PROCEEDIMNGS OF THE INTERNATIONAL CONFERENCE
ON FIFTH GENERATION COMPUTER SYSTEMS 1992,
edited by ICOT. © ICOT, 1992

211

PROGRAMS ARE PREDICATES

C.A.IL. Hoare

Programming Research Group,
Oxford University Computing Laboratory,
11 Keble Road, Ouxford, OX1 30D, England.

Abstract

Requirements to be met by a new engineering product
can be captured mest directly by a logical predicate de-
seribing all its desired and permitted behaviours. The
behaviour of a complex product can be described as
the logical composition of predicaies describing the he-
haviour of its simpler components. If the composition
logically implies the original requirement, then the de-
sign will meet its specification, This implication can be
mathematically proved before starting the implementa-
tion of the components. The same method can be re-
peated on the design of the components, until they are
small enough to be directly implementable.

A programming language can be defined as a re-
stricted subset of predicate notation, ensuring that the
described behaviour may be efficiently realised by a com-
bination of computer software and hardware. The re-
strictive notations give rise to a specialised mathemati-
cal theory, which is expressed as a collection of algebraic
laws useful in the transformation and optimisation of de-
signs. Non-determinism contributes both to reusability
of design and to efficiency of implementation.

This philosophy iz illustrated by application to hard-
ware design, to procedural programs and to PROLOG,
It is shown that the procedural reading of logic programs
as predicates is different from the declarative reading,
but just as logical.

1 Inspiration

It is & great honour for me to address this conference
which celehrates the completion of the Fifth Generation
Computer Systems project in Tokyo. I add my own
congratulations to those of your many admirers and fol-
lowers for the great advances and many achievements
made by those who worked on the project. The project
started with ambitious and neble goals, aiming not only
at radical advances in Computer Technology, but also
at the direction of that technology to the wider use and
benefit of mankind. Many challenges remain; but the
goal is one that inspires the best work of scientists and
engineers throughout the ages.

For my part, | have been most inspired by the phi-
losophy with which this project approaches the daunt-
ing task of writing programs for the new generation of
computers and their users. | have long shared the view
that the programming task should always begin with
a clear and simple statement of requirements and ob-
jectives, which can be formalised as a specification of
the purposes which the program is required o meet.
Such specifications are predicates, with variables stand-
ing for values of direct or indirect abservations that can
be made of the behaviour of the program, including both
questions and answers, input and output, stimulus and
response. A predicate describes, in a neutral symmetric
fashion, all permitted values which those variables may
take when the program is executed. The over-riding
requirement on a specification is clarity, achieved by a
notation of the highest possible modularity and expres-
sive power. If a specification does not ebuviously describe
what is wanted, there is a grave danger that it describes
what iz not wanted; it can be difficelt, expensive, and
anyway mathematically impossible to check against this
risk.

A minimum requirement on a specification language
is that it should include in full generality the elementary
connectives of Boolean Algebra: conjunction, disjunc-
tion, and negation — simple and, or, and net. Conjunc-
tion is needed to connect requirements, both of which
must be met, for example,

s it must control pressure and lemperature.

Disjunction is needed to allow telerances in implemen-
tation

® it may deviate from optimum by one or two de-
grees,

And negation is needed for even more important reasons
« it must not explode!
As a consequence, it is possible to write a specification
like
Pwv~-F

which iz always true, and so describes every possible
observation of every possible product. Such a tolerant

212

specification is easy to satisfy, even by a program that
gets into an infinite loop. In fact, such infinite failure
will be treated as so serious that the tautologously true
specification is the only one that it satiafies.

Another inspiring insight which I share with the Fifth
Generation project is that programs too are predicates.
When given an appropriate reading, a program describes
all possible observations of its behaviour under execu-
tion, all possible answers that it can give to any possible
question. This insight is one of the most convincing jus-
tifications for the selection of logic programming as the
basic paradigm for the Fifth Ceneration project. But 1
believe that the insight is much more general, and can be
applied to programs expressed in other languages, and
indeed to engineering products described in any mean-
ingful design notation whatsoever. It gives rise to a gen-
eral philosophy of engineering, which [shall illustrate
briefly in this talk by application to hardware design,
to conventional sequential proprams, and even te the
procedural interpretation of PROLOG programs.

