PROCEEDINGS OF THE INTERNATIOMAL CONFERENCE
OM FIFTH GEMERATION COMPUTER SYSTEMS 1992,
edited by 1COT. © 1COT, 19492

199

THE ROLE OF LOGIC IN COMPUTER SCIENCE AND ARTIFICIAL INTELLIGENCE

J. A. Robinson

Syracuse University
New York 13244-2010, US.A.

ABSTEACT

The modern history of computing begins in the
1930s with the rigorous definition of computation
introduced by Godel, Church, Turing, and other
logicians. The first universal digital computer
was an abstract machine invented in 1936 by
Turing as part of his solution of a problem in the
foundations of mathematies. In the 1940s
Turing's logical abstraction became a reality.
Turing himself designed the ACE computer, and
another logiclan-mathematician, von Meumann,
headed the design teams which produced the
EDVAC and the IAS computers. Computer
science started in the 1950s as a discipline in its
own right. Logic has always been the foundation
of many of its branches: theory of computation,
logical design, formal syntax and semantics of
programming languages, compiler construction,
disciplined programming, program proving,
knowledge engineering, inductive learning,
database theory, expert systems, theorem proving,
logic programming and functional programming.
Programming languages such as LISP and
PROLOG are formal logics, slightly extended by
suitable data structures and a few imperative
constructs. Logic will always remain the principal
foundation of computer science, but in the quest
for artificial intelligence logic will be only one
partner in a large consortium of necessary
foundational disciplines, along with psychology,
neuroscience, neurocomputation, and natural
linguistics.

1'LOGIC AND COMPUTING

I expect that digital computing machines will eventually
stirmulate a considerable interest in symbeolic logic. Cne could
communicate with these machines in any language provided
it was an exact language. In principle one should be able to
comrmunicate in any symbolie logie, A M, Turing, 1847 -

The computer is the offspring of logic and
technology. [ts conception in the mid-1930s
occurred in the course of the researches of three
great logicians: Kurt Godel, Alonzo Church, and
Alan Turing, and its subsequent birth in the mid
1940s was largely due to Turing's practical genius
and to the vision and intellectual power of
another great logician-mathematician, John von
MNeumann. Turing and von Neumann played
leading roles not only in the design and
construction of the first computers but also in
laying the general logical foundations for
understanding the computation process and for
developing computing formalisms.

Today, logic continues to be a fertile source of
abstract ideas for novel computér architectures:
inference machines, dataflow machines, database
machines, rewriting machines. It provides a
unified view of computer programming, (which
is essentially a logical task) and a systematic
framework for reasoning about programs. Logic
has been important in the theory and design of
high-level programming languages. Logical
formalisms are the immediate models for two
major logic programming language families:
Church's lambda calculus for functional
programming languages such as LISP, ML, LUCID
and MIRANDA, and the Horn-clause-resolution
predicate calculus for relational programming
languages such as PROLOG, PARLOG, and GHC.
Peter Landin noted over twenty years ago that
ALGOL-like languages, too, were merely
'syntactically sugared' only-slightly-augmented
versions of Church's lambda-caleulus, and
recently, another logical formalism, Martin-L&fs
Intuitionistic Type Theory, has served (in, for
example, Constable's WNUPRL) as a very-high-
level programming language, a notable feature of
which is that a proof of a program's correciness is
an automatic accompaniment of the program-
writing process.

200

To design, understand and explain computers and
programming languages; to compose and analyze
programs and reason correctly and cogently about
their properties; these are fo practice an abstract
logical art based upon (in H. A. Simon's apt
phrase) a 'science of the artificial’ which studies
rational artifacts in abstraction from the
engineering details of their physical realization,
yet with an eye on their intrinsic efficiency. The
formal logician has had to become also an abstract
engineer,

1.1 LOGIC AND ARTIFICTAL INTELLIGENCE

Logic provides the vocabulary and meny of the techniques
needed both for analyzing the processes of representation and
reasoning and for synthesizing machines that represent and
Teason. N. J. Nilgzon, 1991

In artificial intelligence (Al} research, logic has
been used {for example, by McCarthy and Nilsson)
as a rational model for knowledge representation
and {for example by Plotkin and Muggleton) as a
guide for the organization of machine inductive
inference and learning. It has also been used (for
example by Wos, Bledsoe and Stickel)' as the
theoretical basis for powerful automated
deduction systems which have proved theorems
of interest to professional mathematicians.
Logic's roles in Al however, have been more
controversial than its roles in the theory and
practice of computing. Until the difference (if
any} between natural intelligence and artificial
intelligence is better understood, and until more
experiments have tested the claims both of logic's
advocates and of logic's critics concerning its place
in Al research, the controversies will continue.

