PROCEEDINGS OF THE INTERNATIONAL CONFERENCE
ON FIFTH GENERATION COMPUTER SYSTEMS 1992,
edited by ICOT. @ ICOT, 15992

414

Architecture and Implementation of PIM/p

Konichi KUMON
Tsuyoshi SHINOGI

Alkira ASATO

Susumu ARAT
Akira HATTORI

Fujitsu Limited
1015, Kamikodanalea, Nakahara-ku, Kawasaki 211, Japan

Hiroyoshi HATAZAWA
Fujitsu Social Seience Laboratory Lid.

Abstract

In the FGCS project, we have developed a parallel in-
ference machine, PIM/p, as a one of the final outputs of
the project [Taki 1992]. PIM/p has up to 512 process-
ing elements(PEs) using two level hardware structures.
Each PE has a local memory and a cache system to re-
duce bus traffic. - The special cache control instructions
and the macro-call mechanism reduce the common bus
traffic, which may become the performance bottle-neck
for shared-memeory multi-processor systems. Eight PEs
and a main memory are connected by common bus using
the parallel cache protocol, we call it a cluster. PIM/p
system congists sixty-four clusters, those are connected
by dual sixth-order hyper-cube netwarks.

The KL1 processing system on PIM/p has twe com-
ponent, the compiler and the run-time support routines.
The compiler uses the templates to generate PIM/p na-
tive codes from KL1-B codes, Each KLI-B instruction
has a corresponding template, The codes are optimized
after the expansion from KL1-B to native codes. The
run-time support routines are placed in the internal-
instruction memory, in the local-memory, or in the shared
memnery according to their calling frequencies,

The preliminary evaluation results are presented. Cor-
responding to the hievarchy of PIM/p, two different con-
figuration systems: the network connected system and
the common bus connected system, are compared,

The results show thal the speedup ratioc compared to
ane PE is nearly equal to the number of PEs for both
configuration systems. Hence, the bus traffic is not a per-
formance bottle-neck in PIM/p, and the automatic load-
balancing mechanism appropriately distributes loads
among PEs within a eluster at the evaluation.

1 Introduction

A parallel inference machine prototype{PIM/p) is now
bemg used. It is tailored to KL1 [Ueda and Chikayama
1990], and ineludes up to 512 processors. A two-level

Kiyoshi HIRANO

Institute for New Generation Computer Technology

hierarchical structure is being used in the new system: a
processing element and a cluster(Figure 1).

Eight processing elements form a cluster, which com-
municates with a shared memery through a commen bus
using snooping cache protocols. The clusters are con-
nected with dual hypercube packet switching networks
through network interface co-processors and packet
routers. The chassis consists of four clusters. The max-
imum PIM/p system includes sixteen chassis. A single
clock is delivered to all processing elements, maintaining
the phase between different chassis.

Some of the features introduced in the PIM/p system
are:

» Two level hierarchical structure to allow parallel
programming with common memory and to facili-
tate system expansion with the hypercube network.

The macro-call instructions which have the advan-
tages of both hard-wired RISC computers and

micro-programmable instruction set computers.

Architectural support for ineremeantal garbage col-
lection Multiple Reference Bit(MRB), which reduce:
memory consumption when the executing parallel
logic programming languages such as KLI1.

* Each processing element has a local memory, which
can reduce bus traffic if the accessed data are placed
in the local memory.

s Coherent cache and dedicated cache commands for
KL1 parallel execution, which can also reduce com-
mon bus traffic.

s (Generating the native instruetion codes from inter-
mediate KL1-B codes by optimizing eampiler with
& optimizer.

¢ The optimizer analyses dataflow for both the tag
parts and the data parts independently, which can
eliminate unnecessary tag operations.

415

Multiple hypercabe intercluster network i

=

wht

- = - - N S, R

1 i [] 1 L 1

V| [waud | | [i i - |

| PEo | | PRy /N 1 A

| [Cachd FI A A

i | E: X :+-~i ! PE: Processing Element

: Comm s ' ! ! I NIU: Network Interface Unit
] Shared - R PR

i LMemory 2560 e P i : 1

T Clusters, 7 Cluster, Cluster, Ciusters

Figure 1: PIM/p system configuration

Gd-bit internal data bus
(N NIUk — Natwork rowter
I ta § i SGSI
missne s t] Protocol [+——+SCSI bus
FPU Controller
(Floating
Point Unit) [
internal
TIn
Pu
(Instruction internal l:hmm?l
. <.+ | cods Instruction
Processing Unit] Memory)
Tnstruction| Cache address
Instruction
L] -
64K B GCCU
athe
Data Cache 1.'{_“.01 ol
ﬁ,{ﬁ LET] t=in
Units)

L]

¥

Common bus

Figure 2: PIM processing element configuration

The processing Flement{PE) consists of an nstruetion
Processing Unit{IPU), a Cache Control Unit(CCU) and
nelwork interface unit{NIU). Figure 2 is a schematic di-
agram of a PE.

In this paper, the hardware architecture and the KLL
processing systemn are deseribed. In Section 2 to See-
tion 4 we describe IPU, cache and the network system.
Then, the run-time support routines for KL1, and the
KLL-B compiler code generation and its optimization are
described in Section5. Finally in Section 6 a preliminary
performance evaluation results are presented.

2 1IPU Architecture

The instruction processing unit(IPU) executes RISC-like
instructions which have been tailored to KL1 execution.
The instruction set has many features which facilitate
efficient KL1 program execution. In this section, we de-
scribe these features.