But it would be whelly invalid to claim that all pred-
icates can be read as programs. Consider a simple but
dramatic counter-example, the contradictory predicate

P & -P

which is always false. No computer program (or any-
thing else) can ever produce an answer which has a prop-
erty P as well as its negation. So this predicate is not
a program, and no processor could franslate it into one
which gives an answer with this self-contradictory prop-
erty. Any theory which ascribes to an implementable
program a behaviour which is known te be unimple-
mentable must itself be incorrect.

A programming language can therefore be identified
with only a subset of the predicates of predicate caleu-
lus; each predicate in this subset {5 a precise description
of all possible behaviours of some program expressible
in the language. The subset is designed to exclude con-
tradictions and all other unimplementable predicates;
and the notations of the language are carefully restricted
to maintain this exclusion. For example, predicates in
PROLOG are restricted to those which are definable by
Horn clauses; and in conventional languages, the restric-
tions are even more severe. In principle, these gross re-
striclions in expressive power make a programming lan-
guage less suitable as a notation for describing require-
ments in a modular fashion at an appropriately high
level of abstraction.

The gap between a specification language and a pro-
gramming language is one that must be bridged by the
skill of the programmer. Given specification 5, the task
is to find a program P which satisfies it, in the sense that
every possible observation of every possible behaviour of
the program P will be among the behaviours described
by (and therefore permitted by) the specification 5. In

logic, this can be assured with mathematical certainty
by a proof of the simple implication

kP =S

A simple explanation of what it means for a program
to meet its specification is one of the main reasons for
interpreting both programs and specifications within the
predicate calculus,

Now we can explain the necessity of excluding the
contradictory predicate false from a programming nota-
tion. It is a theorem of elementary logic that

F false = 8,

50 false enjoys the miraculous property of satisfving ev-
ery specification whatsoever. Such miracles do not exist;
which is fortunate, because if they did we would never
need anything else, certainly not programs nor program-
ming languages nor computers nor fifth generation com-
puter projects.

2 Examples

A very simple example of this philosophy is taken from
the realm of procedural programming. Here the mosi
important observable values are those which are ob-
served before the program starts and those which are
observed afler the program is finished. Let us use the
variable z to denote the initial value and let z* be the
final value of an integer variable, the only one that need
concern us now. Let the specification say that the value
of the variable must be increased

S=(2">=%)
Let the program add one to
P=(zi=z4+1)

The behavioural reading of this program as a predicate
describing its effect is

P=(z'=241)

i.e., the final value of 7 is one more than its initial value,

Every observation of the behaviour of P in any pos-
sible inilial state = will satisfy this predicate. Conse
quently the Validity of the implication

FP=5

i, F=z+l=z">z

will ensure that P correctly meets its specification. So

does the program
g:=z+4T,

but not
ri=2xr.

To illustrate the generality of my philosophy, my
next examples will be drawn from the design of combina-
tional hardware circuits. These can also be interpreted
as predicates. A conventional and-gate with two input
wires named o and b and a single output wire named T
is described by a simple equation

x=ahb

The values of the three free variables are observed as
voltages on the named wires at the end of a particular
cycle of operation. At that time, the voltage on the
output wire z is the lesser of the voltages on the input
wires g and b Similarly, an or-gafe can be deseribed by
a different predicate with different wires

d=gVe,

i.e., the voltage on d is the greater of those on y and c.
A simple wire is a device that maintains the same velt-
age at each of its ends, for example

E=y.

Now consider an assembly of two components op-
erating in parallel, for example the and-gate together
with the or-gate. The two predicates describing the two
components have no variables in common; this reflects
the fact that there is absolutely no connection between
them. Consequently, their simultaneous joint behaviour
consists solely of their twe independent behaviours, and
is correctly described by just the conjunction of the pred-
icates describing their separate behaviours

{w:ﬂhb} & [d:y"u"ﬂ]

This simple example 18 a convincing illustration of the
principle that parallel composition of components is noth-
ing but conjunction of their predicates, at least in the
case when there is no possibility of interaction between
them.

The principle often remains valid when the compo-
nents are connected by variables which they share. For
example, the wire which connects £ with y can be added
to the cirenit, giving a triple conjunction

{z=anbd) & (z=y) & (d=(yV<))

‘This still accurately describes the behaviour of the whale
assembly. The predicate is mathematically equivalent to

(d=(aAB)Ve) & (z=y=(anb)).