2 LOGIC AND THE ORIGIN OF THE COMPUTER.

Logic's dominant role in the'invention of the
modern computer is not widely appreciated. The
computer as we know it today was invented in
1936, an event triggered by an important logical
discovery announced by Kurt Gadel in 1930.
Godel's discovery decisively affected the outcome
of the so-called Hilbert Program. Hilbert's goal
was to formalize all of mathematics and then give
positive answers to three gquestions about the
resulting formal system: is it consistent? is it
complete? it is decidable? Godel found that no
sufficiently rich formal system of mathematics
can be both consistent and complete. In proving
this, Gddel invented, and used, a high-level
symbolic programming language: the formalism
of primitive recursive functions. As part of his

proof, he composed an elegant modular
functional program (a set of connected definitions
of primitive recursive functions and predicates)
which constituted a detailed computational
presentation of the syntax of a formal system of
number theory, with special emphasis on its
inference rules and its notion of proof. This
computational aspect of his work was auxiliary to
his main result, but is enough to have established
Gidel as the first serious programmer in the
modern sense. Gédel's computational example
inspired Alan Turing a few years later, in 1936, to
find an explicit but abstract logical model not only
of the computing process, but also of the
computer itself. TUsing these as auxiliary
theoretical concepts, Turing disposed of the third
of Hilbert's questions by showing that the formal
system of mathematics is not decidable. Although
his original computer was only an abstract logical
concept, during the following decade (1937-1946)
Turing became a leader in the design,
construction and operation of the first real
computers.

The problem of answering Hilbert's third
question was known as the Decision Problem.
Turing interpreted it as the challenge either to
give an algorithm which correctly decides, for all
formal mathematical propositions A and B,
whether B is formally provable from A, or to
show that is there no such algorithm. Having
first clearly characterized what an algorithm is, he
found the answer: there is no such algorithm,

For our present purposes the vital part of Turing's
result is his characterization of what counts as an
algorithm. He based it on an analysis of what a
‘computing agent' does when making a
calculation according to a systematic procedure.
He showed that, when boiled down to bare
essentials, the activity of such an agent is nothing
more than that of (as we would now say) a finite-
state automaton which interacts, one at a time,
with the finite-state cells comprising an infinite
mMemory.

Turing's machines are plausible abstractions from
real computers, which, for Turing as for everyone
else in the mid-1930s, meant a person who
computes. The abstract Turing machine is an
idealized model of any possible computational
scheme such a human worker could carry out.
His great achievement was to show that some
Turing machines are 'universal' in that they can
exactly mimic the behavior of any Turing
machine whatever. All that is needed is to place a

coded description of the given machine in the
universal machine's memory together with a
coded description of the given machine's initial
memory contents. How Turing made use of this
universal machine in answering Hilbert's third
question is not relevant to our purpose here. The
point is that his universal machines are the
abstract prototypes of today's stored program
general-purpose computers. The coded
description of each particular machine is the
program which causes the universal machine to
act like that particular machine.

Abstract and purely logical as it s, Turing's work
had an obvious technological interpretation.
There is no need to build a separate machine for
each computing task. One need build only one
machine—a universal machine—and one can
make it perform any conceivable computing task
simply by writing a suitable program for it
Indeed Turing himself set out to build a universal
machine.

He began his detailed planning in 1944, when he
was still fully engaged in the wartime British
code-breaking project at Bletchley Park, and when
the war ended in 1945 he moved to the National
Physical Laboratory to pursue his goal full time.
His real motive was already to investigate the
possibility of artificial intelligence, a possibility he
had frequently discussed at Bletchley Park with
Donald Michie, L J. Good, and other colleagues.
He wanted, as he put it, to build a brain. By 1946
Turing completed his design for the ACE
computer, based on his abstract universal
machine. In designing the ACE, he was able to
draw on his expert knowledge of the sophisticated
new electronic digital technology which had been
used at Bletchley Park to build special-purpose
code-breaking machines (such as the Colossus).
In the event, the ACE would not be the first
physical universal machine, for there were others
who were after the same objective, and who beat
NFPL to it. Turing's 1936 idea had started others
thinking. By 1945 there were several people
planning to build a universal machine. One of
these was John von Neumann.

Turing and von Neumann first met in 1935 when
Turing was an unknown 23-year-old Cambridge
graduate student. Von Neumann was already
famous for his work in many sclentific fields,
including theoretical physics, logic and set theory,
and several other important branches of
mathematics. Ten years earlier, he had been one
of the leading logiclans working on Hilbert's

201

Program, but after Gidel's discovery he
suspended his specifically logical researches and
turned his attention to physics and to
mathematics proper. In 1930 he emigrated to
Princeton, where he remained for the rest of his
life.