2.1 Tagged data and type checking

To execute KL1 programs, a dynamic data type checking
mechanism is needed to provide:

Transparent pointer dereferencing.
» Polymorphic operations for data types.
o Incremental garbage collection support.

Dereference is required at the beginning of most uni-
fication operations in KLI. In dereference, a register
is first tested to see whether its content is an indirect
pointer or not, If it is an indirect pointer, the cell pointed
to is fetched into the register and its data type is tested
again.

Many operations in KL1 include run-time data type
checks even after dereferencing has been completed. TUni-
fications include polymorphic operations for data whose
type is not known until run-time.

In addition, incremental garbage collection by MRE
is embedded in dereferencing{See Section 2.5 for details).

Therelore, tagged archifecture is indispensable for
the KL1 processing. In PIM/p, data i& represented as
40-bit (8-bit tag -+ 32-bit data), and the general-purpose
register has both a data part and a tag part. The MRB
ia assigned in one bit of the 8 bit tag,

The tag conditions are specified as bit-wide logical
operations between the tag of a register and the 8-hit
immediate tag value in the instruction. An instruction
can specify the logical operation as AND, OR, or XOR
ar & negations of cne of these.

416

If an instruction specifies XOR as its logical opera-
tion, it checks whether the tag of the register matches
the immediate value supplied in the instruction. Xor-
mask operation does this matching under the immediate
mask supplied in the instruction, which enables various
groups of data types to be specified in a conditional in-
struction if the data types are appropriately assigned to
tag bits (See Section 5.1 for details).

Verious hardware flags, like the condifion code of
ALU operations or hardware exception flags, can be
checked as the tags of dedicated registers, so these flags
can be examined by 2 method similar to date type cheds-

ing.

2.2 Instructions and pipeline execution

The processing element uses an instruction buffer and
a four-stage pipeline, D A T B, to attempt to issue
and complete an instruction. Table 1 shows the pipeline
stages in ALU, memory access and branch instructions.
All instructions except co-processor instructions are is-
sued in every cycle.

Basic instructions such as ALU operations have three
operands, and memory accessing instructions are limited
to load and slere type instructions. Pipeline execution
tencs to make the branch penalty large. In PIM/p, the
target instruction starts four elock after the branch in-
struction starts. To reduce the branch penalty, delayed
braneh instructions are wsed. These have one delay slot
after them.

The skip instruction is also useful. This nullifies a
subsequent instruction if the skip condition is met. The
skip instruction does not cause a pipeline break, so its
use results in effident instruction execution. Figure 3
shows the pipeline stages in conditional branch/delayed-
ranchfskip instructions.

In the PIM/p pipeline, all instructions write their re-
sults at the B stage and ALT or memoery write instrue-
tions require source operands at the beginning of the B
stage. The bypass from the B stage can eliminate inter-
locks. Conditional branch instructions test the condition
at the B stage, the bypass also eliminates condition test
interlocks, However, when the register is used by address
calculation at the A stage when the value of the register
has just been changed, an interlock may oceur even if a
bypass from B to A is prepared. Figure 4 shows this ad-
dress calculation interlock. The compiler must recognize
such interlock conditions and should eliminate them as
far as possible (See section 5.2.3)

2.3 Macro call and internal instructions

A RISC ar RISC-like instruction set has advantages in
hoth low hardware design cost and fast execution pipelin-
ing. However, najve expansion of KL1-B to lew-level
RISC instructions produces a very large compiled code.

When condifional branch is taken: condition lested al B
D A

T B : cond. branch instruction
D A T canceled : next external instruction
DD A canceled : 2od extdrnal instruction
D canceled : Jrd external instruction
D A T :branch targei instruction

When delayed branch is used: condition tested ot B

D A T B : eond. branch instruction
D A T B : mext external instruction

D A conceled : 2nd external instruction

D canceled : 3rd excternal instruction

D A T :hbranch target instroction

When conditional skip is taken: condition tested of B

D A T B : cond. skip instruction
D A T canceled : next external instruction
D A T B : 2nd external instruction
D A T B :3rdexternal instruction
Figure 3: Pipeline stages of conditional branch/skip
instructions
D A TRBEH : register write instruction.
DD D A T B :inter-lock cocurs
D A T :nextinstruction

Figure 4: Interlock caused by address caleulation

This may cause frequent mstruction cache miss-hits and
may fill up the common bus band width with instruction
feed, cspecially in tightly-coupled multiprocessors such
as a PIM/p cluster. Here, reducing common bus traf-
fic is a most important design issue as is reducing the
cache miss-hit ratio. On the other hand, the static code
size can be small in a high-level instruction set computer
with micro-programs, such as PSL

To mest both requirements, the processing element
of PIM/p has two kinds of instruction streams, external
and infernal. External instruclions are mostly RISC-like
instructions with KL1 tag support[Shinogi et al. 1988).
Internal instructions are fed from internal instruction
mermory like micro-instructions,

The external instruction set includes macro-call in-
structions, which first test the data type of a register
given as an operand, then invoke programs in the in-
ternal instruction memory(IIM) or simply execute the
next external instruction, depending on the test result,
Every time a macro-call instruction is executed, the cor-
responding macro-bady instruction is fetehed from IIM
to reduce the calling overhead, but it is not executed un-
less & macro-call test condition is met (See the S and C
stages of Table 1). Figure 5 shows the pipeline stages of
macro-call instructions. A macro-call instruction can be
regarded as a light-weight conditional subroutine call or