When components are connected together in this
way by the sharing of variable names (r and y), the val-
ues of the shared variables are usually of no concern or

213

interest Lo the user of the product, and even the opticn
of obeerving them is removed by enclosure, as it were, in
a black box. The variables therefore need to be hidden
ar removed or abstracted from the predicate deseribing
the observable hehaviour of the assembly; and the stan-
dard way of eliminating free variables in the predicate
calcnlus is by quantification.

In the case of engineering designs, existential quan-
tification is the right cholce. I is necessary that there
exist an observable value for the hidden variahle; but no
one cares exactly what value it is. A formal justification
is as follows. Let S be the specification for the program
P, and let = be the variable to be hidden in P. Clearly,
one could never wish to hide a variable which is men-
tioned in the specification, so clearly = will not occur
free in 5. Now the designer's original proof ebligation
without hiding is

FP= 5

and the proof ohligation after hiding is
F (3z.P) = 5.

By the predicate calculus, since = does not occur in 5,
these two proof obligations are the same.

But often quantification simplifies, as in our hard-
ware example, where the formula

Az,y. s=ahd k y=z & d=yVe
reduces to just
d={arb)Ve

This mentions only the visible external wires of the cir-
cuit, and probably expresses the intended specification
of the little assembly.

Unfortunately, not all conjunctions of predicates lead
to implementable designs. Consider for example the
conjunction of a negation circuit (y = —=) with the
wire {y = z), connecting its output back to its input, In
practice, this assernbly leads te something like an electri-
cal short circuit, which is completely useless — or even
worse than useless, because it will prevent proper oper-
ation of any other cireuit in its vicinity. So there is no
specification (other than the trivial specification tree)
which & short-circuited design can reasonably satisfy.
But in our oversimplified theory, the predicted effect is
exactly the opposite. The predicate describing the be-
haviour of the circuit is a self-contradiction, equivalent
to false, which is necessarily unimplementable.

One commeon solution to the problem is to place care-
ful restrictions on the ways in which components can be
combined in parallel by conjunction. For example, in
combinational circuit design, it is usual to make a ngid
distinction between input wires (like a or ¢} and output
wires (like or d). When twe circuits are combined,
the output wires of the first of them are allowed to be
connected to the inpul wires of the second, but never

24

the other way round. This restriction is the very one
that turns a parallel compesition into one of its least in-
Leresting special cases, namely sequential composition.
This means that the computation of the outputs of the
second component has to be delayed until completion of
the computation of the outputs of the first component.
Another solution is to introduce sufficient new val-
ues and variables into the theory to ensure that one can
describe all possible ways in which an actual product
or assembly can go wrong. In the example of circuits,
this requires at least a three-valued logic: in addition
to high voltage and low wveltage, we introduce an ad-
ditional value (written L, and pronounced “bottom”),
which is observed on a wire that is connected simulia-
neously both to high voltage and to low voltage, ie., a
short, circuit. We define the result of any operation on L
to give the answer 1. Now we can solve the problem of
the circuit with feedback, specified by the conjunction

In three-valued logic, this is no longer a falsehood: in
fact it correctly implies that both the wires z and y are
short circuited
r=y=.L1.

The moral of this example is that predicates describing
the behaviour of & design must also be capable of de-
scribing all the ways in which the design may go wrong.
It is only a theory which correctly models the possibility
of error that can offer any assistance in avoiding it.

If parallelism is conjunction of predicates, disjune-

tion is equally simply explained as introducing non-deter-

minism into specifications, designs and implementations.
If P and €} are predicates, their disjunction (P Vv Q) de-
scribes a product that may behave as P or as @, but does
not determine which it shall be. Consequently, you can-
not control or predict the result. If you want (P v) to
satisly a specification S, it is necessary (and sufficient)
to prove bolh that P satisfies 5 and that) satisfies 5.
This is exactly the defining principle of disjunction in the
predicate calculus: it is the least upper bound of the im-
plication ordering, This single principle encapsulates all
you will ever need to know about the traditionally vexa-
tious topic of non-determinism. For example, it follows
from this principle that nen-deterministic specifications
are in general easier to implemnent, because they offer a
range of options; but non-deterministic implementations
are more difficult to use, becanse they meet only weaker
specifications,

