PROCEEDINGS OF THE INTERNATIONAL CONFERENCE
OM FIFTH GEMERATION COMPUTER SYSTEMS 1992,
edited by ICOT, € 1COT, 1992

232

Knowledge Information Processing in the 21st Century

Shunichi Uchida

Institute for New Generation Computer Technology
4-28, Mita 1-chome, Minato-ku, Tokyo 108, Japan
uchida@®icot.or. jp

1 A New Research Platfﬁrm

Here in the last decade of the 20th century, the beginning
of the 21st century s close enough for us to be able to
forecast the kind of changes that will happen to new
computer technologies and in the market and to predict
what kind of research fields will be the most important.

I would like to try to forecast what will happen to
parallel processing and knewledge information procesa-
ing (KIP) based on my experience in the FGCS project.

It is guite certain that the fcllowing two events will
happen;

1. Large-scale parallel hardware will be used for large-
scale problem solving.

2. Symbolic processing and knowledge information
processing applications will be extended greatly.

Howewer, it 12 not s0 obvious whether these two eventa
will be effectively combined or will rernain separate. The
key technology is new software technelogy to enable us to
efficiently produce large and complex parallel programs,
especially for symbolic and knowledge processing appli-
cations. M this parallel software technology s provided
with large-scale parallel hardware, a very large change
will happen in the market in the 21st century. I think
that the FGCS project has developed the kernel of this
key technology and shown that these two eveats will
surely be combined.

In the FGCS project, we proposed the hypothesis that
a logic programming language family would be superior
to any other language families in exploiting new soft-
ware technology and applications, especially for symbolic
and knowledge information procsssing. The first step in
proving this hypothesis was to show that the above two
events can be smoothly combined by logic programming,
We decided to design and implement a logic language on
large-scale parallel hardware,

In designing and implementing this logic language, the
most important problem was to find an efficient method
to realize the following iwo very complex mechanisms;

1. An automatic process synchronization mechanism
based on a dataflow model

2. An automatic memory management mechanism in-
cluding an efficient garbage collection method for
distributed memories

These mechanisms greatly reduce the burden of par-
allel programming and are indispensable for implement-
ing not only a parallel logic language but alse any other
high-level language including functional language such
as a parallel version of LISP.

We have developed a parallel logic language, KL1, its
language processor and programming environment, and
a parallel operating systems, PIMOS. These are now 1m-
plemented on parallel inference machine hardware, PIM
hardware, which connects up to 512 processing elements.
We have also developed a parallel DBMS called Kappa-
P cn the PIMOS. We call all of these software sysiems
FGCS basic software.

Through the development of experimental parallel ap-
plication systems using this basic software, we have al-
ready experienced that we can efficiently produce paral-
lel programs which make full use of the power of parallel
hardware.

This basic software is now available only on PIM hard-
ware which has some hardware support to malke KL1
programs run faster such as tag handling support or a
large capacity main memory. However, recently, it has
been announced that many interesting parallel hardware
systems are to appesr in the market as high-end super-
computers aiming at large-scale scientific caleunlations.
Some of them have an MIMD architecture and employ a
RISC type gencral purpose microprocessor as their pro-
cessing elernent.

It is certain that the performance and memory capac-
ity of these processing elements will inerease in the next
few wears. At that stage, it will be possible to imple
ment the FGCS basic software on this MIMD parallel
hardware and obtain reasonable performance for sym-
bolic and knowledge processing applications. If this is
implemented, this parallel hardware will have a high-
level parallel logic programming environment combined
with a conventional programming environment,

This new environment should provide vs with a power-
ful and widely-usable commen platform to exploit knowl-
edge nformation processing technology.



2 KIP Ré&D in the 21st Century

2.1 Knowledge representation and

knowledge base management

The first step to proving the hypothesis that the logic
language family is the most suitable for knowledge infor-
mation processing is to obtain a new platform for further
research into knowledge information processing. For this
step, & low-level logic language, namely, KL1 was devel-
oped.

The second step is to show that a logic language will
exploit new software technology to handle databases and
natural knowledge bases. The key technology in this step
will be knowledge representation and knowledge base
management technology,

Using a logic language as the basis for knowledge rep-
resentation, it should be a natural consequence that the
knowledge representation language has the capability of
performing logical deduction.