417

Table 1: Pipeline stages of ALU, memory access and branch instructions

ALL operation Memory access Branch
{5} Set 1IM address, valid only for m-call or infernal insfructions
() Fetch instruction from IIM, valid enly for m-call or internal instructions
Decode [Decode [
D Decode Register read for address ister read for address
Memery address Branch address
A — caleulation caldulation
T Iu‘.maijster read Cache tag aceess Cache tag accoss
ALT operation | Cache data access [Cache data access [
B Register write Register write Condition test

When the condition met: condition fest af A

n A : macro-call instruction
I canceled ¢ next external instruction
5 C D A T B : first internal instrection
5 C D A T B :2ndinternal instroction

When the condition is not met: condition test at A
D oA : macro-call instruction
D A T B : next external instruction
oD AT B : 2nd external instrnction

Figure 5: Pipeline stages of macro-call instructions

2% a high-level instruction with data type checking.

To reduce the overhead of passing parameters from
& macro-call instruction to the macro-body, the PIM/p
processing element has three indirect registers. The in-
direct registers are psendo registers whose real register
numbers are obtained from the corresponding macro-call
instruction parameters.

These mechanisms may appear to be similar to those
of conventional micro-programmable computers. Pro-
grams stored in [IM are written by system designers into
internal instruction mermory, like micro-programs. How-
ever, the internal instruction set is almost the same as
the external instruction set, so & designer can use same
development tools to generate both external and infer-
nal programs. Therefore, system designers can specify
internal or external at the machine-language level, with-
out writing complicated micro-instruclions, as in conven-
tional mic:m—pmgl:a.mmahlc computers.

2.4 Dynamic test stage change

As cliscussed in the Section 2.3, internal instruction exe-
cutions require an additional twe pipeline stages, § and
C, before the ID stage, internal conditional branch causes
a five elock eycle branch penalty when the branch is
taken. In the case of an external branch mstruction, tar-
get insiruction fetch starts at A as an operand and the
feich finishes at the B stage, thus testing the condition
before the B stage cannot reduce branch penalty.
Hewever, internal instructions must use the S and

Table 2: The advantages and disadvantages of B and A
condition check

Test stage Advantages Disadvantages
B Mo interlock A7 branch penalty
A 17 branch penalty 0/1/2r interlock
1r=1 clock cyele

C plpﬂ]inn stages to fetch the target internal instruc-
tion. It cannot not start before the condition test. If
the branch condition is determined earlier, say at stage
A, target fetch can be started earlier. This reduces the
branch penalty. However, an early condition test causes
interlocking, which is common to memory address calcu-
lation, and this will occur even if the branch is not taken.
Tahle 2 shows the advantages and disadvantages of both
B stage and A stage conditien tests. Some sample cod-
ings show internal conditional branches are often placed
just after memery read or AL operation instructions,
and it is hard to insert non-related instructions between
them. To minimize pipeline stall, an A stage test should
be used if the previous instruction does not interlock the
condition test, otherwise B stage test should be used,

Preparing two sets of branch instructions, a B stage
test and an A stage test, adds instructions to the PIM/p
instruction set, because the PIM/p instruction set has
many conditional branch instructions for various tag
checking.

Without adding instructions, the PIM/p pipeline con-
troller decides between mternal conditional branch A or
B|Asato et al. 1991]. When some instructions imter-
lock the test stage A of a suceessive internal conditional
branch, the test stage is changed to B to aveid interlock,
otherwise the test is done at A stage. We call this a
dynanmic conditional branch test stage change. If 2 com-
piler or a programmer can put two or more instructions
between a register write instruction and a conditional
branch based on the register, the test is done at the A

stage.

418

2.5 MBRB support

Incremental garbage collection support is one of the most
important 1ssues 1n parallel inference machines. The
PIM/p instruction set includes several instructions for
efficient execution of MRB garbage collection[Chikayama
and Kimwra 1987).

Using the MRB incremental garbage collection, value
cells or structures are allocated from fres lists, and when
those allocated areas are reclaimed, the areas are linked
to free hists. To support these free list operations, the
puali and pop instruetions are used.

The MREB of each pointer and data object has to be
maintained in all unification instructions. Especially in
dereference, the MEB of the dereferenced result is off
if and only if MREzs of both the pointer on a register
and the pointed cell are MRB-off. MRB is assigoed to
one of the eight bit tag data. MRB-on means the bit
is 1, MRB off means 0 respectively. Thersfore logical
or of hoth the pointer MEB bit and the pointed data
MHEB bit represents the pointed data’s multiple refer-
ence stafus. Dedicated instructions Read Tag WordMrbor
and Deref support this operation. Read Tag WordMrlor
loads memory data pointed by address register into des-
Linztion register, accurnulates both the address register's
MRB and the destination register's MRB that is MRE
of the memory data, sets the result status in the destina-
tion register. Deref is similar to the Read Tag WordMrbor
instruction, but loads memory data into address regis-
ter and the old address register value is saved to des-
btination register simulianeously, Therefor, succeeding
inslructions can examine that the pointed data can be
reclaimed or not by testing destination register’s MRB
bit..

These dedicated instructions can minimize the over-
head to adopt MRB incremental garbage collection.