Apart from conjunction (which can under certain re-
strictions be implemented by parallelism), and disjunc-
tion (which permits non-deterministic implementation),
the remaining important operator of the predicate cal-
culus is negation. What does that correspond to in pro-
gramming? The answer is: nothing! Arpuments about
computahility show that it can never be implemented,

because the complement of a recursively enumerable set
iz not in general recursively enumerable. A common-
sense argument is equally persuasive. [t would certainly
be nice and easy 1o wrile a program that causes an ex-
plosion in the process which it is supposed to control.
It would be nice to get a computer to execute the nega-
tion of this program, and so ensure that the explosion
never oceurs. Unfortunately and obviously this is im-
possible. Negation is obvicusly the right way to spec-
ify the absence of explosion, but it cannot be used in
implementation. That is one of the main reasons why
irnplementation is in principle more difficult than speci-
fication. Of course, negation can be used in certain parts
of programs, for example, in Boolean expressions: but it
can never be used to negate the program as a whole, We
will see later that PROLOG negation is very different
from the kind of Boolean negation used in specifications.

The most important feature of a programming lan-
guage is recursion. [t is only recursion {or iteration,
which is a special case) that permits & program to he
shorter than its execution trace. The behaviour of a pro-
gram defined recursively can most simply be described
by using recursion in the definition of the correspond-
ing predicate. Let P{X) be some predicate containing
oceurrences of a predicate vaniable X. Then X can be
defined recursively by an equation stating that X is a
fixed point of P

X poxy.

But this definition is meaningful only if the equation
has a solution; this is guaranteed by the famous Tarski
theorem, provided that P{X) is & monotonic function of
the predicate variable X. Fortunately, this fact is guar-
anteed in any programming language which avoids non-
muonolonic operators like negation. If there is more than
one solution to the defining equation, we need to specify
which one we want; and the answer is that we want the
weakest solution, the one that is easiest to implement.
{Technically, I have assumned that the predicate calculus
is a complete lattice: to achieve this I need to embed it
into set theory in the obvious way .)

The most characteristic feature of computer pro-
grams in almest any language is sequential composition.
If P and @} are programs, the notation (P, Q) stands for
a program which starts like P; but when P terminates,
it applics ¢} to the results prodoced by P. In a con-
ventional programming language, this is easily defined
in predicate notetion as relational composition, using
conjunction followed by hiding in exactly the same way
as our earlier combinational circuit. Let = stand for an
observation of the initial state of all variables of a pro-
gram, and let 2’ stand for the final state. Either or both
of theze may take the special value L, standing for non-
termination or infinite failure, which is one of the worst
ways in which a program can go wrong. Each program
is a predicate P{z,s') or {=z,z"), describing a relation

between the initial state x and the final state ', For
example, there is an identity program I (& null opera-
tion), which terminates without making any change to
its initial state. But it can do this only if it starts in &
proper state, which is not already failed

T (z# L= =2).

Sequential composition of P and) in a conventional
language means that the initial state of @ is the same
as the final state produced by P; however the value of
this intermediate state passed from P to @ is hidden
by existential quantification, so that the only remaining
observable variables are the initial state of P and the
fimal state of Q. More formally, the composition (F, @)
is a predicate with two free variables (x and 2') which
is defined in terms of P and @, each of which are also
predicates with two free variables

(P,Q)(z,2) ¥ Iy. P(z.1) & Qy,).

Care must be taken in the definition of the program-
ming language to ensure that sequential composition
never becomes self-contradictory. A sufficient condition
to achieve this is that when ecither = or ' take the failure
value 1, then the behaviour of the program is entirely
unpredictable: anything whatsoever may happen. The
condition may be formalised by the statement that for
all predicaies P which represent a program

W' P(L,z")

and
¥z. P(z,Ll) = Vz' P(z,2).