Users of the language will consider this capability de-
sirable for deseribing knowledge fragments, such as vari-
ous rules in our social systems and constraints in various
machine design. The users may also want the language
to have been an ohject-oriented modeling capability and
a relational database capability, as built-in functions.

Currently, we do not have good criteria to combine and
harmonize these important concepts and models to real-
ize a language having these rich functions for knowledge
representation.

The richness of these language capabilities will always
impose a heavy overhead on its language processor. The
language processor in this case is a higher-level inference
engine built over a database management system. It
is interesting to see how much the processing power of
parallel hardware will compensate for this overhead.

In the FGCS project, we developed a detabase man-
agement system, Kappa-II based on the nested relational
model, It was implemented on a sequential inference ma-
chine, P51, for the first time. Now, its parallel version,
Kappa-P written in KL1, has been built on the PIM
hatdware. Over Kappa-F, we have designed a knowledge
representation language, Quixote and a KBMS based on
the deductive and object-oriented model. Its first imple-
mentation has been completed and is now under evalu-
ation. Quixote is one of the high-level logic languages
developed over KL1. These evaluation results should
provide very interesting data for forecasting database re-
search at the beginning of the 21st century.

Ancther high-level logic language developed in the
FGCS project is a parallel constraint logic programming
language, GDCC, GDCC has a constraint solver in its
language processor which can be regarded as an infer-
ence engine dedicated to algebraic problem solving.

Another kind of inference engine is a parallel theoremn
prover for first order logic which is called a model gen-

233

eration theorem prover, MGTP. This prover is now used
as the kernel of a rule-based reasoner in a law expert sys-
tem, aleo known as the legal reasoning system, Hellic-T1,

These logic languages and inference engines will he
further developed during this decade. They will be im-
plemented on large-scale parallel hardware and will be
used as important components to organize a new plat-
form to build a knowledge programming environment in
the first decade of the 21st century.

2.2 Knowledge programming and

knowledge acquisition

The third step to proving the hypothesis is to show that a
knowledge programming environment based on logic pro-
gramming will efficiently week to build knewledge bases,
namely, the contents of a KBMS.

Knowledge programming is a programming effort to
translate knowledge fragments into internal knowledge
descriptions that are kept and used in a KBMS.

This process may be regarded as a conversion or com-
piling process from “natural® knowledge descriptions,
which exist in our society for us to work with, into *arti-
ficial” knowledge descriptions, which can be kept in the
KBMS and used efficiently by application systems such
as expert systems, If this process is done almost au-
tomatically by some software with a powerful inference
engine and knowledge base, it is called “knowledge ac-
quisition”. Some people may call it “learning®.

In human society, we have many "natural® knowledge
bages such as legal rules and cases, medical care records,
design rules and constraints, equipment manuals, lan-
guage dictionaries, various business docements and rules
and strategies for game playing, They are too abstract
and too context-dependent for us to translate them into
“artificial” knowledge descriptions.

In the FGCS project, we developed several experimen-
tal expert systems such as a natural language processing
system, a legal reasoning system, and a Go playing sys-
tern. We have learned much about the problems of how
Lo code or program a "natural” knowledge base, how to
structure knowledge fragments to be able to use them in
application programs, and so on.

We have also learned that there is a big gap between
the level of “natural® knowledge descriptions and that
of the “artificial” knowledge descriptions which current
software technology can handle. We were forced to real-
ize again that “natural” knowledge bases have been built
not for computers but for human beings. The existence
of this large gap means that current computer technol-
ogy is not intelligent enough to accept such knowledge
bases.

It is obvious that more research effort is needed to
build much more powerful inference engines that will
provide us with much higher-level logical reasoning func-
tions based on formal and informal models such as CBR,



234

ATMSE and inductive inference. In parallel with this
effort, we have to find some new methods of prepro-
cessing “natural” knowledge descriptions to obtain more
well-ordered forms and atructures for “artificial® knowl-
edge bases. For example, we have to create new theo-
ries or smodeling techniques to explicitly define context-
dependent information hidden behind “natural” knowl-
edge descriptions. The situation theory will be one of
these theories.

It is interesting to see how these powerful inference
engines will relate to knowledge representation lanpguage
and knowledge structuring methods. Another interesting
question will be to what extent the power of larger-scale
parallel hardware and parallel software technology will
male these higher-level inference functions practical for
rezl applications,

It is certain that research into knowledge information
processing will continue to advance in the 31st century,
opening many new research fields as it advances and leav-
ing a large growing market behind it.



