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Abstract

This paper focuses on a parallel and distributed imple-
mentation method for 2 concurrent logic programming
language, I{L1, on a parallel inference machine, PIM.
The KLI1 language processor is systematically designed
and implemented. First, the language specification of
KL1 is deliberately analyzed and properly decomposed.
As a result, the language functions are categorized into
unification, inter-cluster processing, memory manage-
ment, goal scheduling, meta control facilities, and an
intermediate instruction set. Next, the algorithms and
program modules for realizing the decomposed require-
ments are developed by considering the features of PIM
architecture on which the algorithms work. The fea-
tures of PIM architecture include a loosely-coupled net-
work with messages possibly overtaken, and a cluster
structure, i.e. a shared-memory multiprocessor portion.
Lastly, the program modules are combined to construct
the language processor. For each implementation (ssue,
the design and implementation methods are discussed,
with proper assumptions given,

This paper concentrates on several implementation is-
sues that have been the subjects of intense ICOT re-
search since 1988,

1 Introduction

In the Fifth Generation Computer Systems Project,
ICOT has been, simultaneously, developing a large-scale
parallel machine PIM [Goto ef al. 1988] [Imai et al.
1991], designing a concurrent logic programming lan-
guage KL1 [Ueda and Chikayama 1990], and investigat-
ing the efficient parallel implementation of KLI on PIM
(ICOT 1st Res. Lab. 1991]. These subjects are closely
related and have been evolving together.

Kazuaki ROKUSAWA
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The KL1 language has several good features: a declar-
alive description, simple representation of synchroniza-
tion and communication, symbol manipulation, paral-
lelism control, and portability. Similarly, PIM architec-
ture, also, has a number of good features: high scalablity,
general purpose applicability, and efficient symbelic com-
puting.

When implementing KL1 on PIM, various difficulties
appear. However, the parallel and distributed imple-
mentation of KL1 must bridge the semantic gap be-
tween PIM and KL1 so that programmers can enjoy the
KL1 language as an interface for general-purpose con-
current /parallel processing [Taki 1992).

ICOT has implemented KL1 on MultiPSI (a
distributed-memory MIMD machine) and has been accu-
mulating experience in KL1 implementation [Nakajima
et al. 198%]. The implementation of KL1 on Multi-PSI
was & preliminary experiment for our implementation,

This paper primarily focuses on a parallel and dis-
tributed implementation method for the concurrent logic
programming language KLl on a parallel inference ma-
chine PIM. Section 2 gives readers some brief background
knowledge on PIM and KL1. Section 3 systematically
mvestigates the complex connections of what part of
the language specification is supported by what com-
penent(s) of the KL1 language processor. Among these
components, Seckion 4 focuses on and discusses several
key implementation issues: efficient parallel implementa-
tion within a shared-memory portion, inter-cluster pro-
cessing, a parallel copying garbage collsctor, meta con-
trol facilities, and a KL1 compiler, Section 5 cancludes
this paper.
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2 Overviews of PIM and KL1

2.1 PIM

Figure 1 shows the PIM architecture [Goto ef al. 1988]
[fmai et af. 1991). PIM architecture assumptions and
features are described below.

One of the features of PIM architecture is its hierar-
chy. Up to about ten processing elements {PEs) are in-
terconnecied by a single bus to form a structure called a
“cluster” in which main meEmory iz shared. Here., the
bus can be regarded as a local network. Many clus-
ters can be interconnected by a global network. Within
a clusier, inter-PE communication can be realized by
short-delay high-throughput data transfer via the bus
and the shared memory. Thus, PEs within a cluster share
their address spaces, and each PE has its own snooping
cache. The instruction set of a PE includes lockkread,
writekunleck, and unleck as basie memary operations.

Inter-cluster communication, though, may pass mes-
sages through some relay nodes and over long distances.
Thus, inter-cluster communication increases the time de-
lay and decreases the throughput. The address spaces of
distinct clusters are separated, of course. The network
delivers message packets to destinations while reading
their header and tailer information.

PIM architecture assumes the following property for
the inter-cluster loosely-coupled network. If PEs send
and/or other PEs receive message packets, the order of
packets does not obey the FIFO rule. Even in one-FPE-
to-one PE communication, the FIFOQ rule is not obeyed.
This assumption comes from the following hardware
characteristics of PIM architecture. The reasons for this
assumption are as follows. One is that there may be more
than one path between two clusters '. The other is that
when mere than one PE within a cluster simultanecusly
sends message packets, it i3 not determined that which
packet will be launched first into the network, In this
sense, in the loosely-coupled network of PIM, messages

'However, the routing of the PIM network iz not adaphive,
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Figure 2: KL1 Execution Image
are possibly overtaken in the networl.

2.2 KILi

KLl is a kernel language for the PIM based on the GHC
{(Guarded Horn Clauses) language [Ueda and Chikayama
1990]. Figure 2 shows our KL] execution image. A
clause of 2 KL program can be viewed as a rewrite rule,
which rewrites to the body goals a goal that succeeds
the guard unification and satisfies the condition (guard),
and has a form as follows:

1 : -.giui""'l‘gﬂ'l- | qj'l ""'Igﬂ'

gusrd part body pari

Where p, 9:, and g stand for predicates. This rewriting of
a goal is also called reduction. The execution model has
& goal pool which holds the goals to be rewritten. Goals
are regarded as lighiweight processes. Basically, guard
goals g1, ..., gm and body goals are reduced concurrently,
thue yielding parallelism.

Goal (process) communication is realized as follows.
Suppose that more than one goal shares a variable.
When a goal binds a value to the shared variable, a clause
for rewriting the other goal that shares the variable may
be determined. The value which is instantiated to the
shared variable controls the clause selection; this is the
cornmunication between KL1 goals.

Synchronization is realized as follows. When a goal is
going to defermine which dlause can be used for rewrit-
ing, and the variables included in the goal are uninstan-
tiated, the unification and the guard execution may be
deferred since there is not enough information for the
clause selection. The uninstantiated variables are sup-
posed to be shared and the other goal is expected to bind
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a value to the variable efterwards. Consequently, the sus-
pended goal reduction waits for variable binding for the
clanse selection. That is, variable instantiation realizes
data-flow synchronization. Actually, the KL1 language
processor must deal efficiently with frequent suspension
and resumption.

Even il more than one clause can be used for rewriting,
just one clause is selected indeterminately. A vertical bar
between the guard part and the body part ‘)", called a
commit operator, designates indeterminacy. Since it is
sufficient to hold 2 single environment for each variable,
efficient implementation is expected.

One of features of the KL language is the provision
of simple yet powerful meta control facilities as follows:
goal execulion control, computation resource manage-
ment, and exception handling. These are essential for
designing efficient parallel algorithms and enabling flex-
ible parallel programming, Usually, operating systems
perform meta-control on & process basis. However, the
KL1language aims at fine-grain parallelism, and the KL1
language processor reduces a large number of goals in
parallel. Therefore, it is inefficient and impossible for a
programmer or the runtime system * to control the ex-
ecution of each goal. Consequently, KL1 introduces the
concept of a shoen * [Chikayama et al. 1988]. A shoen
is regarded as a goal group or a task with meta-contrel
facilifies. An initial goal iz given a5 an argument to the
built-in predicate shoen; descendant goals belonging to
the sheen are controlled s a whole. Descendant goals
inherit the shoen of the parent goal. Shoens are possibly
nested as well; the structure connecting shoens is a tree,

Mereover, to realize sophisticated mapping of paral-
lel computation, priority and location specification are
introduced; that is, they can be used for programming
speculative computation and load balancing, If a pro-
grammer attaches an annotation te a body goal eg
popriority (N}, this tells the rontime system to execute
goal p at priority N. Moreover, a goal can have a loca-
tion specification e.g. plclustar (M); this designates the
runtime system to execute the goal p in the M th cluster,
These two specifications are called pragmas. These prag-
mas never change the correciness of 2 program although
they change the performance drastically.

3 Systematic Design of KL1
Language Processor

When implementing KL1 on PIM, various kinds of dif-
ficulties appear. Firstly, although the PIM architecture

*The software modules of the KL1 language processor executed
at run lime ae called s runtime system as a whole. For instance,
the runtime system may include an interpreter, firmware in mi-
erocode, and libraries. On the contrary, compilers, assemblers and
aptimizers are not included in a runtime system.

Shoen i5 pronouned, ‘shouw' ‘M.

adopts a hierarchical configuration, the KL1 implemen-
tation has to provide a uniform view of the machine
to programmers. Secondly, it is difficult to determine
to what extent a runtime sysiem should support the
functions of KL1 and which functions it should sup-
port within the specification of KL1. For instance, since
the KL1 language does not specify the goal-scheduling
strategy, a runlime system can employ any schedul-
ing algorithm. However, both the peneral-purpose and
the efficient algorithm are generally difficult to develop.
Thirdly, for efficient implementation, it is important to
employ algarithms which include fewer bottlenecks in
terms of parallel execution. Lastly, the KL1 language
processor is complex and of a large scale.

Therefore, it is a promising idea to be able to overcome
these difficulties by systematically designing a language
processor as follows. Firstly, the given language speci-
fication must be deliberately analyzed and properly de-
composed. Then, the algorithms and the program mod-
ules for realizing the decomposed requirements must be
developed -by considering the machine architecture on
which the algorithms work. Lastly, the designer must
construct the language processor by combining the pro-
gram modules. A geod combination of these modules will
yield an efficient implementation. We designed the KL1
language processor on a locsely-coupled shared-memory
multiprocessor system {PIM) by following these guide-
lines,

3.1 Requirements

At first, we summarize the required functions of the KL1
language processor into the four items in the leftmost
column of Table 1. These items are the result of analy-
815 and decomposition of the KL1 language specification,
The KL1 language processor may look like the kernel of
an operaling system.

Next, mechanisrns which satisfy these requirements are
divided inte those supported by a compiler and those
supported by a runtime system. Furthermore, mecha-
nisms by the ruatime system are divided into two levels
according to the machine configuration of PIM: shared-
memory level and distributed-memory level (the topmost
row of Table 1.

Some of the technologies used for KL1 implementation
on single-processor systems may be expanded to shared-
memory multiprocessor systems. That is because both
systems suppose a linear memory address space, How-
ever, it may not be straightforward to expand the single-
processor Lechnologies to distributed-memory multipro-
cessor systems in general. Of cource, that is mainly be-
cause distributed-memory systems provide a non-linear
memory address space. Thus, the techniques used for
distributed-memory systems are possibly quite different
from these for a single-processor system.

The contents of Table 1 show our solutions; that is,
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Table 1: Implementation Issues of this Paper

Compiler

Runtime System

hared-memory Level

5
B Unification Decomposition || Suspension and Hesumption

Distributed-memory Level
Message Protocol

Memory Management Reuse inst. Local GC Export and Import Tables
Weighted Export Count
Goal Scheduling TRO Automatic Load Balancing
Meta-contral
[ Execution Contral Termination Detection Foster-parent

Resource Management

Resource Caching

Weighted Throw Count

Fixception Handling

Message Protocol

what techniques are used for parallel and distributed
KLl implementation. Each item in the leftmost column
of the table is mentioned below.