3 Memory Architecture

3.1 Cache and bus protocols

Each PIM/p element processing has two 64K bytes caches
for instructions and data. PIM/p uses copyback cache
protocols which have been proved effective for reducing
common bus traffic in shared-memory multiprocessors.
To maintain cache coherence, there are basically iwo
mechanisms, invalidating the modified block and broad-
casting the new data to others.

PIM/p uses the invalidation method for the following

reasons. To use incremental garbage collection MRE, a
reclaimed memory avea need not be shared. Next time
the area iz used it may not be shared with the same
processors which previously shared the avea. In other,
KLL load distribution is achieved by distributing goal
records in & eluster from one processor to another. Usu-
ally the distributed goals will not be referred from the

source processor. In these cases, the broadcast method
will produce unnecessary write commands to the com-
mon bus on every write to the newly allocated area or
distributed goals. The mvalidation method is much more
efficient.

PIM/p cache protocol is similar to [llinois protocol.
However, PIM/p protocol has the following cache com-
mands optimized for KL1. In normal write operations,
a fetch-on-write strategy is used; however, it is not nec-
essary to fetch the contents of shared memory when the
block is allocated for a new data structure. That means
the old data in the block is completely unnecessary. In
KL1, when free lists are recreated after grand garbage
collection, the old contents of memory have no mean-
ings. To accomplish this, Direct- Write is used.

Direct_write: If cache misses at the block boundary,
write data into cache without fetching data from
Imemory.

The following instructions are used for inter-processor
communication through a shared memory, for example
goal distribution.

Read Invalidate: When cache misses, fetch the block
and invalidate Lhe cache block on other CPUs. This
operation guarantees that the block is exclusive un-
leas the other CPJ subsequently request the block,

Read Purge: After the CPU reads a block, it is simply
discarded even if it iz modified.

Exclusive_read: Same as Read Invalidate except for the
last word in a cache block. When it is used to read
the last word in a cache block, it purges the block
like Read_Purge.

Using these instructions, unnecessary swap-in and swap-
out can be aveided by invalidating the sender’s cache.
block after receiver the gets the block, and by purging
the receiver’s cache block after the receiver reads all data
in the block.

1}-behaved software may cause these instruction to
destroy cache coherency. However, these instructions are
used only in KLl processing system, and only systems
programimers use them,

There are hardware switches which can change the
actions of those special read fwrite instructions to normal
vead fwrite actions. By using these switches, the aystems
programmer can examine their programs consistency.

3.2 Exclusive control operation

To build & shared-memory parallel processor system, lock
and unlock operation are essential guarding critical zec-
tions. KL1 requires fine-grain parallel processing. The
frequency of locking and unlocking operation needed for
shared data is estimated ab more than 5% of all mem-
ory accesses. Thus these operation must be executed

with low overheads by using hardware support. How-
ever, locking operations should seldom conflict with each
other. It is therefore useful to introduce a hardware lock
mechanism which has low overhead when there are no
lock conflicis, In PIM/p, the cache block has ezclusive
and shared status. When the bloek is exclusive, it i3 not
owned by other PEs. Hence there is no need o uge the
common bus. A marker called the lock address register
which remembers the block is locked by the CPU. When
the CPU locks a block, other UPU cannot get the block
data until the black is unlocked by the eoriginal CPU.
Even when the block is shared, fetching data and invali-
deting the block before locking is sufficient. The cost is
nearly equivalent to the normal write operation.

In KLl processing, unification requires frequent lock-
ing, but the locking time is fairly short. A hardware
busy wait scheme is better for lock conflict resolution.
K 2 longer locking time is needed, a software lock can
be made by combining lock, read and conditional jump
instructions. For KL1, no bus cycles are needed for most
of the lock reads hitting exclusive cache blocks.

4 Network Architecture

4.1 Network interface unit

Multiple clusters are connected by a hypercube topology
network. At the design stage, we assumed that ten log-
ical reductions require & hundred-bytes packet transfer,
The target speed of PIM/p PE will be between 200K
LIPS to 500K LIPS. This means 2M to 53M byles per
second network bandwidth 1z required by each PE. Thus
16M to 40M byies per second network bandwidth is re-
quired to a cluster which contains eight PEs. If this
data flows into the common bus, network packet data
occupies about 10% to 25% of the total bandwidth of
the common bus. Providing a network interface to each
processing clement reduces such common bus traffic.
Each cluster has 8 PEs, and each PE has a pet-
work interface co-processor called a nefwork interface
wnit (NIU), By attaching a NIU to each PE, a PE can
send to or receive from a packet without using the com-
mon bus. The NIU performs the following functions:

¢ Builds a packet into the NIU's packet memeory, and
sends it to the network router{RTR).

¢ Receives a packet from the RTR, stores it to the
packet memory. and signals the arrival of a packet
to IPU.

¢ Commmunicates to a SCSI bus driver chip which
connects to PIM/p front-end processors(FEPs) or
disks.

All these actions are conbrolled by the IPUs co-processor
instructions.

419

To build a packet, the TP first makes a header which
contains the packet destination and mode for broadcast-
ing. It then building a packet body by executing co-
processor write instructions, which packs data one, two,
or four bytes at a time. Finally the IPU puts a end
of packef marker to send the packet to RTR. A whole
packet of data is stored in packet memory before send-
ing it, to minimize RT'R busy time. The send and receive
packet memories are both 16K bytes long,

Each cluster has four SCSI ports which are connected
to the PEs. Two have non-differential SCSI interface
ports, and the olher two have differential SCSI inter
face ports. The differential SC51 interface iz able to ex-
tend the interface cable up to twenty five meters. It is
used to copmect SCSI disks which need not be placed
beside the cluster. The PIM/p FEP is connected to
a non-differential interface, and various other SCSI de-
vices, such as an ether-net transceiver, can be connected
through the SC51 bus, This extends PIM/p's application

domain.