The imposition of this condition does complicate the
theory, and it requires the theorist to prove that all pro-
grams expressible in the notations of the programming
language will satisfy it. For example, the null operation
I satisfies it; and for any two predicates P and Q@ which
satisfy the condition, so does their sequential composi-
tion (P, @), and their disjunction P V @, and even their
conjunction (P A @), provided that they have no vari-
ables in common. As & consequence any program writ-
ten only in these restricled notations will always satisfy
the required conditions. Such programs can therefore
never be equivalent to false, which certainly does not
satisfy these conditions,

The only reason for undertaking all this work is to
enable us to reason correctly about the properties of
programs and the languages in which they are writfen.
The simplest method of reasoming is by symbeolic caleu-
lation using algebraic equations which have been proved
correct in the theory. For example, to compose the null
operation Il before or after a program P does not change
P. Algebraically this is expressed in a law stating that
I is the unit of sequential composition

(P,T)= P = (T, P).

215

.l‘..i;uo, cﬂmpusiﬁnn s mucia.‘t.iw:; to follow the pa.ir of
operations (P, Q) by R is the same as following P by
the pair of operations (J, R)

(P @), k) = (R (@, R)).

3 PROLOG

In its procedural reading, a PROLOG program alsoc has
an initial state and a result; and its behaviour can be
described by a predicate defining the relation betwesn
these two. Of course this is quite different from the
predicate associated with the logical reading. Tt will
be more complicated and perhaps less attractive; but
it will have the advantage of accurately describing the
behaviour of a computer executing the program, while
retaining the possibility of reascning logically about its
consequences.

The initial state of a PROLOG program is a sub-
stitution, which allocates to each relevant variable a
symbolic expression standing for the most general form
of value which that variable iz known to take. Such
a substitution is generally called &, The result & of a
PROLOG program differs from that of a conventional
language. It is not a single substitution, but rather a
sequence of answer substitutions, which may be deliv-
ered one after the other on request. For example, the
familiar PROLOG program '

append (X, ¥, Z)
may be started in the state
Z=11,12].

It will then prn-ducr: on demand a SEUETIOR of three an-
awer states

X =11 Y = [L7]
X =1, ¥ = [
A = [lrﬂ]r ¥ = I]

Infinite failure is modelled as before by the special
state L; when it occurs, it is always the last answer in
the sequence. Finite failure is represented by the empty
sequence | |; and the program N© is defined as one that
always fails in this way

NO@B, Y A L0 =]

The program that gives an affirmative answer is the pro-
gram ¥ ES; but the answer it gives is no more than what
is known already, packaged as & sequence with only one
element

YES(H, 0V (6=L=¢=0].

216

A guard in PROLOG is a Doolean condition & applied
to the initial state § to give the answer YES or NO

O, 0)E p =6 & (b9)
V=[] & (-b8).

Examples of such conditions are VAR and NONVAR.

The effect of the PROLOG o[P; Q) is obtained by
just appending the sequence of answers provided by the
second operand @ to the sequence provided by the first
operand P; and each operand starts in the same initial
state

(P;Q)0,0) ¥ 3xXY. P(B,X) & Q(0Y)
& append(X, Y, 0).

The definition of append is the same as usual, except for
an additional clanse which makes the resnlt of infinite
failure unpredictable

append ([L], ¥, Z)

append ([],¥.¥)

append ([X|Xs, ¥, [X|Zs])
i— append (Xs ¥V, Zs).

In all good mathematical theories, every definition
should be followed by a collection of theorems, deserib-
ing usefu] properties of the newly defined coneept. Since
NO gives no answer, its addition to a list of answers sup-
ply by F can make no difference, so N iz the unit of
PROLOG semicolon

NG;,P =FP= P;NG.

Similarly, the associative property of appending lifts to
the composition of programs
(P; Q)i k= P;(Q; R).

The PROLOG conjunction is very similar to sequen-
tial composition, modified systematically to deal with a
sequence of results instead of a single one. Each result
of the sequence X produced by the first argument P is
taken as an initial state for an activation of the second
argument (J; and all the sequences produced by Q) are

concatenated together to give the overall result of the
composition

(P,Q)e.6)Eax,Y. P(0,X)
& each (X,¥)
& concat (¥,
where
each([][])

each ([X|Xs],[¥]Ys])
— HX.Y) & each (X2, Ys)

and

concat ([],[])
concat ([X]Xs], 2)
i— append (X, ¥, 2) Lk concat{Xs YY)

The idea is much simpler than its formal definition;
its simplicity is revealed by the algebraic laws which can
be derived from it. Like composition in a conventional
language, it is associative and has a unit ¥ ES

PI (QIR} = {-qu‘.'rﬁ

(VES,P)= P = (P,YES).