3.1.1 Unification

Goals are distributed all over a system for load balancing
and may share data (variables and ground data) for com-
munication. Logical variables remain resident at their
original location. Consequently, not only intra-cluster
but also inter-cluster data-references appear. During
unification, goals have to read and write the shared data
consistently and independently from the timings and lo-
cations of goals and data. Thus, mechanisms for preserv-
ing data consistency are needed.

As described above, goals are rewritten in parallel
and, thus, variable instantiations occur independently
from each other. Suspension and resumption mecha-
nisms based on variable bindings control goal execution
and realize data-flow synchronization.

Hence, our KLl implementation must realize the
mechanisms for data consistency, synchronization, and
unification in a parallel and distributed environment.
Moreover, since a major portion of the CPU time is spent
for unification, the algorithm should be concerned with
efficiency.

4.1.2 Memory Management

Logical variables inherently have the single-assignment
property. The single assignment property is very useful
to programmers, but gives rise to heavy memory con-
sumption. Since the KL1 language does not backtrack,
KLl cannot perform memory reclamation during execu-
tion as Prolog does. Thus, an efficient memory manage-
ment mechanism is indispensable for the KL language
processor. The issues associated with memory manage-
ment are allocation, reclamation, working-set size, and
garbage collection. To achieve high efficiency, not only
must the algorithms and the data structure of the run-
time system be improved, but alse a compiler has to gen-
erate effective codes by predicting the dypamic behavior

of a user program as much as possible,

4.1.3 Goeal Scheduling

The KL1 language defines goal execution as concurrent.
Thus, the system is responsible for the exploitation of
actual parallelism. One implementation issue associated
with goal scheduling is determining which goal schedul-
ing strategies have high data locality, yet keep the num-
ber of idle PEs to a minimum,

Further, the KL1 language provides the concept of goal
priority; each KL1 goal has its own priority as explicitly
designated by a programmer. Then, goals with higher
priorities are likely to be reduced first. Goal prioritiza-
fiom in KL1 is weak in some respect. Under the goal
prionity restriction, it is crucial to achieve load balane-
ing.

3.1.4 Moeta Control Facilities

The goals of a shoen may actually be distributed over any
clusters, and, thus, goals may be reduced on any PE in
the system. Since the systemn operates in parallel, shoens
are loosely managed; it is simply guaranteed that each
operation will finish eventually. That is, it is impossible
to execute a command simultaneously to all the goals of
a shoen.

A shoen has two streams as arguments of the shoen
built-in predicate; one is for controlling shoen execu-
tion, and the other is for reporting the imformation
inside the shoen. A shoen communicates with out-
side KL1 processes through these two streams. Mes-
sages, such as start, stop, and add resource, enter
the control stream from the outside. Messages, such as
terminated, resource low, and exception return to
the report stream from the inside.

It is very difficult to evaluate the CPU time and mem-
ory space spent for computation when goals are dis-
tributed and executed in parallel. Therefore, the current
system regards the number of reductions as a measure
of the computing resources consumed within the shoen.



The exceptions reported from a shoen include illegal in-
put data, unification failure®, and perpetual suspension.
Some examples of shoen functions are shown belaw.

Stop message:  When a stop message is issued in
the control stream of a shoen, the system has to check
whether or not the goals to be reduced belong to the
shoen, and, if they do, the shoen changes its status to
stop as soon as possible. The stop message i5 propa-
gated to the nested descendant shoens,

Resource Observation:  The system always watches
the consumption of computation resources, that is, the
total number of times goals belonging to each shoen
are reduced over the entire system. If the amount
of consumption within a shoen is going to excesd the
imitial amount of supplied reseurces, the system stops
the reduction of shoen goals and, then, issues the
rescurce lovw message on the report stream, viz, a sup-
ply request for a new resource.

Exception Handling: When a programmer or the
system creates an exception during the reduction of a
goal in a shoen, the shoen responsible recognizes the
exception and converts the exception information to a
report stream message *. The exception of the KL1 lan-
guage is concerned with illegal arguments, arithmetic,
failure, perpetual suspension and debugging. An ex-
ception message on the repoct stream indicates which
goal caused what exception and where. Additionally, the
exception message includes variables for a continnation
given from the outside; the ofher proeess can designate a
substitute goal to be executed, instead of the goal cans-
ing the exception.

3.2 Overview of Implementation Tech-
niques

ICOT developed the Multi-PSI system in 1988 [Naka-
jima et al. 1989]. The KL] system is running on the
Multi-PSI. The architecture of PIM is very different from
that of Multi-P51in the following two points. Oneis that
PIM has a loosely-coupled netwerk with messages possi-
bly owertaken. The other is that PIM has cluster struc-
tures that are shared-memory multiprocessors. Due to
these features, PIM attains high performance, and, at
the same time, the complexity of the KL1 language pro-
cessor increases,

This section describes many of the implementation
techniques we have been developing for such an archi-

ANotice that the unification failure of 2 KL1 goal does not in-
Auence the culside of a shoen. In this sense, the reduction of &
KL1 goal never fails, unlike GHC.

*The mechanism for ereating and recognizing exceptions is sim-
ilar to catch-and-throw in LISP,

tecture. Among these techniques, the issues which this
paper focuses on are listed in Table 1.

3.2.1 TUnification

The synchronizetion and communication of KL1 are re-
alized by read/wrile operations to variables and sus-
pensicn/resumption of goal reduction during unification.
These operations are described below,

Passive Unification and Suspension:  Passive uni-
fication is unification issued in the guard part of KL1 pro-
grams. The ELI language does not allow instantiation of
varjables in its guard part. The guard part unification is
nenatomic. Since KL is a single-assignment language,
once a variable is instantiated, the value never changes.
This means that passive unification is simply the reading
and comparing of two values. From the implementational
point of view, basically only read operations to variables
are performed. Thus, oo mutual exclusion is needed in
the guard part.

If goal reduction during the gnard part is suspended,
the goal is hooked to variables. Here, we have an assump-
tion that almost all goals wait for a single variable to be
instantiated afterwards. Therefore, an optimization may
be taken into account; the operation for the goal sus-
pension is just to link the goal to the original variable.
If multiple uninstantiated variables suspend goal reduc-
tion, however, the goal is linked to the variables through
a special structure for multiple suspension. During pas-
sive unification, only these suspension operations modify
variables; the operations are realized by the compare &
swap primitive.

Active Unification and Resumption:  Active uni-
fication is unification issued in the body part of KL1 pra-
grams, The KL1 variables are allowed to be instantiated
only in the body part. When an instantiation of a shared
variable occurs, if goals are already hooked to the vari-
able, these goals have to be resumed as well as the value
assignment. When instantiating a variable, since other
PEs might be instantiating the variable simultaneousiy,
mutual exclusion is required. We also adopt compare &
swap as the mutual exclusion primitive.

When unifying two variables, one variable has to be
linked to ancther to make the two variables identical. At
this time, other PEs might be unifying the same two vari-
ables. Therefore, imprudent unification operation might
turn out to generate a loop structure and for dangling ref.
erences. To avoid these, the following linking rule should
be obeyed: the variable with the lowest address is linked
ko the one with the highest,

Section 4.1 describes the implementation of unification
in detail.



3.2.2 Inter-cluster Processing

In a KL multi-cluster system, more than cne PE in each
cluster reduces goals in parallel. If a goal reduction suc-
ceeds, there are two kinds of new goal destination: the
cluster that the parent goal belongs to and the other clus-
ter. If the other cluster is designated for load balancing,
the runtime system throws the new goals o the clusters.
If the arguments of & goal to be thrown are references
to variables and structures, the references across clusters
consequently appear, these are called ezternal references.
Here, suppose that a new goal with reference to data in
clusler A is thrown to eluster B. Then, original cluster 4
exports the reference to the data to cluster B, and foreign
cluster B imports the reference to the data from cluster
A. Exportation and imporfation are also implemented
by message sending, Multiple reference across clusters
inevitably occurs.

An external reference is straightforwardly represented
by using the pair <el, addr> where ¢l is the cluster num-
ber in which the exported data resides, and addr is the
memory address of the exported data. This representa-
tion of an external reference provides programmers with
& linear memory space.

However, this implementation causes a crucial prob-
lem; efficient local garbage collection is impossible. Here,
local means that garbage collection is performed locally
within a cluster. See Section 4.3 for more details on
garbage collection. Since our local garbage collector
adopts a stop and copy algerithm (Section 4.3), the lo-
cations of data move after garbage collection. At that
time, all of the new addresses of moved data should be
announced to all other clusters. Thus, straightforward
representation would make cluster-local garbage collec-
tion very inefficient.

Section 4.2 shows our solution to this problem and
discusses more detailed inter-cluster processing subjects.

3.2.2 Memory Management

As described in Section 3.1.2, the implementation of
memory management should pay close attention to al-
location, reclamation, working set size, and garbage col-
lection.

Allocation and Reclamation: A cluster has a set
of free lists for pages and supports any number of con-
tiguous pages ®. These are called global free lists. The
size of pages is uniform; supposedly the integral power
of two 7. A PE has a set of free lists for data objects,
the sizes of which are less than the page size. These are
called private free lists. Actual object size is rounded up
to the closest integral power of two; the private free lists

*Currently, there are 15 kinds of free lists for supported pages:
1 ~ 15 = and — mora,
"The size of & page is currently 256 words.

44|

just support the quantum sizes of 2", Moreover, abjects
contained in a page are uniform in size,

A PE allocates an object as follows. When a PE re-
quires an object which is smaller than a page, the PE
first tries to take an object from an appropriate private
free list. If a PE runs out of a private free list and fails to
take an object, then the PE tries to take a new page from
the global free lists. H it succeeds, the PE partitions the
page area into cbjects of the size the PE requires, re-
covers the starved free list and, then, uses an object.
Otherwise, if a PE cannot take a proper page area from
a global free list, the PE tries to extend the heap to alle-
cate anew page area on demand. When a PE requites an
object which is larger than a page, the PE tries to take
new contiguous pages from global free lists. Otherwise,
the PE tries to extend a heap to allocale new contiguous
pages as above.

When a PE reclaims a large or small object, it is linked
to the proper free list.

The features of this scheme are as follows:

# Since & PE has its own private free lists for small
objects, the access contention to global free lists and
the heap is alleviated.

* A PE usually just links garbage objects to and takes
new objects from appropriate free lists; it leads the
small rantime overhead for allocation and reclama-
tion &
Since every PE handles its private free lists using
push and pop operations (obeying the LIFO rule),
the working set size can be kept amall.
* Since the size of small objects is rounded up to the
nearest 2", the number of private free lists to be
managed decreases, and the deviation of private free
list lemgths can be alleviated to some extent. Ad-
ditionally, the fragmentation within a page is pre-
vented, though some objects might contain unused
areas,

Since this scheme does not join two contiguous ob-

jects, unlike the buddy system, its runtime overhead

of reclamation is kept small.

On the other hand, when the free list of some sige run
out, our KL1 language processor does not partition a
large object into smaller ones, but allocates a new page.
This is mainly because, due to too much partitioning, it
is likely that garbage collection will be invoked even if
only slightly large object is required. The other reasons
are as follows. In general, it is inefficient to incremen-
telly partition a small object into even smaller objects.
The overhead for searching an object to be partitioned
is needed. Also, in our KL1 language processor, a local
stop-and-copy garbage collector (described just below,
(2)) collects garbages and rearranges the heap area effi-
ciently.