Turing spent two years (from mid-1936 to mid-
1938) in Princeton, obtaining a doctorate under
Alonzo Church, who in 1936 had independently
solved the Decision Problem. Church's method
was quite different from Turing's and was not as
intuitively convincing. During his stay in
Princeton, Turing had many conversations with
von Neumann, who was enthusiastic about
Turing's work and offered him a job as his
research assistant. Turing turned it down in order
to resume his research career in Cambridge, but
his universal machine had already become an
important item in von Neumann's formidable
intellectual armory. Then came the war. Both
men were soon completely immersed in their
absorbing and demanding wartime scientific
work.

By 1943, von Neumann was deeply involved in
many projects, a recurrent theme of which was
his search for improved automatic aids to
computation. In late 1944 he became a consultant
to a University of Pennsylvania group, led by J. P.
Eckert and]J. W. Mauchly, which was then
completing the construction of the ENIAC
computer (which was programmable and
electronic, but not universal, and its programs
were not stored in the computer's memory).
Although he was too late to influence the design
of the ENIAC, von Neumann supervised the
design of the Eckert-Mauchly group's second
computer, the EDVAC. Most of his attention in
this period was, however, focussed on designing
and constructing his own much more powerful
machine in Princeton - the Institute for
Advanced Study (IAS) computer. The EDVAC
and the IAS machine both exemplified the so-
called von Meumann architecture, a key feature of
which is the fact that instruction words are stored
along with data in the memory of the computer,
and are therefore modifiable just like data words,
from which they are not intrinsically
distinguished.

The IAS computer was a success. Many close
copies were eventually built in the 1950s, both in
US government laboratories (the AVIDAC at
Argonne National Laboratory, the ILLIAC at the
University of Illinois, the JOHNIAC at the Rand

m

Corporation, the MANIAC at the Los Alamos
Mational Laboratory , the ORACLE at the Oak
Ridge National Laboratory, and the ORDVAC at
the Aberdeen Proving Grounds), and in foreign
laboratories {fhe BESK in Stockholm, the BESM in
Moscow, the DASK in Denmark, the PERM in
Munich, the SILLIAC in Sydney, the SMIL in
Lund, and the WEIZAC in Israel); and there were
at least two commercial versions of it (the IBM
701 and the International Telemeter
Corporation's TC-1).

The EDSAC, a British version of the EDVAC, was
running in Cambridge by June 1949, the result of
brilliantly fast construction work by M.V. Wilkes
following his attendance at a 1946 EDVAC course.
Turing's ACE project was, however, greatly
slowed down by a combination of British civil-
service foolt-dragging and his own lack of
administrative deviousness, not to mention his
growing precccupation with AL In May 1948
Turing resigned from NPL in frustration and
joined the small computer group at the
University of Manchester. whose small but
universal machine started useful operation the
very next month and thus became the world's
first working universal computer. All of Turing's
Al experiments, and all of his computational
work in developmental biology, tock place on this
machine and its successors, built by others but
according to his own fundamental idea.

Von Meumann's style in expounding the design
and operation of EDVAC and the IAS machine
was to suppress engineering details and to work
in terms of an abstract logical description. He
discussed both its system architecture and the
principles of its programming entirely in such
abstract terms. We can foday see that von
Neumann and Turing were right in following the
logical principle that precise engineering details
are relatively unimportant in the essential
problems of computer design and programming
methodology. The ascendancy of logical
abstraction ower concrete realization has ever
since been a guiding principle in computer
sclence, which has kept itself organizationally
almost entirely separate from electrical
engineering. The reason it has been able to do
this is thaf computation is primarily a logical
concept, and only secondarily an engineering one.
To compute is to engage in formal reasoning,
according to certain formal symbolic rules, and it
makes no logical difference how the formulas are
physically represented, or how the logical
transformations of them are physically realized.

Of course no one should underestimate the
enormous importance of the role of engineering
in the history of the computer. Turing and von
Neumann did not. They themselves had a deep
and quite expert interest in the very engineering
details from which they were abstracting, but they
knew that the logical role of computer science is
best played in a separate theater.

3 LOGIC AND FPROGRAMMING

Since coding is not a static process of translation, but rather
the technique of providing a dynamic background to control
the automatic evolution of a meaning, it has to be viewed as a
logical problem and one that represents a new branch of
formal logics. 1. von Neumann and H. Goldsfine, 1947

Much emphasis was placed by both Turing and
von MNeumann, in their discussions of
programming, on the two-dimensional notation
known as the flow-diagram. This quickly became
a standard logical tool of early programming, and
it can sfill be a useful device in formal reasoning
about computations. The later ideas of Hoare,
Dijkstra, Floyd, and others on the logical
principles of reasoning about programs were
anticipated by both Turing (in his 1949 lecture
Checking a Large Routing) and von MNeumann (in
the 1947 Report Planning and Coding of Problems
for an Electronic Computing Instrument). They
stressed that programming has both a static and a
dynamic aspect. The static text of the program
itself is essentially an expression in some formal
system of logic a syntactic structure whose
properties can be analyzed by logical methods
alone. The dynamic process of running the
program is part of the semantic meaning of this
static text.