4,2 Inter-cluster network connection

While the NIU sends and receives packets, the network
packet router(AT R) actually delivers packets. Each RTR
connects four NIUs and up to six other BTRs to build a
sixth order hypercube network topology. Thus each clus-
ter has two RTRs which construct two independent hy-
percube networks to improve the total network through-
put. The RTH can conmect a maximuem of sixty-four
clusters(512 PEas).

BTR uses the wormbole routing method to reduce
traveling time when the network is not so busy, to avoid
packet length restrictions caused by RTR packet buffer
lirnitation. Between RTRs data is transferred at system
clock rate. RTR has approximately 1K bytes of packet
buffer for every cutput port, in order to reduce network
congestion. The static routing method is nsed and dead-
locks are avoided by the routing method. Broadeasting
to the sub-cube is available. This can be used when the
system g at the initial program stage.

In the PIM/p system, one chassis contains four clus-
ters. The maximum 512PE PIM/p aystem is sixteen
chassis, Building for such a large systern can be prob-
lematie. Transferring data between these chassis by syn-
chronous-phase matched elock is impossible, because the
system cceupies an area of about sixtecn meters square.
This means that the traveling time of data iz about
one system clock tick. Introducing another hierarchy
between inner-chassis communication and inter-chassis
communication complicates the distribution strategies of
the KL1 processing systems. This should be avoided.

One of main feature of TR isthe interconnection be-
tween PIM/p chassis. To attain a transfer rate equal to
gystem clock rate for both inner-chassis and inter-chassis
data, RTH uses a data synchronization mechanism for

420

inter-chassis connections. This makes the inter-chassis
connection transfer rate equal to the inner-chassis trans-
fer rate, with little increase in data traveling time. This
simplifies the cluster hierarchy.

5 The Kll Language Processing
System for PIM /p

The KLI language processing system for PIM/p is de-
signed on the basis of the VPIM [Hirata et al. 1992]; it is
the common specifications of the KL1 language process-
ing system on the two level hisrarchical multi-processor
system. Most specifications of VPIM are used for PIM/p
with no changes. Some modification, however, were ap-
plied to exploit the PIM/p hardware efficiently,

The EL1 language processing system is implemented
a5 the KL1 compiler and the run-time support routines.
The KL1 program must be compiled inte PIM/p na-
tive machine code when it is executed on PIM/p. The
KLl compiler for PIM/p consists of three passes — the
compiler to the intermediate code, the native machine
code generator and the optimizer. Compiled KL1 pro-
grams may call some run-time support routines as cir-
cumstances demand. The run-time support routines are
classified inte three groups, which correspond to PIM/p
memory architecture,

5.1 Changes for PIM/p

There are some changes from VPIM to PIM/p. These
were applied to exploit the PIM/p hardware efficiently.

(1Y Data Structure

The basic KL1 data are realized by tagged words;
each of them consists of a 8-bit tag part and a 32-hit
value part, and all KL1 data are realized by tagred words
in ¥PIM. The memory of PIM/p consists of 64-bit width
words. Tagged words are placed in_aligned 64-bit width
words in the PIM/p memory system [Goto et al. 1988).
Although KL1 data density will be low in this scheme,
this will not canse performance degradation.

The PIM/p instruction processing unit can access the
memory not only in the unit of tagged data, but also
in the &bit, 16-bit, 32-bit and 64-bit units. A string
— an aray of inlegers can, therefors, be realized us-
ing G4-bit width words, as shown in figure 6. A module
which holds KL1 compiled code, is also realized under
the same scheme. Since PIMOS [Chikayama et al. 1988]
uses many string data and module data, this scheme can
promote efficiency of memory using.

(2) Data Type Checking

The PIM/p instruction processing unit has special
instructions for data type checking: JumpXorUnderMask

VPIM:

LSTRG | ——+{cNST] mum. of TW

INT [

INT |

PIM fp: |

[STRG | ~—=nsT] —
~ elernents .
| I |
Figure 6: String data of VPIM and PIM/p

mum. of words

and JumpNotXerUnderMask. These have the following
functions:)

if(tagof(Reg)&Mask = Const) goto Label;
. and
if{tag-of(Reg)&Mask + Const) goto Label;

These functions can test not only if the data type is
correctly specified, but also if the data type group is
correctly specified, since the bit assignment of tag field
is designed effectively.

The KL1 language processing system uses 44 kinds
of data types; these can be expressed in 6 bits. The tag
part, however, is 7-bit width except MRB. We use T bits
in a tag part to express data type; data types are assigned
sparsely in order to check data type group easily by
JumpXorUnderMask or JumpNetXerlUnderMask. There
are the following data type groups:

* Atomic — atom or integer,

» Vector — null vector, short vector or long vector.
» Short Vector — vector containing 1-8 elements.
» Undefined — variable in some conditions.

These data type groups are often checked in KL1 execu-
tion, and this assignment can reduce execution costs.

5.2 Compiler

The KL1 program must be compiled into PIM/p native
machine code when it is executed on PIM/p. The KL1
compiler for PIM/p consists of three passes — the com-
piler to the intermediate code, the native machine code
generator and the optimizer. In the first pass, the KL1
program is compiled into intermediate code; its instruc-
tion set is called KL1-B. The native machine code gener-
ator expands intermediate code into PIM/p native ma-
chine code. The optimizer improve the expanded code.

