the device it 15 associated with. Since the pro-
tection mechanism of PIMOS, a messages filtering pro-
cess, has to know the message protocol of the stream,
the message protocel for the standard 1/O device is re-
stricted to a common subset of I/ 0 device protocols.

3.4 Low Level I/O

In the lowest level, PIMOS supports SCSI (Small Com-
puter Standard Interface) for device contral. Each op-
eration to the SCS5T bus is provided as a built-in predi-
cate by the KL1 language implementation. For example,
a primitive for sending a device command through the
5C5I bus is as follows.

scsi_command (SC3T, Unit, LUN, Command,
Length, Direction, Data, DataP,
“HlewData, ~“TransferredlLength,

“ID, “Result, "NewSCSI)

The argument SCSI should be an object representing
the state of the 3CSI bus interface device at a certain
moment. NewSCSIL, on the other hand, represents the
state of the device affer sending the command. This is
instantiated only after completing the operation and the
vilue will be used in the next operation, which will be
suspended until it is instantiated. The proper ordering
of operations is thus maintained.

The Unit and LUN arguments designate a specific de-
vice connected to the SCSI bus. Arguments Commend
and Direction are used to control communication on
the SCSI bus. The argament ID is used for commeand
abortion, whose mechanism is similar to one described
previously.

Sinee the KL1 processor needs garbage collection, real-
time programming in KL1 is basically impossible. On
the other hand, physical operations on SCSI require real-
time response. The above primitive only reserves the
operation and actual operation will be done eventually,
with lower level real-time routines. Explicit buffers are
used to synchronize the activities of their lower level
routines with KL1 programs. Ofher arguments, Data,
DataP, HewData, TransferredlLength are used to spec
ify such buffers.

276

name | service

file Sy

{1) register

I“
L]

Tasks (2) request &
Client Task C _=====Server Task
7 (3) insertion of
& protection filter
aser 4‘1
process

\ _J

Figure 10: Communication between client and server(2)

3.5 Virtoal Machine

As all the communication between the user programs
and PIMOS is initiated through the control and report
streams of the shoen which implements the user task, a
user program can emulate PIMOS and make application
programs run under its supervision. This is useful for
debugging application pregrams,

The same technique can also be used to debug PIMOS
itzelf by writing & BIOS emulator, as all the other parts
of PIMOS communicate with BIOS through paths es-
tablished using the shoen mechanism. Figure 11 depicts
an actual implementation of a virtual machine on P
MOS. As the virtual machine is a usual task in PIMOS,
the protection mechanism of PIMOS prevents failures
in the version of PIMOS being debugged on the virtual
machine from being propagated to the real PIMOS. This
facility has been conveniently used in debugging the ker-
nel of PIMOS.

— Fh'ﬁl'Emai machine '—i\

Virtual machine
("~ (task) T -

Task

Kemel(resource ree)

BIOS simulator

G

Kemel(resource tree)

BIOS

\, "

Figure 11: Virtual machine on PIMOS

4 Coneclusion

The resource management scheme used in PIMOS based
on the concurrent logic language KLI iz described. [t
depends heavily on the meta-level control mechanism
called shoen provided by the language for efficient hier-
archical resource management.

PIMOS itself has a hierarchical structure, consisting
of a kernel and server tasks. This structure enables a
Hexible system confizuration and reinforces the robust-
ness of the system.

The system consisting of parallel inference machines
{Multi-PSI and recently PIM) and earlier versions of PI-
MOS has been heavily used in research and development

an

of experimental parallel application software for about
three and a half years already, proving the feasibility
and practicality of implementing an operating system in
concurrent logic languages.

Acknowledgement

Many of researchers of ICOT and other related research
groups. Too numerous to be listed here, participated
in the design and implementation of the operating ays-
tem itself and development tools.. We would also like
to express our thanks to Dr. 3. Uchida, the manager
of the research center of ICOT, and Dr. K. Fuchi, the
director of the ICOT research center, for their valuable
suggestions and encouragement.

References

[Chikayama et of. 1988] T. Chikayama, H. Sato and
T. Mivazaki, Overview of the Parallel Inference Ma-
chine Operating System (PIMOS). In Proceedings
of the International Conference on Fifth Generation
Computer Systems, ICOT, Tokyo, 1988, pp.230-251.

[Foster 1988} I. Foster. Parlog as & Systems Program-
ming Language. Ph.). Thesis, Imperial College, Lon-
don, 1988,

[Goto ef al. 1988] A. Goto, M. Sato, K. Nakajims,
E. Taki and A. Matsumolo., Overview of the Farallel
Inference Machine Architecture (PIM). In Proceedings
of the International Conference on Fifth Generation
Computer Systems, 1007, Tokyo, 1988, pp.208-229,

[Nakajima ef al. 1985] K. Maksjima, Y. Inamura,
N. Ichiyoshi, K. Hokusawa and T. Chikayama.
Distributed Implementation of KL1 on the Multi-
PSI/V2. In Proceedings of the Sizth International
Conference on Logic Programming, 1980, pp.436-451.

[Shapiro and Takeuchi 1983] E. Shapiro and
A, Takeuchi. Object Oriented Programming in Con-
current Prolog. In Vew Generation Computing, Vol.1,
No.1(1983), pp.25-48.

[Shapirc 1984] E. Shapiro. Systems Programming in
Concuorrent Prolog. In Proceedings of the 1ith ACM
Symposium on Principles of Programming Languages,
1984,

|T&_ki 1992] K. Taki. Parallel inference machine PIM. In
FProceedings of the International Conference on Fifth
Generation Compuler Systems, [COT, Tokyo, 1992,

[Ueda 1986] K. Ueda. Guarded Horn Clauses: A Paral-
lel Logic Programming Language with the Concept of
a Guard. Technical Report TR-208, ICOT, 1986.