But if the first argument fails finitely, so does its com-
position with anything else

(NO,P) = NO.

However (P, NO) 15 unequal to N O, because P may fail
infinitely; the converse law therefore has Lo be weakened
to an implication

NO = (F,NO).

Finally, sequential composition distributes leftward
threugh PROLOG disjunclion

((P; @), R} = (P, R); (@, R).

Bui the complementary law of rightward distribution
certainly does not hold, For example, let P always pro-
duce answer 1 and let § always produce answer 2. When
B produces many answers, { R, (P; Q)) produces answers

1,2,1,2...
whereas (R, P); (R, Q) produces

1,1,1,...,2,2,2....

Many of our algebraic laws deseribe the ways in which
PROLOG disjunciion and conjunciion are similar to
their logical reading in a Boolean algebra; and the ab-
sence of expected laws also shows clearly where the tra-
ditional logical reading diverges from the procedural one.
It is the logical properties of the procedural reading that
we are exploring now.

The acid test of our procedural semantics for PRO-
LOG is its ability to deal with the non-logical features
like the cut (1), which I will treat in a slightly simpli-
fied form. A program that has been cut can produce
2t most one result, namely the first result that it would
have produced anyway

P08 E3X. P(8,X) & trunc (X,¥).

The truncation operation preserves both infinite and fi-
nite failure; and otherwise selects the first element of a
sequence

trune ([L1],¥)

trune ([L[])
trune ([X| X s], [X]).

A program that already produces at most one result
is unchanged when cut again

Pl =P

If only one result 35 wanted from a composite program,
then in many cases only one result is needed from its

components
(P; Q@) = (P Q!
(7Q) = (P Q)
Finally, ¥ ES and N0 are unaffected by cutling

YESt=YES, NO!'=NO.

PROLOG negation is no more problematic than the
cut. It turns a negative answer into a positive one, a
non-negative answer into a negative one, and preserves
infinite failure

~ P08 Y 3Y. P(6,Y) & neg(Y,0)
where

neg ([L], Z)
neg ([1,16])
neg ([X|Xs,[]).

The laws governing PROLOG negation of truth val-
ues are the same as those for Boolean negation

~YES=NQD and ~NO=VES.

The classical law of double negation has to be weakened
to intuiticnistic triple negation

mirirs Pz o~ P,

Since a negated program gives at most one answer, cut-
Ling it makes no difference

~P= ~(Pl)=(~P)

Finally, there is an astonishing analegue of one of the
familiar laws of de Morgan

~(F;@)=(~ F~ Q).

The right hand side is obviously much more efficient to
compute, so this law could be very effective in optimi-
sation, The doal law, however, does not hald,

217

A striking difference between PROLOG negation and
Boolean negation is expressed in the law that the nega-
tion of an infinitely failing program alse leads to infinite
failure

~true = frue.

This states that frue iz a fixed point of negation; since
it is the weakest of all predicates, there can be no fixed
point weaker than it

(X, ~X) = true

This correctly predicts that & program which just calls
its own negation recursively will fail to terminate.

That eoneludes my simple account of the basic struc-
tures of PROLOG. They are all deterministic in the
sense that (in the absence of infinite failure) for any
given initial substitution #, there is exactly one answer
sequence (' that can be produced by the program. But
the great advantage of reading programs as predicates is
the simple way in which non-determinism can be intro-
duced. For exarnple, many researchers have proposed to
improve the sequential or of PROLOG. One improve-
ment is to make it commute like irue disjunction, and
another iz to allow parallel execution of both operands,
with arbitrary interleaving of their two results. These
two advanlages can be achieved by the definition

(PIQ)(8,6") & 3x, Y. P(6,X) & Q(6,Y)
& inter (X,Y,8")

where the definition of interleaving is tedious but routine

inter ([1],Y, Z) inter (X, [L], Z)
inter ([1L,V ¥) inter (X,[], X)
inter ([X1Xs], Y. [X|2] = inter (X5, ¥, 2)
inter (X, [Y|Ys],[Y]2]) :— inter (X,Y¥s, Z).

Because appending is just a special case of interleav-
ing, we know

append(X, ¥, Z) = inter (X, ¥, &).

Consequently, sequential or is just a special case of par-
allel or, and iz always a valid implementation of it

(P Q) = (PllQ).