5.2.1 Intermediate Code

In the firsl pass of the KL1 compiler, the KL1 program
iz compiled inte intermediate code; its instruetion set
ig called KLi-B. Tt is designed as the instruction set for
the abstraet KLI machine [Kimura and Chikayama 1987)
and interfaces between the KL1 language and the PIM
hardware, just as the Warren Abstract Machine [Warren
1983] does for Prolog. The KL1-B for PIM is extended
from KL1-B for Multi-PSI to exploit the PIM hardware
efficiently.

KL1-B contains passive unification instructions, ac-
tive unification instructions, argument /element prepara-
tion instroctions, incremental garbage collection instruc-
tions and goal manipulation instructions. These specifi-
cations are identical with VPIM [Hirata et al. 1992],

5.2.2 Native Machine Code Generator

The intermediate code, which consists of KL1-B instruc-

tions, is expanded into native machine code according -

to the template; the template iz 2 set of rules governing
translation from KL1-B instructions to native machine
instructions. These rules are defined according to the
following principles:

s Use the special instruetions for KL1 effectively.

Don't jump in the main pass.

& Minimize the pipelinﬂ break ratio.

» Maximize the hit ratio of the instruction cache.

The translating rules are classified into the follow-
ing 3 groups according to the properties of the KL1-B

instructions.

(1) Expand to In-Line Code

These KL1-B instructions which can always be real-
ized by & few native machine insiructions are translated
accordingly. Consider the following examples:

load Rgp,Pos Reg
—+ ReadTagWordShortOffset Reg,Pos*8+40(Rgp)

read Esp.Pus.Eeg'

— Read TagWordMrbOr Reg, Pos*8(Rsp)
is_vector Reg, Lab
— JumpNotXorUnderMask — Reg,VG,Lab, VGM
put_integer Const,Reg
— MoveTagWordWithTag Rzero,Reg,INT
{Const = 0)
— Addimmediate Reg,Rzero, Const
MoveTagWordWithTag Reg, Reg,INT
{0 = Const < 256)
— Loadlmmediate Reg, Const
MoveTagWordWithTag Reg,Reg,INT

{Const = 256 or Const < 0)

421

Load is translated into a single native machine in-
struction. In this sample, Pos, the posilion specilying
an argument, is adjusted to the offset in a byle unit.

Fead iz not a simple read instruction; it must main-
tain the MRB. PIM/p, however, has a special instruction
for this use. Read can be realized by a single native ma-
chine instruction: Read TagWordMrbOr.

fs.vector tests if the data type group of Regis a vector
group, This is translated inio a single native machine
instruction: JumphotXorUnderfdask.

Put_integer has thres translation rules from which is
selected according to the value of Const, in order to gen-
erate fast, concise code. These translated codes take
lelock-cyclef4bytes, 2clock-cycles/Bhytes and 2elock-
cycles/10bytes respectively.

(2) Expand to Conditional Subroutine Call

The KL1-B instructions whose main pass can be re-
alized by a few native machine instructions are trans-
lated into these instructions, together with the instruc-
tions calling a subroutine conditionally. The subroutines
are classified into two groups; the macro lbrary and the
roundabout routines.

The macro library is a set of the run-time support
routines and called by the macro call instruction. These
routines realize common functions in executing KL1, and
are shared with all compiled codes (See section 5.3).
Consider the following examples;

reuse_vector Arity, Reg
— MacroCallAnd Reg, MRB, Arity,m_AllocVector

Reuse_vector does nothing when the MRE of the vec-
tor pointer on the register is not marked. It can, there-
fore, be translated into a single conditional macro call
instruction. When the MRB of the pointer is marked,
reyse.vector allocates a new vector; this allocation is
done in the macre fibrary.

The roundabout routine is placed in the compiled code
of the XKL1 program. It realizes a local function, and is
used from the compiled code of a single KL1-B instruc-
tion. Consider the following example:

reuse_vector_with_elernents 3,Reg,{1,0,1}

— JumpAnd Reg MRB,LC001

LROOI:

LCo01:
MacroCall Rworkl, 0. Arity, m_AllocVector
Read TagWordMrbOr Rwork2, 0f Reg)
Wiite TagWordShortOffset Rwork2,0{ Rwork1)
Read TagWordMrbOr ~ Rwork2,16(Reg)
White TagWordShertOffset Rwerk2, 16{ Rworkl)
JumpDelayed LROOI
MoveTagWord Rworkl,Reg

422

Reuse_vector.with_elements is translated into a single
Jumpdnd instruction as a main pass, and some adédi-
Lional instructions as the rewndabout roufine. In KL1
applications, the MRB of the structure pointer is often
unmarked, and roundabout rontine is not executed. This
reundaboul routine is changeable according to the third
arguments of the KL1-B instruction. If cannot, there-
fore, be shared with some KL1-B instructions.

(3} Expand to Subroutine Call

The KL1-B instructions which always execute com-
plicated functions are translated into the subroutine call
instruction or the macre call instruction. The processing
of eomplicated funetions are executed by run-time sup-
port routines, Most KL1-B instructions for active unifi-
cation and body buili-in predicates are translated using
Lhis rule. This is because the calling cost is low compared
ko the cost of executing complicated functions, and the
size of the compiled code can be minimizged.