3.1 AUTOMATIC PROCRAMMING

Turing's friend Christopher Strachey was an early
advocate, around 1950, of using the computer
itself to translate from high-level ‘'mathematical’
descriptions into low-level 'machine-language’
prescriptions. His idea was to try to liberate the
programmer from concern with ‘how' to
compute so as to be able to concentrate on 'what'
to compute: in short, to think and write programs
in a more natural and human idiom. Ironically,
Turing himself was not much interested in this
idea, which he had already in 1947 pointed out as
an "obvious' one. In fact, he seems to have had a
hacker's pride in his fluent machine-language
virtuosity. He was able to think directly and easily
in terms of bare bit patterns and of the

unorthodox number representations such as the
Manchester computer's reverse (i.e., low-order
digits first) base-32 notation for integers. In this
attitude, he was only the first among many who
have stayed aloof from higher-level
programming languages and higher-level
machine architectures, on the grounds that a real
professional must be aware of and work closer to
the actual realities of the machine. One senses
this attitude, for example, throughout Donald
Knuth's monumental treatise on the art of
computer programming.

It was not until the late 19505 (when FORTRAN
and LISP were introduced) that the precise
sequential details of how arithmetical and logical
expressions are scanned, parsed and evaluated
could routinely be ignored by most programmers
and left-to the computer to work out. This
advance brought an immense simplification of
the programming task and a large increase in
programmer productivity. There soon followed
more ambitious language design projects such as
the intemational ALGOL project, and the theory
and practice of programming language design,
together with the supporting software technology
of interpreters and compilers, quickly became a
major topic in computer science. The formal
grammar used to define the syntax of ALGOL was
not initially accompanied by an equally formal
specification of its semantics; but this soon
followed. Christopher Strachey and Dana Scott
developed a formal 'denotational semantics' for
programs, based on a rigorous mathematical
interpretation of the previously uninterpreted,
purely syntactical, lambda calculus of Church. It
was, incidentally, a former student of Church,
John Kemeny, who devised the enormously
popular 'best-selling' programming language,
BASIC.

3.2 DESCRIPTIVE AND IMPERATIVE ASPECTS

There are two sharply-contrasting approaches to
programming and programming languages: the
descriptive appreoach and the imperative
approach.

The descriptive approach to programming
focusses on the static aspect of a computing plan,
namely on the denotative semantics of program
expressions. It tries to see the entire program as a
timeless mathematical specification which gives
the program's output as an explicit function of its
input (whence arises the term 'functional'
programming). This approach requires the

203

computer to do the work of constructing the
described output automatically from the given
input according to the given specifications,
without any explicit direction from the
programmer as to how to do it.

The imperative approach focusses on the dynamic
aspect of the computing plan, namely on its
operational semantics. An imperative program
specifies, step by step, what the computer is to do,
what its ‘flow of control' i5 to be. In exireme
cases, the nature of the outputs of an imperative
program might be totally obscure. In such cases
one must (virtually or actually) run the program
in order to find out what it does, and try to guess
the missing functional description of the output
in terms of the input. Indeed it is necessary in
general to 'flag' a control-flow program with
comments and assertions, supplying this missing
information, in order to make it possible to make
sense of what the program is doing when it is
running.

Although a purely static, functional program is
relatively easy to understand and to prove correct,
in general one may have little or no idea of the
cost of running it, since that dynamic process is
deliberately kept out of sight. On the other hand,
although an operational program is relatively
difficult to understand and prove correct, its more
direct depiction of the actual process of
computation makes an assessment of its efficency
relatively straightforward. In practice, most
commonly-used high-level programming
languages—even LISP and PROLOG—have both
functional and operational features. Good
programming technique reguires an
understanding of both. Programs written in such
languages are often neither wholly descriptive
nor wholly imperative. Most programming
experts, however, recommend caution and
parsimony in the use of imperative constructs.
Some even recommend complete abstention.
Dijkstra’s now-classic Letter to the Editor (of the
Communications of the ACM), entitled 'GOTO
considered harmful' is one of the earliest and
best-known such injunctions.

These two kinds of programming were each
represented in pure form from the beginning:
Godel's purely descriptive recursive function
formalism and Turing's purely imperative
notation for the state-transiion programs of his
machines.