The left hand side of the implication is more determin-
istic than the right; it is easier to predict and to control;
it mests every specification which the right hand side
also meets, and maybe more. In short, sequential or
1z in all ways and in all circumstances better than the
parallel or — in all ways except one: it may be slower
to implement on a parallel machine. In principle non-
determinism is demonie; it never makes programming
easier, and its only possible advantage is an inerease in
performance. However, in many cases (including this
one) non-determinism also simplifies specifications and

218

designs, and facilitates reasoning about them at higher
levels of abstraction.

My final example is yet another kind of disjunction,
one that is characteristic of & commit operation in a
constraint language. The answers given are those of
exactly one of the two alternatives, the selection being
usually nen-deterministic: the only exception is in the
case when one of the operands fails finitely, in which
case the other ane is selected. So the only case when the
answer is empty is when both operands give an empty
answer

(PIQ) € ((#=[D & P & Q)
V£ D & (PVQ))
v P(6,1) v Q(f,1).

{The last two clauses are needed to satisfy the special
conditions described earlier). The definition is almost
identical to that of the alternative cormmand in Commu-
nicating Sequential Processes, from which I have taken
the notation. It permits an implementation which starts
executing both P and @ in parallel, and selects the one
which first comes up with an answer. If the first ele-
ments of P and () are guards, this gives the effect of flat
Guarded Horn Clauses.

4 Conclusion

In all branches of applied mathematics and enginesr-
ing, solutions have to be expressed in nofations more
restricted than those in which the original problems were
formulated, and those in which the solutions are calcu-
lated er proved correct. Indesd, that is the very nature
of the problem of solving problems. For example, if the
problem is

¢ Find the GCD of 3 and 4
a perfectly correct answer is the trivially easy one

o the GCD of 3 and 4;

but this does not satisfy the implicit requirement that
the answer be expressed in &2 much more restricted no-
tation, namely that of numerals.

The proponents of PROLOG have found an extremely
ingenious technique to smooth (or maybe obscure) the
sharpness of the distinction betwesn notations used for
specification and those used for implementation. They
actually use the same PROLOG notation for both pur-
poses, by simply giving it two different meanings: a
declarative meaning for purposes of specification, and
a procedural meaning for purposes of execution. In the
case of each particular program the programmer’s task
is to ensure that these two readings are consistent. Per-
haps my investigation of the logical properties of the

procedural reading will assist in this task, or al least
explain why it is such a difficult one.

Clearly, the task would be simpler in a language in
which the logical and procedural readings are even closer
than they are in PROLOG. This ideal has inspired many
excellent proposals in the development of logie and con-
straint languages. The symmetric parallel version of
digjunction is a good example. A successful result of
this research is still an engineering compromise between
the expressive power needed for simple and perspicuous
specification, and operational orientation towards the
technology needed for cost-effective implementation.

Such a compromise will (I hope) be acceptable and
useful, as PROLOG already is, in a wide range of cir-
enmstances and applications. In the remaining cases,
would like to mainiain as far as possible the inspiration
of the Fifth Generation Computing project, and the ben-
efits of a logical approach to programming, To achieve
this, | would give greater freedom of expression to those
engaged in formalisation of the specification of require-
ments, and greater freedom of choice to those engaged
in the design of efficiently implementable programming
languages., This can be achieved only by recognition of
the essential dichotomy of the languages used for these
two purposes. The dichotomy can be resolved by embed-
ding both languages in the same mathematical theory,
and using logical implication to establish cotrectness,

But what T have described is only the beginning,—
nothing more than a vague pointer to a whele new di-
rection and method of research into programming lan-
puages and programming methodology, If any of my
audience is looking for a challenge to inspire the next
ten years of research, may I suggest this one? If you
respond to the challenge, the programming languages
of the future will not only permit efficient parallel and
even non-deterministic implementations; they will alse
help the analyst more simply to capture and formalise
the requirements of clients and customers; and then help
the programmer by systematic design methods to exer-
cise inventive skills in meeting those requirements with
high reliability and low cost. I hope I have explained
to all of you why I think this is important and exciting,
Thauk you again for this opportunity to do so.

Acknowledgements

I am grateful to Mike Spivey, He Jifeng, Robin Milner,
Jehn Lloyd, and Alan Bundy for assistance in prepara-
tion of this address.