44 meduls of PIM, PIM/p, has dedicated machine instructions
for bandling free lists, push and pop,
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Furthermore, a L1 compiler optimizes memory man-
agement by generaling codes not only for allocation and
reclamation but also to reuse data structures utilizing
the MRE scheme [Chikayama and Kimura 1987] (Sec-
tion 4.6.4).

Garbage Collection:  Our KL1 language processor
performs three kinds of garbage collections

{1} local real-time garbage collection using the MRE
scheme

(2} local stop-and-copy garbage collector

(2) real-time garbage collection of distributed data
structures across clusters.

Since (1) can reclaim almost any garbage object, (2) s
nesded, eventually. (1) has a very small overhead and
can defer the invocation of (2). Moreover, in & shared-
memory multiprocessor, it is important that (1) does not
destroy data on snooping caches and keeps the working
set size of an application program small [Nishida et al.
1990], unlike (2). Section 4.3 discusses the parallel copy-
ing garbage collector {2) in detail. Section 4.2.2 discusses
our method for reclairming data structures referred Lo by
external reference (3) in detail.

3.2.4 Goal Scheduling

The aim of goal scheduling is to finish the execution of
application programs earlier. It is impossible for a pro-
grammer to schedule all goals strictly during execution.
In particular, in the knowledge processing field, there are
many peograms in which the dynamic behavior is diffi-
cult to prediet. The optimum goal scheduling depends
on applications, and, thus, there are no general-purpose
goal scheduling algorithms. Hence, a programmer can-
not avoid leaving part of the goal scheduling to a run-
time system. Then, PEs within a cluster share their
address spaces, and the communication between them is
realized with a relatively low overhead. Optimistically
thinking, the performance will pay for the overhead of
the automated goal-scheduling within a cluster as the
number of PEs increases. However, when the automated
goal-scheduling for inter-cluster does not work well, the
penalty is even greater. Consequently, the KL1 language
processor adopts automated goal-scheduling performed
within a cluster and manual geal-scheduling among clus-
ters.

Furthermore, the runtime system should schedule
geals fairly by managing priorities. Section 4.4 discusses
the implementation of goal scheduling,

3.2.5

The meta control facilities of KLI are provided by a
shoen. The implementation model for & shoen on a dis-
tributed environment introduces a foster-parent to pre-
vent bottlenecks and to realize less communication. A

Meta Control Facilities

shoen
H -u.*'.'.t:.""'"-t.
AN AN 2N
|
@ @ © shoen
@@

cluster 0 cluster 1 cluster 2

shoen : shoen record G : goal

fp : foster-parent record

Figure 3: Relationship of Shoen and Foster-parents

foster-parent is a kind of proxy shoen or a branch of a
shoen; the foster-parents of a shoen are located on clus-
ters where the goals of the shoen are reduced.

A shoen and a foster-parent are realized by record
structures which store their details, such as status, re-
sources, and number of goals. Figure 3 shows the rela-
tionship between shoens, foster-parents and goals.

As in Figure 3, a shoen controls its goals and the de-
scendant shoens resident in a cluster throngh a foster-
parent of the cluster. A shoen directly manages its foster-
parents only. Then, a foster-parent manages the descen-
dant shoens and goals,

A shoen is created by the invocation of the shoen pred-
icate. At that time, a shoen record is allocated in the
cluster to which the PE executing the shoen predicate
belongs. Next, when a goal arrives at a cluster but the
foster-parent of its shoen does not yet exist, a foster-
parent is created for the goal execution automatically.
During execution, new goals and new descendant shoens
are repeatedly created and terminated. When all goals
and descendant shoens belonging to a foster-parent are
terminated, the foster-parent is terminated, too. Fur-
ther, when all foster-parents belonging to a shoen are
terminated, the shoen is terminated.

On comparing a shoen record and a foster-parent
record of our implementation with those of the Multi-
P51 system, ours must hold more information becauss
of the PIM network with messages possibly overtaken.
That is, in our KL1 system, the automatons to control a
shoen and a foster-parent require more transition states.

Consequently, in terms of implementing a shoen and
& foster-parent, we have to pay special attention to ef-
ficient protocols between a shoen and its foster-parents



which work on the loosely-coupled netwaork of PIM [mes-
sages are possibly overtaken in the PIM). Another point
requiring attention is that, since parallel accessing might
become a bottleneck, the system should be designed so
that such data do nof appear, i.e. less access contention.
Section 4.5 describes the parallel implementation of a
shoen and a foster-parent in more detail.

3.2.68 Intermediate Instruction Set

As described so far, the KL1 language processor is too
large and complex to be implemented directly in hard-
ware or firmware, To overcome this problem, we adopted
a method suggested by Prolog’s Warren Abstract Ma-
chine (WAM) [Warren 1983] where the functions of the
ELL language processor are performed via an interme-
diate language, KL1-B. The advantages of introduction
of an intermediate language inelude: code optimization,
ease of system design and modification, and high porta-
bilty.

The optimization achieved at the WAM level brings
about more benefits than the peep-hole optimization
since the intermediate instruction sequence reflects the
meanings of Lhe source Prolog program. Simalarly, the
optimization at the KL1-B level gains more than the
peep-hole optimization. Details on the optimization are
described in Sections 4.6.4 and 4.6.5,

If the specification of the KL1-B instruction set is
fixed, it is possible to independently develop a compiler
for compiling KL1 into KL1-B and & runtime system ex-
ecuting the KL1-B instructions. If a runtime system can
be designed so that it sbsorbs the differences in hard-
ware architecture, the machine-dependent parts of the
KL1 language processor are made clear, and portability
is improved.

3.2.7 Built-in Predicates

This section mentions the optimization technigues on
the irnplementation of the buili-in predicates merge and
set_vector.element. These techniques were originally
invented for the Multi-PST system. Our KL1 language
processor basically inherits the technigues.

mmerge:  The merger predicate merges more than one
stream into another. If is useful for representing inde-
terminacy; actually, the merge predicate is involed fre-
quently in practical KL1 programs, such as the PIMOS
operating system [Chikayama ef al. 1938). Although a
program for a stream merger can be weitten in KL1, the
delay is large. Thus, it is profitable to implement the
merger function with a constant delay by introducing
the merge built-in predicate.
Let us consider a part of a KL1 program:

cew pCXY, g(Y), merge(X,Y,2), ..
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When predicate pis to unify X and its output value, a
system merger is invoked automatically within the unifier
of X. The same thing happens as ¥ of q. See [Inamura et
al. 1988] for 2 more detailed discussion.

set_vector.element:  To write efficient algorithms
without disturbing the single-assignment property of log-
ical variables, the primitive can be used as follows in the
KLI language:

set_vector.element(Vect, Index, Elem,
NewElem, NewVect)

When an array Vect, its index value Index, and a new
element walue WewElem are given, this predicate binds
Elem to the value at the position of Index and NewVect
to & new arrey which is the same as Vect except that
the element at Index is substituted for NewElem. Using
the MRE scheme, our KL1 language processor detects
a situation that WewVect iz obbained in constant time.
That is, the situation is that the reference to Vect is
single, and, thus, destructive updating of the array is
allowed. See [Inamura ef al. 1988] for 2 more detailed
discussion.

4 Implementation Issues

This section focuses on several imporiant implementa-
tion issues which TCOT has been working on intensively
for the past four years.

OQur implementation mainly takea the following into
account:

= Smaller and shorter mulual ezelusion within o elus-
ler
If the locking operation is effective over a wide area
or for a long time, system performance is seriously
degraded due lo serialization. To avoid this, scat-
tered and distributed data structures are designed,
and only the eompare & swap operation is adopted
a5 a low-level primitive for light mutual exclusion ®.

= Less communieation; i.e., fewer messages
Since inter-cluster communication costs more than
imner-cluster eommunication, mechanism for elimi-
naling redundant messages are effective,

= Muin path optimized while enduring low efficiency
in rere cases
Since the efficiency of rare cases does not affect total
performance, the implementation for handling the
rare cases is simplified and low efficiency is endured.
This is important for reducing code size.

[mportant hardware restrictions to be taken into account
are:

*Higher-level saftware locks contain this primitive.
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~ Snooping caches within a cluster; date locality has o
great effect
It is important to keep the working set of each PE
size small. This leads to a reduction in the shared
bus traffic and incresse in the hit ratio of the tnoop-
ing caches.

- Messages ore possibly overtaken in the loosely-
coupled network of PIM
The number of shoen states and foster-parent states
to be maintained increases. The message protocol
between clusters should be carefully designed.

4.1 TUnification

The unification of variables shared by goals realizes syn-
chronization and communication among goals. Since
moze then one PE within a cluster performs unification
in parallel, mutual exclusion is required when writing a
value to a variable.,

Since unification is a basic operation of the KL1 sys-
Lem, efficiency greatly affects total performance, At first,
this section shows simple and efficient implementation
methods of unification. Next, since problems associated
with the loosely-coupled network of PIM occur, a dis-
tributed unification algorithm which works consistently
and efficiently on the network is presented.

4.1.1 Simplification Methods

There are two ways to simplify the unification algorithm
as foliows.

Structure Decomposition: A KL] compiler decom-
poses the unification of a clause head. For example, (2)
of the following program is decompesed to (b) at compile
time,

plLEOKIILI) i~ true | q(X), p(L). (a)
pla) - a = [YIL], ¥ = £(X) | q(X), p(L). ()

Thus, the compiler can generate more efficient KL1-B
code corresponding to (b).

Substitution for System Goals:  In rare cases, a
runtime system automatically substitutes part of the uni-
fication process with special KL1 goals. This can allevi-
ate the complexity of & unification algerithm; implemen-
tors need nol pay attention to mutual exclusion of the
part, For example, let us consider the following two rare
Cales,

s A compare & swap failure (another PE has modified
the value); If this happens, then the following K11
goal is automatically created and scheduled as if it
were defined by a user:

unify_retry(X,¥) :- true | X = Y,

The above X and ¥ are unified to variables one at
least of which has failed compare & swap during
unification.

® Active unification of two structures is invoked; All
elements of the two structures should be unified,
however, the operation is rather complex (the or-
dinal implementation uses stacks like Prolog). To
simplify the operation for rare cases, a special KL1
goal is ordinarily created and scheduled. For ex-
amples, if two active unification arguments are both
lists, the following goal is created.

list_ unifier([X11X2], [¥1(¥2]) :- true |
=71, 2 = Y2,

4,1.2 Distributed Implementation
Message Passing

Based on

The principle of the protocol for distributed unification
iz as follows. A read /write operation to an external refer-
ence cell (Section 4.2.1) basically causes a corresponding
request message to be launched to the network. However,
redundant messages are eliminated as much as possible.

Distributed Passive Unification:  Passive unifica-
tion hes two phases: reading and comparing. First, to
execute the read operation on an external reference cell
is to send a read message to the foreign exported data. If
the exported data has become a ground term (an instan-
tiated variable), an answer_value message returns, If
the exported data is still a variable, the request message
is hooked to the variable. If the data is an external ref-
erence cell, the read message is forwarded to the cluster
te which the cell refers.