204

33 LOGIC AND PROGRAMMING LANGUAGES

In the late 1950s at MIT John McCarthy and his
group began to program their IBM 704 using
symbolic logic directly. Their system, LISF, is the
first major example of a logic programming
language intended for actual use on a computer.
It is essentially Church's lambda calculus,
augmented by a simple recursive data structure
(ordered pairs), the conditional expression, and an
imperative 'sequential construct' for specifying a
series of consecutive actions. In the early 1970s
Robert Kowalski in Edinburgh and Alain
Colmerauer in Marseille showed how to program
with another only-slightly-augmented system of
symbolic logic, namely -the Horn-clause-
resplution form of the predicate calculus.
PROLOG is essentially this system of logic,
augmented by a sequentializing notion for lists of
goals and lists of clauses, a flow-of-control notion
consisting of a systematic depth-first, back-tracking
enumeration of all deductions permitted by the
logic, and a few imperative commands (such as
the 'cuf’). PROLOG is implemented with great
elegance and efficiency using ingenious
techniques originated by David H. D. Warren. The
principal virtue of logic programming in either
LISP or PROLOG lies in the ease of writing
programs, their intelligibility, and their
amenability to metalinguistic reasoning. LISP and
PROLOG are usually taken as paradigms of two
distinct logic programming styles (functional
programming and relational programming)
which on closer examination turn out to be only
two examples of a single style (deductive
programming). The general idea of purely
descriptive deductive programming is to consirue
computation as the systematic reduction of
expressions to a normal form. In the case of pure
LISP, this means essentially the persistent
application of reduction rules for processing
function calls (Church's beta-reduction ruie), the
conditional expression, and the data-structuring
operations for ordered pairs. In the case of pure
PROLOG, it means essentially the persistent
application of the beta-reduction rule, the rule for
the distributing AND through OR, the rule for
eliminating existential quantifiers from
conjunctions of equations, and the rules for
simplifying expressions denoting sets. By
merging these two formalisms one obtains a
unified logical system in which both flavors of
programining are available both separately and in
combination with each other. My colleague
Ernest Sibert and [some years ago implemented

an experimental language based on this idea (we
called it LOGLISP). Currently we are working on
ancther one, called SUPER, which is meant to
illustrate how such reduction logics can be
implemented naturally on massively parallel
computers like the Connection Machine.

LISP, PROLOG and their cousins have thus
demonstrated the possibility, indeed the
practicality, of using systems of logic directly to
program computers. Logic programming is more
like the formulation of knowledge in a suitable
form to be used as the axioms of automatic
deductions by which the computer infers its
answers to the user's queries. In this sense this
style of programming is a bridge linking
computation in general to Al systems in
particular. Knowledge is kept deliberately apart
(in a 'knowledge base’) from the mechanisms
which invoke and apply it. Robert Kowalski's
well-known equational aphorism ‘algorithm =
logic + conirol ' neatly sums up the necessity to
pay attention to both descriptive and imperative
aspects of a program, while keeping them quite
separate from each other so that each aspect can be
modified as necessary in an intelligible and
disciplined way.

The classic split between procedural and
declarative knowledge again shows up here: some
of the variants of PROLOG (the stream-parallel,
committed-choice nondeterministic languages
such as ICOT's GHC) are openly concerned more
with the control of events, sequences and
concurrencies than on the management of the
deducton of answers to queries. The uneasiness
caused by this split will remain until some way is
found of smoothly blending procedural with

declarative within a wunified theory of
computation,
Mevertheless, with the' advent of logic

programming in the wide sense, computer science
has outgrown the idea that programs can only be
the kind of action-plans required by Turing-von
Meumann symbol-manipulating robots and their
modern descendants. The emphasis is (for the
programmer, but not yet for the machine
designer) now no longer entirely on controlling
the dynamic sequence of such a machine's
actions, but increasingly on the static syntax and
semantics of logical expressions, and on the
corresponding mathematical structure of the data
and other objects which are the denotations of the
expressions. It is interesting to speculate how
different the history of computing might have

been if in 1936 Turing had proposed a purely
descriptive abstract universal machine rather
than the purely imperative one that he actually
did propose; or if, for example, Church had done
so. We might well now have been talking of
'‘Church machines' instead of Turing machines.

We would be used to thinking of a Church
machine as an automaton whose states are the
expressions of some formal logic. Each of these
expressions denotes some entity, and there is a
semantic notion of equivalence among the
expressions: equivalence means denoting the
same entity. For example, the expressions

(23 +4)/(13-4), 13+17, k= 2z+10172(4)

are equivalent, because they all denote the
number three. A Church machine computation
is a sequence of its states, starting with some given
state and then continuing according to the
fransition rules of the machine. If the sequence of
states eventually reaches a terminal state, and
(therefore) the computation stops, then that
terminal state (expression) is the output of the
machine for the inifal state (expression) as input.
In general the machine computes, for a given
expression, another expression which is
equivalent to it and which is as simple as possible.
For example, the expression '3 is as simple as
possible, and is equivalent to each of the above
expressions, and so it would be the ocutput of a
computation starting with any of the expressions
above. These simple-as-possible expressions are
said to be in 'normal form'. The 'program’ which
determines the transitions of a Church machine
through its successive states is a set of rewriting’
rules together with a criterion for applying some
one of them to any expression. A rewriting rule is
given by two expressions, called the 'redex' and
the ‘contractum’ of the rule, and applying it to an
expression changes (rewrites) it to another
expression. The new expression is a copy of the
old one, except that the new expression contains
an occurrence of the contractum in place of one of
the occurrences of the redex.