0.2.3 Optimizer

The compiler for PIM/p supports the optimization of the
expanded code; the expanded code is the native machine
code translated from the intermediate code according to
the iemplaie. Since expansion according to the lemplate

is applied fto each KL1-B instruction separately, some .

redundant instructions may be generated, and the order
of instructions is not refined. Optimization is applied
to the expanded instructions as a group, and these in-
structions are removed. Two oplimization techniques are
introduced.

(1) Optimization by Data Flow Analysis

The optimizer analyzes data flow among the instruc-
tions in the expanded code. It then trims some redun-
dant instructions and merges some instructions into a
single instruction; for example:

» The optimizer trims the instruction which puts a
datum onto 2 register, even if the datum is not
used later,

¢ The optimizer generates an instruction which cal-
culates with & constant datum, instead of an in-
struction which puts the constant onto a register
and an imstruction which caleulates with the datum
on the register,

In this optimization, the data flow analysis is applied
separately to the tag part and the value part of & datum.
This is because the KL1-B always treats a datum as a
set of the tag part and the value part, while some native
machine instructions disregard the value part,

The sample code is shown as follows: this is the com-
piled code of 2 guard built-in predicate: add(X, 1, ¥).

e intermediate code:

put_integer

1 R2
integer_add R1, R2, R3, fail

» native machine code (not opiimized):

Addimmediate R2, Rzero, 1
MoveTagWordWithTag R2, R2, INT
Add R3, Ri, R2
JumpAnd CCR, CCV, fail

s native machine code {optimization #1):

Addimmediate R2, Rzero, 1
Add R3, R1, R2
JumpAnd CCR, CCV, fail
¢ native machine code {optimization #2):
Addimmediate R3, RI, 1
JumpAnd CCR, CCLV, fail

There are two KL1-B instructions, and each of them
is expanded into two native machine instructions. In
the onoptimized code, the Add instruction uses £2 as
the input, but disregards the value part; therefore the
Move TagWordWith Tag instruction has no effect and can
be removed (optimization #1). Additionally, Addim-
mediate R2,Rzero,] and Add R3,R1,R2 can be merged
into a single native machine instruction: Addimmediate
R3,R1.1. In this sample, optimized code takes Zelock-
cycles/10bytes while unoptimized code takes 4clock-
cycles/18bytes.

(2) Pipeline Optimize

The processing element for PIM/p uses a four-stage
pipeline. In expanded code, the dependencies between
instructions which have been expanded from different
KL1-B instructions, are disregarded, and delayed branch
instructions are not used as often. The optimizer rear-
ranges the order in which instructions are executed, to
ensure smooth pipeline processing,

In KL1 execution, pointer operations — pointer read-
ings and address ealeulations are often done while pointer
operations may cause interlocks. This optimization, there
fore, is very effective.

5.3 Run-time Support Routines

The run-tirne sapport routines are called from the com-
piled KL1 program in order to execute complicated func-
tions. They are divided into three groups corresponding
to PIM/p memory architecture (Figure 7),

Compiled
KIL1 Program

Macro
Library
(IIM)

Subroutines
{Local memory

Shared memory)

Run-time Routines-

Figore 7). Run-time support routines

(1) Macro Library

The macro library is called using macre call instrue-
tions. This is & kind of subroutine library, but is stored
in the internal instruction memory (IIM) of IPC, like
microprograms. There are no instruction cache misses,

The characteristics of maere call instructions are as
follows:

o Ina macro call instruction, a tay conditional branch,
applied to a run-time KL1 data type check, is car-
ried out in one instruction step.

» Argument registers or short (8-bit) immediate val-
ues are specified in the macre coll instruction, so
the operands of a macro call can be efficiently passed
to its macre hbrary function,

The IIM can store 8K-step instructions. We imple-
ment the most frequently used functions, for example,
the dereference and unification functions, in the maero

library.

(2) Frequently-used Libraries

Other frequently-used libraries are stored in local mem-
ory. The cost of instruction fetches in local memory is
small, because it doesn wse the commen bus.

Functions for the suspendresume processes for KL1
goals and the copying GC routines, are implemented in
these libraries.

(3) Occasionally-uzed Libraries

Occasionally-used libraries are stored in shared mem-
ory. Access speed for shared memoary is slower than that
for local memory or IIM, but the storage is so large that
we can implement complicated libraries in this memory.

We implement most of the body buili-in predicates,
the network control routines and the shoen (meta-function)
control routines for these libraries [Hirata et al. 1992],

423

Table 3: Speedups for Pentomine

Number of PEs 1 2 4 &
Mermmory shared system 1.00 | 1.96 | 3.86 | 7.50
Network eonnected system 1.93 | 3.80 | 7.28

6 Ewvaluation

We used Pentomino as a benchmark program and exe-
cuted it on two system configurations — multi-PEx1CL
and 1PExmulti-CL. The multi-PEx1CL configuration
represents the memory shared muiti-PE system, and the
1PExmulti-CL configuration represents the network con-
nected multi-PE system.

Pentomino is & program to find out all sclutions of a
5 # 8 packing piece puzgle; packing & 5 x 8 rectangular
box by ten various shaped pieces, each is made up of four
unit squares. The program does an exhaustive search of
an OR-tree of possible pieces elements.