Next, the answer value message arrives af the origi-
nal cluster. Then, the returned value is assigned to the
external reference cell, and the goal waiting for the reply
message is resumed. Ewventually, the goal reduction is
going fo compare the two values, Moreover, the import
table entey for the cell can be released.

The efficient implementation of inter-cluster message
passing itself is presented in Section 4.2.

Safe and Unsafe Attributes: I an argument of
active unification is an external reference cell, the ac-
tive unification has to realize the assignment in a remote
cluster. Sending a unify message to the exported date
assigns a value to the original exported data, However,
in general, the unification of two variables from distinet
clusters may generate a relerence loop across clusters. In
arder to avoid creating such reference loop, we introduce
the concept of safe/unsafe esternal references [Ichiyoshi
el al. 1988]. When there is active unification between
a variable and an external reference cell, and the exter-
nal reference cell is safe, it is possible that the variable



is bound to the external reference cell. If the external
reference eell is unsafe, a unify message is sent to the
exported data.

4.2 Inter-cluster processing
4.2.1 Export and Impaort Tables

Export Table: hs described in Section 3.2.2 |
straightforward implementation of an external reference
makes cluster-local garbage collection very inefficient.

In order to overcome this problem, each cluster in-
troduces an export fable to register all locations of data
which zre referenced from other clusters (Figure 4). That
is, exported data should be accessed indirectly via the
export lable. Thus, the external reference is represented
by the pair <el, eni>, called the external reference ID,
where enf is the entry number of the export table. As
the export table is located in the ares which is not mowed
by local garbage collection, the external reference ID is
not affected by local garbage collection. Changes in the
location of exported data modify only the contents of
export tahle entries.

Since exporled data is identified by its external ref-
erence 1D, distinct external reference IDs are regarded
as distinct data even if they are identical. To eliminate
redundant inter-cluster messages, exported data should
not have more than one external reference 1D, Thas, ev-
ery time a systern exports an external reference ID, the
system has to check whether or not the external reference
ID is already registered on the export table.

Import Table:  In ovder to decrease inter-cluster tral-
fie, the same exported data should be accessed as few
times as possible. Hence, each cluster maintains an fm-
port table to register all imported external reference IDs.
The same external references in a cluster are gathered
into the same internal references of an exiernal reference
eell (EX in Figure 4).

Then, exported data is accessed indirectly via the ex-
ternal reference cell, the import table, and the export
table.

The external reference cell is introduced so that it can
be regarded equally as a variable. Operations to a vari-
able are substituted for the operations to the external
reference cell.

Every time the system imports an external reference
ID, the system has to check whether or not the external
reference 1D is already registered in the import table,
Thus, the import table entry and the external reference
cell peint to each other.

4.2.2 Reclamation of Table Entries

As described above, the export table is located in the
arca which is not moved by local garbage collection.
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Export Table | Import Table
a
| } <e> — EX
exported ]
data
Cluster A Cluster B

Figure 4: Export and Import Tables

During local garbage collection, data referred to by
an export table entry should be regarded as active data,
because it is difficult to know whether or not the export
table enlry is referred to by other clusters immediately.
Therefore, without an efficient garbage collection scheme
for the expori table, many copies of non-zctive data
would survive, these reducing the effective heap space
and decreasing garbage collection performance.

One way of managing table entries efficiently is for
table entries to be reclaimed incrementally. Below, we
deseribe a method for reclaming table entries in detail,

Let us consider utilizing local garbage collection. Ex-
ecution of local garbage collection might release the ex-
ternal reference cells, This leads to the release of import
table entries and the issue of release messages to the
corresponding export table entries. When the export
table entry is no lenger accessed, the entry is released,
However, the reference count scheme cannot be used to
manage the export table entries. This 1= because the
increase and decrease messages for the reference coun-
ters of the export table entries are tramsferred through
a network, Then, the arrival order of the two messages
issued by the two distinct clusters is not determined in
the PIM global network. This destroys the consistency
of reference counters. Additionally, in the PIM network,
messages are possibly overtaken. Although the reference
count scheme has been improved and now requires the
acknowledgment of each increase and decrease message,
this will increase the network traffic.

A more efficient scheme, the weighted ezport count-
ing (WEC) scheme has been invented [lchiyoshi ef al
1988]. This is an extension of the weighted reference
counting scherme [Watson and Watson 1987) [Bevan 1989]
in the sense that the messages being transmitted in the
loosely-coupled network alse have weights, With the
WEQC scheme, every export table entry E holds the fol-
lowing invariant relation (Fignre 5):

Weight of B = 5

£ € referencds fa E

Weight of x

A weight is an integer. When a new export table entry is
allocated, the same weight is assigned to both the export
table entry and the external reference. When an import
table entry is released, its weight is returned to the cor-
responding export table entry by the release message.
The weight of the export table entry is decreased by the
returned weight. The export table entry is detected as



no longer being accessed when the weight of the entry
becomes zero. Then, the enlry is released from the ex-
port table. See [Ichiyoshi et al. 1988] for more details on
the operation of the WEC scheme.

Cluster A
[+
WEC = B0
Cluster C
Message\
WEC = 20 WEC = 100

Cluster B

!

WEC = 30

Figure 5: WEC Invariant Relation

It is important that the WEC scheme is not affected by
the order in which messages arrive, and there is no need
to give acknowledgment. Furthermore, the WEC schema
alleviates the cost of splitting external references.

4.2.8 Supply of Weighted Export Count

In terms of the WEC scheme, the problem of how to
manage WEC when the weight of the import table entry
cennot be split (when the weight reaches 1) remains.

In order to overcome this problem, we developed a
WEC supply mechanism which is an application of the
bind hock technique, The bind hook technique suspends
and resumes the L1 language (Section 2.2) [Goto ef al.
1988].

The WEC supply mechanizm works as shown in Figure
G and 7. The cwrrent situation is that the weight of an
import table entry in Cluster B reaches 1, and a goal
in Cluster B issues an access command to the data in
Cluster A. In this case, the message related to the access
command cannol be sent, because the weight to be put
on the message command cannot be got from the import
table entry.

In the WEC supply mechanism, the left WEC (the
weight is 1), first, is taken from the import table eatry,
and the import tahle entry iz reclaimed, After that, in
Cluster B, an export table entry for the external refer-
ence cell is allocated. This new external reference 1D is
supposed fo be the return address for the reply to the
following WEC supply request. At that time, the goal is
hooked to the external reference cell. Eventually, Clus-
ter B sends the RequestWEC message Lo request a new
weight to Cluster A. Of course, the weight taken from
the import table entry described above is returned to
the corresponding export table entry by this message.
Figure § shows the situation at that time.

When Cluster A receives the RequestWEC message,
Cluster A adds a weight, say W, to the corresponding
export fable entry and returns the SupplyWEC message
to Cluster B. The SupplyWEC message tells Cluster B to

add the weight Wto a new import table entry. In Cluster
B, the suspended geal is resumed when the new impaort
table entry is allocated. Then, the export table entry
for the return address is reclaimed. Figure 7 shows the
situation at that time.

Faxport Tabla

e RoquestREC | .. ..
] b el

Import Table

- - EX
exporfed [ | | feea- é
data d
5L,
s
Export Table
Cluster A Cluster B

Figure §: WEC Request Phase

Export Table Import Table

&

exported .
data \ @
resimed

goals
SupplyHEC Export Table

e

Cluster A Cluster B

Figure 7: WEC Supply Phase

This mechanism allows the originated goal to be
hooked and resumed inexpensively without additional
data structures,

The KL1 language processor on Multi-P5I copes with
this situation vsing indirect ezportadion and zere WEC
message [lchiyoshi ef al. 1988]. However, the zero WEC
message is a technique which is applicable to a FIFQ
network. As deseribed earlier, the PIM network does not
cbey the FIFO rule, so the zero WEC message cannot be
used in PIM. Therefore, PIM uses indirect exportation
and WEC supply mechanism.

4.2.4 Mutual Exclusion of Table Entries

In order to check whether or not an external reference
is already registered on the export table, a hash tahle
is used. When an export table entry is allocated, it is
registered in the hash table, When a cluster receives



a release message, & PE in the cluster decreases the
weight of the corresponding export table entry. If the
weight reaches zero, the export table entry is remnoverd
from Lhe hash table. Figure 8 shows the data structure
of the export table and its hash table. Its hash key is
the address of exported datum.

Sinee up to about ten PEs within a cluster share these
structures and access them in parallel, efficient mutual

exclusion should be realized.

Hash Tahble
Export Table
r(@ entry
u—;@_@mg"—f—
[ WEC_ __| [ entry
hash chain
L. daaptr |
| ___WEC___|
hash chain
L datapic
exported [___WEC___]
data hash chain

Figure &: Data Structures of Export Table

Here, let us consider how o realize efficient mutual
exclusion in the following two cases, which are typical
cases of release message processing,

Case 1: A PE decreases the weight of an export table
entry and the weight does not reach zero. In this
case, only an export table entry 1s directly accessed,
The export table entry should be locked, when ma-
nipulating its weight. The corresponding hash table
entry does not neesd to be locked, because the hash
chain does not change.

Case 2: A PE decreases the weight of export table en-
try and the weight reaches zero. In this case, the
export table entry is released from hash table entry.
Therefore, the export table entry should be locked
for the same reason as in Case 1. The hash table
entry should also be locked, when the export table
entry is released from the hash chain, because other
PEs may access the same hash chain simultaneously.

The problem is how to lock these structures efficiently.
Here, we implemented the following ihree metheds and
evaluated their efficiency.

Method 1:
table

Whenever 2 PE accesses the export table, the ex-
port table and the hash table are entirely locked. In

Locking entire hash table and export
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Figure 8, location (I is locked.

Since the implementation of this method is sim-
ple, the total execution time is short. Howewver,
this method oceupies a large locking region for a
leng time. Thus, access contention oceurs very fre-

quently.

Method 2: Locking one hash table entry

When a PE decreases the weight of an export table
entry, the corresponding hash table entry (& in Fig-
ure 8) is locked.

In this method, the data structure to be locked is
obviously smaller than in Method 1. Howewver, this
methed has an overhead for computing the hash
value of exported data even when the hash chain
is not modified.

Method 3: Locking one hash table entry and one
export table entry
When a PE decreases the weight of an export ta-
ble entry, the export table entry (@ in Figure 8)
is locked. If the weight becomes zero, the eorve-
sponding hash table entry (@ in Figure 8) is locked.
Then, the expert table entry is released from the
hash chain.
In this method, the locking of data structures is at
a2 minimum and the frequency of access contention
15 low. However, implementation of this methed is
eornplicated.

In the above tweo cases, the static execution steps of the
three methods are measured, using a parallel KL1 ermu-
lator on a Sequent Symmetry. Tables 2 and 3 show the
results. In the tables, Total represents the total execu-
tiom steps spent on receiving a release message. Lock-
ing region represents locking intervals, that is, how long
each strueture is locked.