If the initial state is (23 + 4)/(13 - 4) then the
transitions are:

(23 +4)/(13-4) becomes 27/(13-4),
27/(13-4) becomes 27/9,
27/9 becomes 3.

Or if the initial state is Az. (2z + 1)"/2 (4), then the
transitions are:

205

Az (22 + 13V (4) becomes ((2x4)+ 102
((2x4)+1)" becomes (8+1)w2
(B+1)2 becomes 97
92 becomes. 3.

Most of us are trained in early life to act like a
simple purely arithmetical Church machine. We
all learn some form of numerical rewriting rules
in elementary school, and use them throughout
our lives (but of course Church's lambda notation
is not taught in elementary school, or indeed at
any time except when people later specialize in
logic or mathematics; but it ought o be). Since we
cannot literally store in our heads all of the
infinitely many redex-contractum pairs <23 + 4,

27>, <242, 4> etc, infinite sets of these pairs are

logically coded into simple finite algorithms.
Each algorithm (for addition, subtraction, and so
on) yields the contractum for any given redex of
its particular type. We hinted earlier that an
expression is in normal form if it is as simple as
possible. To be sure, that is a common way to
think of normal forms, and in many cases it fits
the facts. Actually to be in normal form is not
necessarily to be in as simple a form as possible.
What counts as a normal form will depend on
what the rewriting rules are. MNormal form is a
relative notion: given a set of rewriting rules, an
expression in normal form Is one which contains
no redex.

In designing a Church machine care must be
taken that no expression is the redex of more than
one rule. The machine must also be given a
criterion for deciding which rule to apply to an
expression which contains distinct redexes, and
also for deciding which occurrence of that rule's
redexes to replace, in case there are two or more of
them. A simple criterion is always to replace the
leftmost redex ocourring in the expression.

A Church machine, then, 15 a machine whose
possible states are all the different expressions of
some formal logic and which, when started in
some state (i.e, when given some expression of
that logic) will "try’ to compute its normal form.
The computation may or may not terminate: this
will depend on the rules and on the initial
expression. Some of the expressions for some
Church machines may have no normal form.
Since for all interesting formal logics there are
infinitely many expressions, a Church machine is
not a finite-state automaton; so in practice the
same provision must be made as in the case of the

206

Turing machines for adjoining as much external
memorty as needed during a computation.

Church machines can also serve as a simple
model for parallel computation and parallel
architectures. One has only to provide a criterion
for replacing more than one redex at the same
time. In Church's lambda calculus one of the
rewriting rules (‘beta reduction’) is the logical
version of executing a function call in a high-
level programming language. Logic
programming languages based on Horn-clause-
resolution can also be implemented as Church
machines, at least as far as their static aspects are
concerned.

In the early 1960s Peter Landin, then Christopher
Strachey's research assistant, undertook to
convince computer scientists that not merely
LISP, but also ALGOL, and indeed all past, present
and future programming languages are essentially
the abstract lambda calculus in one or another
concrete manifestation. One need add only an
abstract version of the 'state’ of the computation
process and the concept of "jump' or change of
state. Landin's abstract logical model combines
declarative programming with procedural
programming in an insightful and natural way.

Landin's thesis also had a computer-design aspect,
in the form of his elegant abstract logic machine
(the SECD machine) for executing lambda calculus
programs. The SECD machine language is the
lambda calculus itself: there is no question of
‘compiling' programs into a lower-level language
{but more recently Peter Henderson has described
just such a lower-level SECD machine which
executes compiled LISP expressions). Landin's
SECD machine is a sophisticated Church machine
which uses stacks lo keep track of the syntactic
structure of the expressions and of the location of
the leftmost redex.

We must conclude that the descriptive and
imperative views of computation are not
incompatible with each other. Certainly both are
necessary. There is no need for their mutual
antipathy. It arises only because enthusiastic
extremists on both sides sometimes claim that
computing and programming are 'nothing but'
the one or the other. The appropriate view is that
in all computations we can expect to find both
aspects, although in some cases one or the other
aspect will dominate and the other may be present
in only a minimal way. Ewen a pure functional
program can be viewed as an implicit 'evaluate

this expression and display the result' imperative
(as in LISP's classic read-eval-print cycle).