The benchmark program for the netweork connected
multi-PE system contaios the multi-level load balancing
[Furuichi et al. 1990] code which requires the optimiza-
tion for fhe network configuration. However, the pro-
gram for the memory shared multi-PE system does not
contains load balancing code,

On the memory shared multi-PE system, the load
balancing in a cluster is executed automatically with a
KL1 goal as a unit. Each PE has two goal pools, one is
local for the PE, the other is public; it iz accessible from
other PEs. If 2 PE has many goals in its local pool, it
moves some goals into its public pool. The goals in the
public pool might be executed by any PEs in the cluster.

Table 3 shows that the speedup ratio according to the
number of PEs is nearly equal to the number of PEs for
two system configurations. The automatic load balanc-
ing mechanism of the memory shared multi-PE system
works as efficiently as the optimized load balancing code
for the network connected multi-PE system.

7 Conclusion

PIM/p has up to 512 PEs using two level hardware strue-
tures. Two level hierarchical structure allows parallel
programming with common memory and facilitates ays-
tem expansion with the hypercube network. On the two
level hierarchical structure system, programmers do not
think about load balancing inner cluster and write only
the load balancing code for clusters,

The special cache control instructions and the macro-
call mechanism reduce the common bus traffie, which
may become the performance bottle-neck for shared mem-
ory multi-PE systems. The evalvation result shows that
the speedup is linear upto & PEs in a cluster. The com-

424

mon bus traffic, therefore, does not become the perfor-
mance botile-neck.

The macro-call mechanism reduces the costs of type
checking and the overhead of passing parameters. Using
this mechanism, it becomes easier Lo implement the KL1
language processing system.

Acknowledgment

We wish to thank all of the PIM research members both
al ICOT, at Fujitsu Social Science Laboratory Ltd. and
at Fujitsu Limited. Especially we thank ICO'T researchers,
Dr. K. Hirata and Me. A, Imai for their useful com-
ments. We also wish to thank Mr. A. Shinagawa and Mr.
H. Miyake of Fojitsu Limited for their helpful support in
developing softwares. Finally, we would like to thank the
director of [COT research center, Dr. K. Fuchi, the man-
ager of vesearch department, Dr. 5. Uchida, the chief of
first ressarch laboratory, Dr. K. Tali, the general man-
ager of processor division in Fujitsn Laberateries Lid,
Mr. J. Tanahashi, and the general manager of advanced
information systems division in Fujitsu Laboratories Ltd,
Mv. H. Hayashi, for their valuable suggestions and guid-

HUCS

References

[Asato et al, 1991] A Asato, M.Kimura, T.Shinogi,
A.Hattori. A Pipeline Control Method of PIM/p. In
Proceedings of §3rd Anual convention TIPS Japen, 1991
{In Japanese).

[Chikayama and Kimura 1987] T.Chikayama and Y.Ki-
mura. Multiple Reference Management in Flat GHOC.
In Proceedings of the Fourth International Conference
en Logic Programming, pp.276-293, 1987,

[Chikayama et al 1988] T.Chikayama, H.Sate and
T.Miyazaki. Overview of the Parallel Inference Ma-
chine Operating System (PIMOS). In Proceedings
of the International Conference on Fifth Generation
Computer Systems, pp.230-251, 1988,

[Furuichi et el 1990} M.Furuichi, K.Taki and N.Ichiye-
shi. A Multi-Level Load Balancing Scheme for OR-
Parallel Exhaustive Search Programs en the Multi-
PSL In Preceedings of 8nd ACM SIGPLAN Sympo-
stwm on Principles and Practice of Parallel Program-
ming, 1990.

|Gota et al. 19858] A.Goto, M.Sato, K.Nakajima, K.Taki
and A Matsumoto. Overview of the Parallel Inference
Machine Architecture (PIM). In Proceedings of the In-
ternalionn! Conference on Fifth Generation Computer
Systems, pp.208-229, 1988,

[Goto et al. 1990] A.Goto, T Shinogi, T.Chikayama,
K.Kumon and A.Hattori. Processor Element Architec-
ture for a Parallel Inference Machine, PIM/p. In Jour-
nal of Information Processing, pp.174-182, Vol.13,
No.2, 1990.

[Hirata et al. 1992] K.Hirata, R.Yamamoto, A.Imai,
H.Kawai, K.Hirano, T.Takagi, K.Taki, A.Nakase and
K.Rokusawa. Parallel and Distributed Implementa-
tion of Concurrent Legic Programming Language
KL1. In Proceedings of the Infernational Conference
on Fifth Generation Computer Systerns, 1992

[Kimura and Chikayama 1987] Y.Kimura and T.Chika-
yama. An Abstract KI.1 Machine and its Instruciion
Set. In Proceedings of the 1987 Symposium on Logic
Frogramming, pp.468-477, 1987.

[Shinogi et al. 1988] T.Shinogi, K.Kumon, A.Hatiori,
A.Goto, Y.Kimura and T.Chikayama. Macro-Call In-
struction for the Efficient KLl Implementation on
PIM. In Proceedings of the International Conference
on Fifth Generation Computer Systems, 1988,

[Taki 1992] K.Taki. Parallel Inference Machine PIM. In
Proceedings of the International Conference on Fifth
Feneration Computer Systems, 1002,

[Ueda and Chikayama 1990] K.Ueda and T.Chikayama.
Design of the Kernal Language for the Parallel In-
ference Machine. The Computer Journal, (33)6, 1990,
pp.494-500.)

[Warren 1983] D.H.D.Warren. An Abstract Prolog In-
struction Set. Technical Note 309, Artificial Intelli-
gence Center, SRI, 1983,