Table 2: Locking Intervals(static stepsh Case 1

Total | Locking region
@
Method 1| 30 |23 |— -
Methed 2| 37 |— 23] —
Method3 | 32 |—| 0| 24

Table 3: Locking Intervals(static steps) Case 2

Total | Locking region

O[O & |
Methed 1| 61 |54 | —
Method 2 i1 — | 47 —

Methodd | 73 | —|32] 27

Before evaluation, we thought that Method 1 took
fewer steps than the other methods. However, there is
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,actually, no great difference in the total number of exe-
cubion steps. This is because the essential part of access-
ing the export table is complicated, and dominates the
steps. In Method 1, as the ratio of the locking region to
the total is relatively high, aceess contention to the hash
table is supposed by frequent. Hence, we do not adept
Method 1.

[Takagi and Nakase 1991] telis us that WEC is effec-
tively divided in actual programs. From this result, we
assume thab there are many release messages which
just decrease the weight of WEC. That is, Case 1 occurs
much more frequently than Case 2. Thus, we mostly
deal with Case 1. The total execution steps of Methods
2 and 3 (37 steps and 32 steps) are almost the same,
The locking intervals of Methods 2 and 3 (23 steps and
26 steps) are almoat the same. It is preferable that the
data structure to be locked is small. According to this
discussion, we adopt Method 3 as the mutual exclusion
method for the export table.

For the import table, a similar technique is used to
reclaim the import table entries,

4.3 Parallel Cupying Garbage Collec-
tor

Efficient. garbage collection (GC) methods are especially
crucial for the KL1 language processor on multiprocessor
systems. Since the KL1 execution dynamically consumes
data structures, GC is necessary for reclaiming storage
during computation. Moreover, GC should be executed
at each cluster independently since it is very expensive
to synchronize all elusters.

As we described briefly in Section 3, an incremental
GC method based on the MRB scheme was already pro-
posed and implemented on Multi-PSI [Inamura et al.
1988), however since it cannot reclaim all garbage ob-
jects, it is still important to implement an efficient (2
to supplement MER G,

We invented a new parallel execution scheme of stop
and copy garbage collector, based on Baker’s sequential
stop-and-copy algorithm|[Baker 1978] for shared memory
multiprocessors. The algorithm allocates two heaps al-
though only one heap is actively used during program
execution. When one heap is exhausted, all of its active
data objects are copied to the other heap during GC.
Thus, since Baker's algorithm accesses active objects this
algorithm is simple and efficient.

Innovative ideas in our algorithm are the methods
which reduce access contention and distribute work
among PEs during cooperative GC. Alse no inter-cluster
synchronization is needed since we use the export table
described in Section 4.2. A more detailed algorithm is
described in [Imai and Tick 1991).

4.3.1 Parallel Algorithm

Parallelization: There is potential parallelism inher-
ent in the copying and scanning actions.of Baker's algo-
rithm, i.e., accessing § and B. Here pointer S represents
the seanning point and B peints to the boflom of the new
heap. A naive method of exploiting this parallelism is to
allow multiple PEs to scan successive cells at S, and copy
them into B. Such a scheme is bottlenecked by the PEs
vying to atomically read and increment 5 by one cell and
atomically write B by many cells. Such a contention is
unacceptable.

Private Heap: One way to alleviate this bottleneck
11 to create multiple heaps corresponding to multiple
PEs. This is the structure used in both Concert Mul-
tilisp|Halstead 1985] and JAM Parlog[Crammond 1988]
garbage collectors. Consider a model where each PE{i) is
aliocated private sections of the new heap, managed with
private 5; and B; pointers. Copying from the old space
could proceed in parallel with each PE copying into its
private new sections. As long as the mark operation in
the old space is atomic, there will be no erroneous dupli-
cation of cells. Managing private heaps during copying,
however, presents some significant design problems:

* Allocating multiple heaps within the fixed space
causes ragmentation,

» It is difficult to distribute the work among the PEs
throughout the GC.

To efficiently allucate the heaps, each PE extends its
heap incrementally in chunks. A chunk is defined as a
unit of contiguous space, that i= a constant number of
HEU cells (HEU = Heap Extension Unit). We first con-
sider 2 simple model, wherein each PE operates on a
single heap, managed by  single peir of § and B point-
ers. The Bypyq; pointer is a state variable pointing to the
global bottom of the new allocated space shared by all
PEs. Allocation of new chunks is always performed at
Btotar-

Global Poeal for Discontiguous Areas: When a
chunk has been filled, the B pointer reaches the top of
the next chunk (possibly not its own!). At this point a
new chunk must be allocated to allow copying to con-
tinue. There are two cases where B overflows: either
it overflows from the same chunk as 5, or it overflows
from a discontiguous chunk. In beth cases, a new chunk
is allocated. In the former case, nothing mere needs to
be done becanse S points into B's previous chunk, per-
mitting its full scan. However, in the latter case, H's
previous chunk will be lost if it is separated from 5's by
extraneous chunks (of other PEs, for instance).

The problem of how to 'link’ the discontiguous areas,
to allow § to freely scan the heap, is solved in the fol-
lowing manner. In fact, the discontignous areas are not
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The shaded portions of the heap are owned by = PE({) which manages 5 and B, Other
portions are owned by any PE(f) where § # & The two chunks shaded as */° are refer-
enced by PE(i) via § and B. The other chunks belonging to PE(i), shaded as "\, are not
referenced. To avoid losing these chunks , they are registered in the global poal.

Figure %: Chunk Management in Simple Heap Maodel

linked at all. When a new chunk ie allocated, the H's
previous chunk is simply added to a global pool. This
pool holds chunks for load distribution, to balance the
garbage collection among the PEs. Unscanned chunks
in the pool are scanned by idle PEs which resume work
{see Figure 9).

Uniform Objects in Size:  We now extend the pre-
vious simple model nto a more sophisticated scheme
that reduces the fragmentation caused by dividing the
heap into chunks of uaiform size. Tmprudent packing of
objects which come in various sizes into chunks might
cause fragmentation, leaving useless area in the bottom
of chunks. To avoid this problem, each ohject is allo-
cated the closest quantum of 2™ cells {for integer n <
log(HEU)) that will contain it. Larger objects are allo-
cated the smallest multiple of HEU chunks that can con-
tain them. When copying objects, smaller than HET,
into the new he.ap. the {n"mﬁng rule 15 observed: "All
objects in & chink are always uniform in size™ If HEU
is an integral power of two, then no portion of any chunk
is wasted. When allocating heap space for objects of size
greater than one HEU, contiguous chunks are used.

In this refined model, chunks are categorized by the
size of the cbjects they contain. To effectively man-
age this added complexity, a PE manipulates multiple
(S, BY pairs (called {8y, B}, {52, Ba}, {84, By}, ..., and
{SHEU‘BH_EUH‘ Initially, each PE allocates multiple
chunks with 5; and B; set to the top of each chunk,

Referring back to Figure 9, recall that shaded chunks
of the heap are owned by PE(#) and non-shaded chunks
are owned by other PEs. The chunks shaded as /7,
in the extended model, contéin objects of some fixed
size k, and are managed with a pointer pair {5, B:}.
Chunks shaded as *\' are either directly referenced by
other pointer pairs of PE(Z) (if they hold objects of size
m s k), or are kept in the giobal pool.

Load Balancing: In the previous algorithm, it is a
difficult choice to select an optimal HET. As HEU in-
creases, Byya accesses become less frequent (which is
desirable, since contention is reduced); however, the av-
erage distance between 5 and B (in units of chunks) de-

creases, ‘This means that the chance of load balancing
decreases with increasing HEU,

One solution to this dilemma is to introduce an in-
dependent, constant size unit for load balancing, The
load distribution unit (LDNT) ia this predefined constant,
which is digtinet from HEU' and enables more fre-
quent load balancing during GC. In general, the op-
timized algorithm incorporates a new rule, wherein if
(B, — 5 = LDU), then the region between the two
pointers (i.e., the region to be scanned later) is pushed
onto the global pool.

4,3.2 Ewvaluation

The parallel GC algorithm was evaluated for a large set
of benchmark programs (from [Tick 1991] ete.) execut-
ing on a parallel KL1 emulator on 2 Sequent Symmetry.
Statistics in the tables where measured on eight PEs with
HEU=256 words and LDU=32 words, unless specified
otherwise. A more detailed evaluation is given in [Imai
and Tick 1991].

To evaluate load balancing during GO, we define the
workload of 2 PE and the speedup of a system as follows:

workload(PE) = number of cells copied +
number of cells scanned
5 workloads
speedup

maz{workload of PEs)

The workload value approximates the GO time, which
cannot be accurately measured because it is affected by
DVYNIX scheduling on Symmetry. Workload is measured
in units of cells referenced. Speedup is calculated with
the assumption that the PE with the mazimum work-
load determines the fotel GO time. Note that speedup
only represents how well load balancing is performed and
doss not take into account any extra overheads of load
balancing (which are tackled separately). We also define
the ideal speedup of a system:

ideal speedup =
min 5 workloads
max{workload for one object)

Y0%e assume that HEU = ELDU, for integer & > 0.

; #PES)
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AVE. Speedup

WL Size of LDT
Benchmark | =10007 32w | 64w | 198w | 256w | ideal
BestPath 185 7.15 | 7.06 6.46 636 2.00
Boyer 47| 567 | 5.83 | 438 | 412 | 800
Cube 138 v.74 | T.67 | 7.35 6.8 | 5.00
Life 01| 7.10 | 686 | 831 | 629 | 200
hiasteriind 4| 2.50 | 248 | 258 | 248 | 287
MaxFlow 95| 4.06 | 3.84 3.70 2.86 .00
Pascal 5| 267 | 201 345 2.77 7.25
Pentoming 3| 434 | 334 3.67 4.21 B.00
i Puzzle 17| 263 | 284 | 258 | 281 252
SemiGroup 496| T.75 | 728 | FA% | TO2 | 800
TP IT) 248 | 239 | 243 | 233 | 279
Turtles 203 .79 | 7.44 | T.20 T.22 .00
Waltz 32| 438 | 292 | 231 | 1.84 | 800
Zebra 167 6.27 | 6.k | 642 | 6.28 | BOD i

Table 4: Average Workload and Speedup (8 PEs,
HEU=256 words)

Ideal speedup is meant to be an approximate measure of
the fastest that n PEs can perform GC. Given a perfect
load distribution where 1/n of the sum of the workicads
is performed on each PE, the ideal speedup is n. There
is an obvious case when an ideal speedup of n cannoi be
achieved: when a single data object iz so large that its
workload is greater than 1/n of the sum of the workloads.
In this case, GO can complete only after the workload
for this object has completed, These intuitions are for-
mulated in the above definition.

Speedup:  Table 4 summarizes the average workload
and speedup metrics for the benchmarks. The table
shows that benchmarks with larger workloads display
higher speedups. This illustrates that the algorithm is
quite practical. It also shows that the smaller the LDU,
the higher the speedup obtained. This means there are
the more chances to distribute unscanned regions, as we
hypothesized.