4 LOGIC AND ARTIFICIAL INTELLIGENCE

In Al a controversy sprang up in the late 1960s
over essentially this same issue. There was a
spirited and enlightening debate over whether
knowledge should be represented in procedural or
declarative form. The procedural view was
mainly associated with Marvin Minsky and his
MIT group, represented by Hewilt's PLANNER
system and Winograd's application of it to
support a rudimentary natural language capability
in his simple simulated robot SHRDLU. The
declarative view was associated with Stanford’s
John McCarthy, and was represented by Green's
QA3 system and by Kowalski's advocacy of Horn
clauses as a logic-based deductive programming
language. Kowalski was able to make the strong
case that he did because of Colmerauer's
development of PROLOG as a practical logic
programming language. Eventually Kowalski
found an elegant way to end the debate, by
pointing out a procedural interpretation for the
ostensibly purely declarative Horn clause
sentences in logic programs.

There is an big epistemological and psychological
difference between simply describing a thing and
giving inmstructions for constructing it, which
corresponds to the difference between descriptive
and imperative programming. One cannot
always see how to construct the denotation of an
expression efficiently. For example, the meaning
of the descriptive expression

the smallest integer which is the sum of two cubes in two
different ways.

seems quite clear. We certainly understand the
expression, but those who don't already (probably
from reading of Hardy's famous wvisit to
Ramanujan in hospital) know that it denotes the
integer 1729 will have to do some work to figure it
out for themselves. It is easy to see that 1729 is the
sum of two cubes in two different ways if one is
shown the two equations

1729 =154 123 1725 = 102 458

but it needs at least a little work to find them
oneself. Then to see that 1729 is the smallest
integer with this property, one has to see
somehow that all smaller integers lack it, and this
means checking each one, either literally, or by
some clever shortcut. To find 1729, in the first

place, as the denotation of the expression, one has
to carry out the all of this work, in some form or
another. There are of course many different ways
to organize the task, some of which are much
more efficient than others, some of which are less
efficient, but more intelligible, than others. So to
write a general computer program which would
automatically and efficiently reduce the
expression

the smallest integer which is the sum of two cubes in two
different ways

to the expression '1729' and equally well handle
other similar expressions, is not at all a trivial
task.

4.1 AI AND PROGRAMMING

Automatic programming has never really been
that. It is no more than the automatic translation
of one program into another. So there must be
some kind- of program (written by a human,
presumably) which starts off the chain of
translations. An assembler and =a compiler both
do the same kind of thing: each accepts as input a
program written in one programming language
and delivers as output a program written in
another programming language, with the
assurance that the two programs are equivalent in
a suitable sense. The advantage of this technique
is of course that the source program is usually
more intelligible and easier to write than the
target program, and the target program is usually
more efficient than the source program because it
is typically written in a lower-level language,
closer to the realities of the machine which will
do the ultimate work. The advent of such
automatic translations opened up the design of
programming languages to express 'big' ideas in a
style 'more like mathematics' (as Christopher
Strachey put it). These big ideas are then
translated into smaller ideas more appropriate for
machine languages. Let us hope that one day we
can look back at all the paraphernalia of this
program-translation technology, which is so large
a part of today's computer science, and see that it
was only an interim technology. There is no law
of nature which says that machines and machine
languages are intrinsically low-level. We must
strive towards machines whose 'level' matches
oUr OWIL

Turing and von Meumann both made important
contributions to the beginnings of Al, although
Turing's contribution is the better known. His
1950 essay Computing Machinery and Intelligence

207

is surely the most quoted single item in the entire
literature of Al if only because it is the original
source of the so-called Turing Test. The recent
revival of interest in artificial neural models for
Al applications recalls von MNeumann's deep
interest in eomputational neuroscience, a field he
richly developed in his later years and which was
absorbing all his prodigious intellectual energy
during his final illness. When he died in early
1957 he left behind an uncompleted manuscript
which was posthumously published as the book
The Computer and the Brain.

42 LOGIC AND PSYCHOLOGY IN Al

If a machine is to be able to learn something, it must first be
able to be told it Jofn MeCarthy, 1957

I de not mean to say that there is anything wrong with logic; [
only object to the assumption that ordinary reasoning is
largely based on il M. LT Minshy, 1985

Al has from the beginning been the arena for an
uneasy coexistence between logic and psychology
as its leading themes, as epitomized in the
contrasting approaches to Al of John McCarthy
and Marvin Minsky. McCarthy has maintained
since 1957 that Al will come only when we learn
how to write programs (as he put it) which have
common sense and which can take advice. His
putative Al system is a (presumably) very large
knowledge base made up of declarative sentences
written in some suitable logic (until quite recently
he has taken this to be the first order predicate
caleulus), equipped with an inference engine
which can automatically deduce logical
consequences of this knowledge. Many well-
known Al problems and ideas have arisen in
pursuing this approach: the Frame Problem,
Nonmonotonic Reasoning, the Combinatorial
Explosion, and so on.