In some benchmarks, such as MasterMind, Puzzle and
TP, ideal speedup is limited (2-3). This limitation is
due to an inability of PEs to cooperate in accessing &
simgle large structure. The biggest structure in each of
the benchmark programs is the program module. A pro-
gram module is actually a first-clags structure and there-
fore subject to garbage collection (necessary for a self-
coutained KLI system which includes a debugger and in-
cremental compiler). In practice, application programs
consisl of many modules, cpposed to the benchmarks
measured here, with enly a single module per program.
Thus the limitation of ideal speedup in MasterMind and
Puzzle is peculiar to these Loy PrOEEaTRS,

In benchmarks such as Pascal and Waltz, the achieved
speedup is significantly less than the ideal speedup.
These programs create many long, flat lists, When copy-
ing such lists, § and B are incremented at the same rate.
The proposed load distribution mechanism does not work

LDU {words)
Benchmark 32 64 | 128 256
BestPath 421.0 | 139.6 Bi4 | 45.8
Boyer 208.8 | 131.3 243 | 12.8
Cube 609.4 | 241.6 96.3 | 55.5
Life 1458 | 66.5 298| 14.8
MasterMind 3.9 1.5 1.1 1.0
MaxFlow 211.3 | 75.0 37.0 10.0
Pascal 1.6 1.0 1.0 1.0
Pentoming 134.3 | 653 21.0 7.5
Puzzle 51.6 | 30.6 10.5 4.9
SemiGroup 1,700.7 | 9108 | 439.3 | 29.6
TP 444 | 198 8.8 4.6
Turtles 1,427.0 | 640.0 | 314.0 | 136.0
Waltz 6.0 | 36.0 11.5 1.4
_Eel:-ra 21279 | 9202 | 467.7 | 2224

Table 5: Accesses of the Global Pool (8§ PEs, HEU=256
words)

well in these degenerate cases. Our method works best
for deeper structures, so that Bis incremented at a faster
rate than 5. In this case, ample work is uncovered and
added to the global pool for distribution.

Contention at the Global Heap Bottomn: We an-
alyzed the frequency with which the global heap-bottom
pointer, Byria, is updated (for allocation of new chunks).
This action is important because B y,u. is shared by all
the PEs, which must lock each other out of the critical
sections that manage the pointer. For instance, in Zebra
(given HEU = 256 words and LDU = 32 words), B,
is updated 3,885 times by GCs. If B.. were updated
whenever a single object was copied to the new heap, the
value would be updated 126,761 times. Thus, the update
frequency is reduced by over 32 tirnes compared to this
naive update scheme. In other benchmarks, the ratios of
the other programs range from 15 to 114,

Global-Pool Access Behavior:  Table 5 shows the
average number of global-pool accesses made by the
benchmarks, and the average number of cells referenced
(in thousands) by the benchmarks per global-pool ac-
cess. These statistics are shown with varying LDU sizes.
The data confirms that, except for Pascal and Master-
Mind, the smaller the LDU, the more chances these are
to distribute unscanned regions, as we hypothesized. The
amount of distribuiion overhead i at least two orders of
magnitude below the useful GC work, and in most cases,
af least thres orders of magnitude below.

As described above, to achieve efficient garbage col-
lection on a shared-memory multiprocessor system, load
distribution and the working set size should also be care-
fully considerad.



4.4 Goal Scheduling in a Cluster

An efficient goal scheduling algorithm within a cluster
must satisfy the following criteria:

1. no idle processing elements

2. high data locality

3. less access contention

4. no disturbance of busy processing elements

Moreover, since the KLL language has the concept of
goal priority (Section 3.1.3), goals with higher priorities
within a cluster are the targets of scheduling. Motice
that Lead is the amount of work to be performed by &
PE, cluster or system. Thus, load does not mean the
number of goals.

Mo Idle Processing Elements:  The aim of goal
scheduling iz to finish the execution of application pro-
grams earlier. Previous software simulation told us the
following [Sato and Gote 1988): '

o Tokeep all PEs busy is the most effective way of load
balancing since the goals of the KLl language are,
in general, fine-grained and have rich parallelism.

s Making the numbers of goals of each PE the same
during execution does not lead to good load balanc-

ing.

Here, an idle PE means cne that does not have any goals
to be reduced, or one that reduces goals with lower pri-
orities.

High Data Locality:  Since a cluster is viewed as a
shared-memory multiprocessor, it is important to keep
the data locality high to achieve high performance, This
means keeping the hit ratio of snooping caches high. In
‘our KLI runtime system, once argument data are allo-
cated to a meémory, the locations are not moved {only a
garbage collector can move them). Hence, it is desirable
that a goal that includes references to the argument data
is reduced by a PE in which the cache already contains
the data. Furthermore, in terms of KL1 goal reduction,
suspension and resumption during unification give rise
to expensive context switching. If context switching oc-
curs frequently, the hit ratio of snooping caches decreases
and, consequently, the Lotal performance is seriously de-
graded.

Less Access Contention: To schedule goals prop-
erly, each PE has to access shared resources in parallel.
For instance, there is a goal pool thal stores goals to
be reduced and prierity information that must be ex-
changed among PEs. Since expensive mutual exclusion
is required when PEs within a cluster access these shared
resources, access conflicts should be decreased as much

as possible.
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Mo Disturbance of Busy Processing Elements:
From the load balancing point of view, it is better to have
as many idle PEs as possible involved in work associated
with goal echeduling, Moreover, when an idle PE tries
to find a new goal, 1t is desirable that the idle PE should
neither interrupt nor disturb the execution of busy PEs.

Consequently, well-distributed data structures and al-
gorithms shounld be designed so that these criteria are
satisfied as much as possible.

4.4.1 Goal Pool

Let us consider two ways of implementing a goal pool:
centraliged implementation and distributed implementa-
tion., That is, one quene in & cluster or one queue for
every PE. If centralized implementation is used, prior-
ity is strictly managed. However, every time a goal is
picked up and new goals are stored, the access contention
may occur. Thus, our KL1 implementation adopts the
distributed implementation method. It turns out that
transmission of goals between PEs for load balancing is
required and priocity is loosely managed. On the con-
trary, however, distributed quene management is neces-
sarily loose for priority.

The distributed goal gueues are managed using a
depth-first rule to keep the data locality high. Under
depth-first (LIF(0) management, it is presumed that the
same PE will often write and read the same data and that
the number of suspensions and resumptions invoked will
be less. Therefore, the cache hit ratic increases,

Further, when a PE resumes goal unification, the PE
sends the goal to the qusus of the PE which suspended
the goal previously. This also contributes to keeping the
data locality high.

As described above, since goals are accompanied with
pricrities, in our KL1 implementation, a PE has its own
goal quenes for each priority. Figure 10 shows the goal
quenes with priorities.

high

'%g@@)@
] ©e0e0
Tow priority-wise stacks

Figure 10: Goal Queue with Priorities

4.4.2 Transmission of Goals

As soon as a PE becomes or may become idle, it must
take a new goal with higher priority from the quene of
a PE with a small overhead to avoid going into an idle
state. An idle PE triggers the transmission of a new goal.



452

Here, two design decizions are needed. One decision is
deciding whether the PE that transmits a new goal with

high prierity is a request sender (idle PE) or a request -

receiver (busy PE). Another decision is deciding whether
& new goal is to be picked from the top of a queue or the
end. If an idle PE has the initiative, access confention
may occur in the queue of a bugy PE. If a busy PE has
the initiative, the CPT time of the busy PE must be con-
sumed. If a new goal is picked frem the top of a queue,
it may destroy the data locality of the busy PE’s cache.
If a new goal is at the end, it will often happen that the
goal reduction of an idle PE is immediately suspended;
the potential load of the goal may be small under LIFD
management. Thus, this method may frequentiy trigger
Lransmissicn.

The current implementation uses dedicated PIM hard-
ware which broadcasts requests to all PEs within a clus-
ter, in order to issue a request for a new goal to the other
PEs. Each busy PE executes an event handler onee a re-
duction and the event handler may catch the request,
Then, the busy PE which catches the request first picks
up the goal with the highest priority from the tap of its
goal quene. Our implementation should be evaluated for
COMPArison.

4.4.8 Priority Balancing

A PE always reduces goals which belong to its local
queue and have the highest priority. There are two prob-
lems; one is how to detect the priority imbalance, and
the other is how to correct the imbalance by cooperating
with the other PEs. Qur priority balancing scheme was
designed so that fewer shared resources are required and
busy PEs do less work concerned with priority balanc-
ing (Figure 11). Our scheme requires only one shared

pPriority
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. Time
integral
A
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Ii
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. \[ Time
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Figure 11: Priority Balancing Scheme

variable F, to record an average priority, and the same

number of variables I} ~ I, as the number of PEs to
record a current integral value for each PE. A current
priority of each PE is represented by F.. There are twa
constants, maz (> 0) and min (< 0). Every PE will
always calculate the integral I; of P, — P, along time.
When [; > maz, the PE(i) adjusts P, to the current 7
and resets I; to zero. When I; < min, the PE({) issues
a goal request, adjusts F; to the priority of a transmit-
fed goal, and resets 4; to zero. The mechanism of the
goal transmission described above is used as well, sinee
the goal with the highest PE priority is picked up. More
details on this algerithm are described in [Nakagawa et
al. 1984],

The features of this scheme are as follows. The cal-
culation of the integral reduces the frequency of shared
resource F, updating and busy PEs do some work only
when I > maz. _

The disadvantages are as follows. It may happen that
the priority of a transmitted goal is even lower, that P,
decreases unreasonably, and that the frequency of the
high-priority goal transmission decreases. Our priority
balancing scheme utilizes the goal transmission mecha-
nism (Section 4.4.2), which does not always transfer the
goal with the most appropriate priority. Accordingly, a
Ioad imbalance may be sustained for a while. How well
this method works depends on the priority of the goals
transmitted upon requests. In other words, there is a
tradeofl between loose priority management and the fre-
quency of high-pricrity goal transmission. Further, in
this scheme, a busy PE (a PE satisfying I; > maz) has
to write its current priority P to the shared variable F,,
This may cause access conflict and disturb the busy PE.

A new scheme which we will design should overcome
these problems. However, we think that calculation of
the integral along time is essential even in new schemes.

4.5 Meta Control Facilities

When designing the implementation for a shoen, we as-
sume that the following dynamic behavior applies in the
KLl system:

* Shoen statuses change infrequently.

¢ Shoen operations are not executed immediately but
within a finite time.

* Messages transferred are possibly overtaken in the
inter-cluster network,

Under these assumptions, our implementation must sat-
isfy the following requirements:

¢ The less inter-cluster messages the better.

» No bottleneck appears; algorithms and protocols
that do not frequently access shoen records amd
foster-parent records are desirable.

* The processing associated with meta control should
not degrade the performance of reduction.



Many techniques realizing & shoen have been devel-
oped to achieve high efficiency. This section concentrates
on execution control and resource management.

From now on, stream messages on the contral and
report streams for communication to the sutside are
represented in a typewriter typeface, such as start,
add_resource, and ask_statistics.

4.5.1 Execution Control

This section describes schemes for implementing the
functions for execution control. Schemes (1) ~ (2] are ef-
fective in & shared-memory environment {intra-cluster).
Schemes (3) ~ (5) are effective in a distributed-memory
environment [inter-cluster).

(1) Change of Foster-parent Status: Since goal
reduction cannot be started when the status of foster-
parent which the goal belongs to 1z not staried, mpru-
dent implementation needs to check the status of a foster-
parent before every goal reduction. To aveid such fre
gquent checking, a status change of the foster-parent is
notified by the interruption mechanism. When a cluster
receives a message that changes a foster-parent’s status
Lo non-executable, an interruption is issued to every PE
in the cluster. When a PE eatches the imterruption, the
PE checks to see if the current goal belongs to the tar-
get foster-parent. If so, then the foster-parent is to be
stopped and the PE suspends execution of the current
goal and starts to reduce the goal of the other active
foster-parent, Otherwise, the PE continues the reduec-
tion. Since the newly scheduled goal is supposed to be-
lonig to the other foster-parent, the context of the goal
reduction ' must be switched, toa.

The assumption that the status of » foster-parent is
switched infrequently implies that interruptions happen
rarely. Thus, an advantage of the scheme is that the or-
dinary reduction process rarely suffers from foster-parent
checking.

(2) Foster-parent Termination Detection: To
detect the termination of a foster-parent efficiently, a
counter called childeount is introduced. The childeount
represents the sum of both the number of goals and
the number of shoens which belong to the foster-parent.
When the childecount of a foster-parent reaches zero, all
goals of the foster-parent are finished.

The childeount area is allocated n a foster-parent
record, and all PEz in a cluster must access the area.
Since thie counter must be updated whenever a goal
is created or terminated, frequent exclusive updating of
this counter might become a bottleneck. To reduce such
an access contention, the cache area of the childeount
is allocated on each PE. The operations go as follows.
At first, a counter is allocated on the childcount cache

114 childeount cache and a resource cache.
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of each PE, initialized with a value zero. Every time a
new goal is spawn, the counter is incremented, and the
counter is decremented upon the end of goal reduction.
When the reduction of a2 new goal whose foster-parent
differs from the previous one begins, the current foster-
perent should be switched. That is, the value of the
counter on the childeount cache is brought baeck to the
previous foster-parent record, and the counter is reini-
tialized. The foster-parent terminates when it detects
that the counter on the foster-parent record is zero.

This scheme is expected to work efficiently if fostes-
parents are not changed offen.

{3) Point-to-point Message Protocol:  Basi-
cally, message protocols based cn point-to-point com-
munication betwesn a shoen and a foster-parent are net
designed on the basiz of broadcasting [Rokusawa et al,
1988]. If almost all clusters always contain foster-parents
of a shoen, protocols based on broadcast are taken into
account. Hewever, the current implemetation does not
assume this, although it depends cn applications. There-
fore, it is inefficient to broadcast messages to all clusters
in the system every time. Then, a shoen provides a table
that indicates whether or not its foster-parent exists in a
cluster corresponding to the table position. The table ig
maintained by receiving foster-parent creation and ter-
mination messages from the other clusters. Accordingly,
a shoen can send messages only to the clusters where its
foster-parents reside,

(4) Lazy Management of Foster-parent: A
shoen controls its foster-parents by exchanging messages,
such as start/stop messages. However, these messages
may overtake, and, thus, a foster-parent may go into the
incorrect states. For the statz to be correct and to mini-
mize the maintenance cost, received start/stop messages
are managed by a counter. If a start message arrives, the
foster-parent increments the counter. If a stop message
arrives, the foster-parent decrements the counter. Then,
when the counter value crosses zero, the foster-parent
changes the execution status properly.

(6) Shoen Termination Detection: To detect
the termination of a shoen efficiently, a Weighted Throw
Count (WTC) scheme was introduced [Rokusawa ei al.
1988] [Rokusawa and Ichiyoshi 1992). This scheme is also
an application of the weighted reference count scheme
[Watson and Watson 1987|[Bevan 1989]. Logically, a
sheen is terminated when there are no foster-parents.
However, this is not correct enough to maintain the num-
ber of foster-parents, since goals thrown by a foster-
parent may be transferred in the network. Thus, a
foster-parent lets both all goals to be thrown and all
messages between a shoen and foster-parents to have a
portion of the foster-parent’s weight. On terminating
a foster-parent, all foster-parent weights are refurned to



454

the shoen, If the foster-parent terminated at message ar-
rival, the meszages from the shoen are also sent back to
the shoen to kesp its weight. Then, when all weights are
returned to the shoen, the shoen terminates itself. An
advantage of this scheme is that it is free from sending
acknowledgement messages.

Thus, since a shoen must not continue to lock shared
resources in this scheme until an acknowledgement re-
turns, the scheme can reduce not only the netwerk traffic
but can also alleviate mutual exclusion.

4.5.2 Resource Management

As described abowve, a shoen is also used as a unit for
resource management. In the KL1 language, the redue-
tion time is regarded as the computation resouree, The
shoen consumes the supplied resources while shifting the
resources. Mareover, since & shoen works in parallel, lazy
resource menagement is inevitable, like in the shoen ex-
ecution control {Section 4.5.1).

A shoen has a limited amount of resources which it
can consume. Upon exceeding the limit, goals in the
shoen cannot be reduced. When a runtime system de-
Lects that the total amount of consumed resources so far
is approaching the limit, a resource_low message is an-
tomatically issued on the shoen's report stream. The
shoen stops its execution with ite resources exhausted.
Oun the other hand, the add_resource message on the
control stream raises the limit and the shoen can utilize
the resource up to the new limit. Furthermore, a shoen
which accepis the ask.statistics message reports the
current resources consumed so far,

This section describes our resource management im-
plementation schemes.

(1) Distributed Management: The scheme is
Lriefly described below. Figure 12 shows the resource
flow between a shoen and its foster-parents.

A shoen has a limit value, which indicates that the
shoen can consume resources up to the limit, Initially,
the resource limit is zero. Only the add_resource mes-
sage can raise the limit. When a shoen receives the
add_resource message, the shoen requests new resources
to the above foster-perent by a value within the limit
value designated by the add resource message. Here,
we also call this foster-parent the parent foster-parent.
Notice that a shoen and its parent {oster-perent reside
in the same cluster, and, thus, the operation for the re-
source request is implemented by read and write opera-
tions on a shared memory,

After a shoen has got new resources from its par-
ent foster-parent, the shoen further supplies resources
to its foster-parents which requested resources by the
supply resource message across clusters. Moreover the
supplied resources may be supplied to the descendant
shoens and foster-parents. Then, those foster-parents

shoen shoen =—7 add_resource
é hlllmrﬁit!r ——=1) resource_low
i
£| supply/ + N supply/retum
iy refu PpLYiTe

fp : foster-parent G : Goal

Figure 12: Resource Flow Between a Shoen and its
Faster-parents

consume the supplied resources. The shoen has a buffer
for the resources; the excessive resources returned from
terminated foster-parents are stored in the shoen buffer.
When the remaining resources of a foster-parent are go-
ing to run out, a resource request message is sent to the
above shoen. If the shoen cannot afford to supply the
requested resources, the shoen issues the resource_low
message on its report stream. Otherwise, if the shoen
can afford and has sufficient resources in the buffer, the
resources are supplied to the foster-parent immediately.
If there are insufficient resources, the shoen requests new
resources within the current limit value from ite parent
foster-parent. As described here, the resource buffer of
a shoen can prevent the message from being issued more
frequently than necessary.

If the resources of the foster-parent are exhausted, goal
reduction stops. Then, the scheduled goals are hooked
on to the foster-parent record, in preparation for re-
scheduling when new resources are supplied from the
shoen, :

Furthermore, each PE has a resource cache area for the
foster-parent, and, hence, a counter ia actually decre-
mented every time a goal is reduced. This mechanism
is similar to the childcount mechanism (Section 4.5.1).
However, when the foster-parent of a goal to be reduced
alters, the caches on PEs must be brought back to the
foster-parent record,

(2) Resource Statistics:  While the system en-
joys lazy resource management, it gets harder to collect
respurce information over the entire systemn. A shoen re-
ceives the ask_statistics message, which repcrts the
current total consumed resources.



The scheme used to collect the information iz de-
scribed. A shoen issues inquiry messages to each foster-
parent. When an inquiry message arrives al a foster-
parent, the foster-parent informs each FE of thiz using
the interruption mechanism. This portion is similar to
the mechanism of Section 4.5.1 (1), The PE= which catch
the interruption check if the current goals belong to the
target foster-parent. If so, the PE puts the resource on
the cache baelk to the foster-parent record. When all
corresponding PEs have been put bacl, the subtotal re-
source on the foster-parent appears. If not, the PEs do
nothing and reduction continues. Then, the foster-parent
reports the sublotal to the shoen and re-distributes some
resources back to the PEs. As a result, the PEs resume
goal reduction.

We assume that the ask_statistics message isissued
infrequenly. This scheme worls well.

(3) Point-to-point Resource Delivery: The
destination of new resources when a shoen receives re-
source request messages from its foster-parents iz a de-
sign decision. It must be decided whether the shoen
delivers the new resources only to the foster-parents
which have requested them, or delivers them to all fostec
parents. A protocol based on broadcast may be prefer-
able when the foster-parents in nearly all clusters always
possess the same amount of resources and consutne them
at the same speed. The current method is similar to one
in Section 4.5.1 (3).

Our assumptions we based on an experience of the
Muti-P5I system. Goal scheduling within a cluster, how-
ever, differs and there is no guarantee that every cluster
has the foster-parent of the shoen. Therefore, in the
current implementation method the shoen sends the re-
source supply message just to the clusters which have
sent resource request messages.

4.6 Intermediate Instruction Set

The KL1 compiler for PIM has two phases. The fiest
phase compiles a KL1 program into an intermediate in-
struction code; the instruction set is called KL1-B, The
second phase translates the intermediate code into a na-
tive code. KL1-B is designed for an abstract KL1 ma-
chine [Kimura and Chikayama 1987, interfacing between
the KL1 language and PIM hardware, just as in Warren
Abstract Machine [Warren 1983) of Prolog.

KL1-B for PIM is extended from KL1-B for Multi-P51
to efficiently exploit the PIM hardware.

4.6.1 Abstract KL1 machine

The abstract KLT machine is simple virtual hardware to
describe a K11 execution mechanism. It has a single PT
with a heap memory and basically expresses the inside
execution of a PE. However, every KL1-B instruction
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implicitly supports multi-PE processing, Further, some
KL1-B instructions are added for inter-cluster process-
ing.

A goal is represented by a goaf record on a heap, The
goal record consists of arguments and an execution en-
vironment which includes the number of arguments and
the address of the predicate code. A ready goal is man-
aged in the ready goal pool which has entries for each pri-
ority. Each entry indicates a linked stack of goal records.
Suspended goals are hooked on the responsible variable.

Fach data word consists of a value part, a type part
and a MRB part [Chikayama and Kimura 1987). An
MRB part is valid, if the value part is a pointer, and indi-
cates whether its object is single-referenced or multiple-
referenced. Tt is used for ineremental garbage collection
and destructive structure updating.

4.6.2 Owverview of KL1-B

The intermediate instruction set KL1-B was designed ac-
carding to the fellowing principles:

» Memory based scheme — goal arguments are basi-
cally kept on a goal record at the beginming of 2
reduction, and each of them is read onto a register
explicitly just before it is demanded. Thus, almost
all registers are used temporerily {Section 4.6.3).

o Optimization using the MRB scheme — some in-
structions io reuse structures are supported to alle-
viate execution cost (Section 4.6.4),

» Clause indexing — the compiler collects the clanses
which test the same variables, and compiles them
into an instruction module, Then, all guard parts
of a predicate are compiled as one into the code
with branch instructions forming a tree structure
(Section 4.6.5).

s Each body is compiled into 2 sequence of instruc-
tions which run straight ahead without branching.

The basic KL1-B instruction set is shown in Table 6.

4.6.3 Memory Based Scheme

The Multi-PSI system executes a KL1 program using
the register based scheme — all arguments of the corrent
goal are loaded onto argument registers before reduction
begins, just as WAM does for Prolog.

Here, let us compare the following two methods in
terms of the argument manipulation cost:

* In the memory based scheme, the arguments referred
to in the reduction are loaded and the modified ar-
gumentis are stored at every reduction. There is no
cost for goal switching.

o In the regisier based scheme, all arguments of the
swapped out goal are stored and all argurnents of the
swapped in goal are loaded at every goal switching.
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Table G6: Basic KL1-B Instruction Set

KLI-B Instruction

Specification

For passive unification:

load_wait Rgp, Pos, Rx, Laus Bead a goal argument onto Rx and check binding.
read_wait Rap. Pos, Rx, Lsus Read a structure element onto Rx and check binding,
is_atom/integerflist/... B, Liail Test data type of fx.
test_atom/intager R, Canst, L fail Test datz value of R
squal Rt Ry, Lsus, L fail General wnification.
suspend Lpred, Arily Suspend the current goal
For arqumment/element preparation:
lead Pgp,Pos, Rx Read a goal argument onlo Ry,
rend Rsp, Pos, Rx Read a structure element onto R,
put_atomyintager Const, Ry Put the atomic constant onto Rx.
alloc_variable Fix Allocate a new variable and put the pointer onto Rx.
alloe_listfuectar [Arity,)Rx Alloeate a new list/vector structure and put the pointer onto Rx.
write Fix, Rap, Pos Write fx onto a stracture element.
For ineremental garbage colleclion:
mark Rx Mark MRB of Rx.
coflect_value R Collect the structure recursively unless its MEB is marked.
collect.fist/veclor [ Arity. }Fx Collect the list structure unless its MRB is marked.
rewselist/vector { Arity, ) R cellect_listvectar + allec_list/vector,
For active unification:
unify_atom/finteger Cansh, B Unify Hx with the atomic constant.
unify_bound_valve Rsp, Rx Unify Ex with the newly allocated strocture,
unify fx, Ry General unification.
For goal manipulation and eveni handling:
cellect goal Arity. Rgp Reclaim the goal record.
alloc_goal Arity. Rgp Allocate & new goal record,
store R« Rgp. Pos Write Ax onto a goal argument.
get_code CodeSpec, Reads Gel the code address of the predicate onto Reods.
push_goal Rgp, Reods, Arity Push the goal to the current priecity entry of ready goal pool.

push_goal_with.priority  Rgp Reods, Rprio, Arity

throw. goal Regp, Rooda, Rels, Arity
exacule Reads, Arity
procesd

Push the goal to the specified priodty entey of ready goal pool
Throw the goal to the specified cluster.

Handle the event if it occurrs and execute the goal repeatedly.
Handle the event if it occurrs and take a new goal from ready

goal pool to start the new reduction.

Some arguments may be moved belween registers at
every reduction.

Therefore, the memory bused scheme is better than the

register based scheme when

o Goal switching oceurs frequently.
# A goal has many arguments.

o A poal does not refer to many arguments in a reduc-
tion.

Actually, these cases are expected to be seen often in
lasrge KL1 programs. Thus, we have to venly the memory
based scheme with many practical L1 applications.
Additionally, the number of goal argnments is limited
to the number of argument registers == 32 in the case of
Multi-PSI. This limitation is too tight and is not favor-
able to KL1 programmers. The memery bosed scheme
can alleviate this limitation to some extent. On the

other hand, the naive memory based scheme necessar-
ily writes back all arguments to the goal record, even if
tail recursion is employed. Since this is very wasteful, an
optimization to keep frequently referenced arguments on

registers is mandatory during tail recursion,

4.6.4 Optimization

Two optimization techniques are introduced: tail recur-
sive optimization and the reuse of data structures. We
can describe theze using the following sample codes.

# source code:
app({H|L), T, X) - true | X=[H|Y], app(L,T,Y).
app({] ,T,X) =~ true | X=T.

» intermediate code:

apmntry:

CGFP, 0, R1 % Load up



load CGP 2, R2 % arguments
app_loop: _
wait R1, sus_or_fail
is_iist R1, next
commit
+* read R1, car, R3 mH
read Rl cdr, R4 %L
reuse_fist Rl
+ write R3, K1, car % H
alloc_variable RS %Y
write R5, R1, edr
vaify_bound_value R1, RZ2
mowve R4, R1
mowe Rs, R2
execute_tro app_foup
next:
is.atom R1, sus_.or_fail
test_atom 0. R1
cewmirmrl
load LGP, 1, R3 % T
unify R3, R2
eallect_geal 3, CGP
procee
sus_or_fail:
stare R1, CGP. O % Write back
store R2, CGP, 2 % arguments
suspend app_entry, 3

Tail Recursive Optimization: Some instructions
are added for this optimization. Wait tests if an argu-
ment on a register is instantiated. Move prepares ar-
guments for the next reduction. Execute_tro executes 2
goal while some arguments are kept on registers,

In the above source code, the first and third arguments
of the first clause are used in tail recursion. These ar-
guments are loaded at the beginning of the reduction by
the Joad instructions which are placed before the tail re-
cursive loop. There is no need to write them into the
goal record during tall recursion. However, they must
be written back to the goal record explicitly before, say,
switching the goel caused by the suspend instruction.
Since the second argument ia not used in tail recursion,
it is kept on the goal record until it is referred to in the
second clause.

In this example, two write instructions and two read
mstructions are replaced with two move instructions.
Thus, by assuming a cache hit ratio of 100 %, this opti-
mization can save two steps on each recursion loop.

Reuse of Data Structures:  KL1-B for PIM sup-
ports the reuse of data structures. The reuse_list and
reyse_yector instructions realize this. These instructions
reuse an area in a heap on which the structure unified
in & guard part was allocated, but, only if the MRE of
the reference to the area is not marked. However, the
area for the element data of the reused structure is not
rensed.

In KL1 applications, it often happens that the areas
of reclaimed structures can be reused for successive allo-
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cafion. This is frequent in programs for list processing
and programs written in message driven programming.
In the sample codes in Section 4.6.3, element H of the
passive-unified list [HIL] is used as element 1 of the new
list [H|Y], and iz read and written by the instructions
marked with stars {"+"). However, if the MRB of the
passive-unified list is not marked, element H can actu-
ally be used in the new list as is, and, therefore, read
end write instructions can be eliminated.

Therefore, the following new optimized instructions
ere introduced:

Reg. [Fear| Fotr]
A.I'i"!‘_}r}REg,{Fu_.Fl..".Fn]’

These instructions do nothing when the MRB of the
structure pointer on Reg is not marled. If marked, they
allocate a new structure, copy specified elements on the
structure referenced by Reg to the new structure, and
put the pointer Lo the new structure onlo Reg. Thus,
reuze of data structures reduces the number of memory
operations and, accordingly, keeps the size of the worling
set small.

Samnple code is shown as follows:

reuse_list_with_elements
reuse_vector_with_elermnents

¢ optimized intermediate code:

app_foop:

wait R1, sus_or_fail

is_list Rl, mext

carmmil

read R1, edr, R4 %L
reuse list_with_elements R1, [1|0]
alloc.variable R5 %Y
write RS, R1, cdr
unify_bound_value R1, R2

move R4, R1

move RE, R2

execute_tro app_foop

In this code, reuse_fist and instructions marked with
stars {"+") are replaced with the reuse Nst_with.elements
instruction. The second argument [1]|0] specifies that
the head element has to be copied if the MEE of the list
pointer on R1 is marked. If the MEB is not marked,
it does nothing and is equal to mop. Therefore, only
the follawing write R5,R1,cdr instruction can allocate the
list structure [H|Y]; the instruction works like the rplacd
function in LISP. Consequently, in this example, reuse
aplimization can save one read and one write instructions
and is worth approximately two machine steps.

4,6.5 Clause Indexing

The KL1 language neither defines the tesiing order for
the clavse selection nor has the backtracking mechanism.
Thus, to attain quick suspension detection and quick
clause seleclion, the compiler can arrange the testing or-
der of KL1 clauses; this is called clanse indexing. At first,
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the compiler collects the clauses which test the same vari-
able, and ecompiles the clanses into shared instructions.
Mozt of these work as test-and-branch instructions with
branch labels oceurring in the instruclion codes. Al
guard parts of a predicate are, then, compiled into a
tree structure of instructions.

Our KL1 programming experiences up to now have
told as that a clause is infrequently selected according to
the type of argument but is often selected according to
the value. Furthes, even if multi-way switching of KL1-B
instructions om data types is introduced, these KLI-B in-
structions ave eventually implemented by a combination
of native binary branch instructions, in general. Con-
gequently, we decided that KL1-B does not provide a
multi-way switching instruction on data types, but just
hinary-branch KL1-B mstrctions on a data type. Ad-
ditionally, KL1-B provides a multi-way jump instruction
on the value of an instantiated variable.

Two instructions are added for multi-way jump on a
value:

switchatom  Reg, [{X.L},{2.0:), . (XL
switch_integer Reg, [{ X, L} {X. LY. . XL

Switch_atom is used for multi-way switching on an atem
value, and switch_integer is used for multi-way switching
on an integer value. They test the value on the regis-
ter Reg, and if it is equal to the value X, a branch to
the instruction specified by the label L; occurs. Since the
internal algorithm implementing these switching Instruc-
tions is not defined in KL1-B, the translator to a native
code may choose the most suitable method for switching,

The current KLL-B instruction sei was designed under
several assumplions in terms of KLI programe. Thus, we
have te investigate how correct our assumptions are and
how effective our KL1-B instruction set is.

5 Conclision

This paper discussed design and implementation iszues
of the KL1 language processor. PIM architecture dif-
fers from Multi-PS1 architecture because of its loosely-
coupled networls with messages possibly overtaken, and
because of its cluster structure (ie its shared-memory
multiprocessor portion). These differences greatly influ-
ence the KL1 language processor and are essential to
parallel and distributed implementation of the KL1 Jan-
guage. Several of the implementation issues focused on
in this paper are more or less associated with these fea-
tures. Our implementation is a solution to this situation.
ICOT has been working on these implementation issues
intensively for the past four years, since 1088,

[n this paper, we began by making several assump-
tions and, then, tailored our implementation to them.
The assumptions came from our experiences based on the
Multi-PSI system. Thus, we have to evaluate our imple
menkation, aceumulate experiences on our system, and

verily the appropriateness of the assumptions. Hence,
we will be able to reflect our results in the KL1 language
processor of the next generation. In this development
cycle, the systematic design concept is effective, and the
concept yields the high modularity of a language pro-
cessor, It turns out to be easy to improve and highly
testable,

Our KL1 language processor is presented on the PIM
systems (PIM/p, PIM/e, PIM/i, PIM/¥), which are be-
ing demonstrated at FGCS™32.
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