This approach demands a lot of work to be done
on the epistemological problem of declaratively
representing knowledge and on the logical
problem of designing suitable inference engines.
Today the latter field is one of the flourishing
special subfields of Al. Mechanical theorem-
proving and automated deduction have always
been a spurce of interesting and hard problems.
After over three decades of trying, we now have
well-understood methods of systematic deduction
which are of considerable use in practical

applications.

208

Minsky maintains that humans rarely use logic in
their actual thinking and problem solving, but
adds that logic is not a good basis even for
artificial problem solving—that computer
programs based solely on McCarthy's logical
deductive knowledge-base paradigm will fail to
display intelligence because of their inevitable
computational inefficiencies; that the predicate
calculus is not adequate for the representation of
most knowledge; and that the exponential
complexity of predicate calculus proof procedures
will always severely limit what inferences are

possible,

Because it claims little or nothing, the view can
hardly be refuted that humans undoubtedly are in
some sense (biclogical) machines whose design,
though largely hidden from us at present and
obviously exceedingly complicated, calls for some
finite arrangement of material components all
built ultimately out of 'mere' atoms and
molecules and obeying the laws of physics and
chemistry. So there is an abstract design which,
when physically “implemented, produces (in
ourselves, and the animals) intelligence.
Intelligent machines can, then, be built. Indeed,
they can, and do routinely, build and repair
themselves, given a suitable environment in
which to do so. MNature has already achieved NI—
natural intelligence. Its many manifestations
serve the Al research community as existence
proofs that intelligence can occur in physical
systerns. MNature has already solved all the Al
problems, by sophisticated schemes only a very
few of which have yet been understood.

4.3 THE STRONG AI THESIS

According to Strong Al, the computer is not merely a tool in
the study of the mind; rather, the appropriately
programmed compuber really i a mind, In the sense that
computers given the right programs can be literally said to
understand and have other cognitive states.

J. R. Bearle, 1580

Turing believed, indeed was the first to propound,
the Strong Al thesis that artificial intelligence can
be achieved simply by appropriate programming
of his universal computer. Turing's Test is
simply a detection device, waiting for intelligence
to occur in machines: if a machine is one day
programmed to carry on fluent and intelligent-
seeming conversations, will we not, argued
Turing, have to agree that this intelligence, or at
least this apparent intelligence, is a property of the
program? What is the difference between

apparent intelligence, and intelligence itself? The
Strong Al thesis is also implicit in McCarthy's
long-pursued project to reconstruct artificially
something like human intelligence by
implementing a suitable formal system. Thus the
Turing Test might (on McCarthy's wview)
eventually be passed by a deductive knowledge
base, containing a suitable repertory of linguistic
and other everyday human knowledge, and an
efficient and sophisticated inference engine. The
system would certainly have to have a mastery of
(both speaking and understanding) natural -
language. Also it would have to exhibit to a
sufficent degree the phenomenon of learning’ so
as to be capable of augmenting and improving its
knowledge base to keep it up-to-date both in the
small {for example in dialog management) and in
the large (for example in keeping up with the
news and staying abreast of advances in scientific
knowledge). In a recent vigorous defense of the
Strong Al thesis, Lenat and Feigenbaum argued
that if enough knowledge of the right kind is
encoded in the system it will be able to 'take off
and-autonomously acquire more-through reading
books and newspapers, watching TV, taking
courses, and talking to people.

It is not the least of the attractions of the Strong Al
thesis is that it is empirically testable. We shall
know if someone succeeds in building a system of
this kind: that indeed is what Turing's Test is for.

44 EXPERT SYSTEMS

Expert systems are limited-scale attempted
practical applications of McCarthy's idea. Some of
them (such as the Digital Equipment
Corporation's system for configuring VAX
computing systems, and the highly specialized
medical diagnosis systems, such as MYCIN) have
been quite useful in limited contexts, but there
have not been as many of them as the more
enthusiastic proponents of the idea might have
wished. The well-known book by Feigenbaum &
McCorduck on the Fifth Generation Project was a
spirited attempt to stir up enthusiasm for Expert
Systems and Knowledge Engineering in the
United States by portraying ICOT's mission as a
Japanese bid for leadership in this field.

There has indeed been much activity in devising
specialized systems of applied logic whose axioms
collectively represent a body of expert knowledge
for some field (such as certain diseases, their
symptoms and treatments) and whose deductions
represent the process of solving problems posed

about that field (such as the problem of
diagnosing the probable cause of given observed
symptoms in a patient). This, and other, attempts
to apply logical methods to problems which call
for inference-making, have led to an extensive
campaign of reassessment of the basic classicial
logics as suitable tools for such a purpose. Mew,
nonclassical logics have been proposed (fuzzy
logic, probabilistic logic, temporal logic, various
modal logics, logics of belief, logics for causal
reatlonships, and so on) along with systematic
methodologies for deploying them (truth
maintenance, circumscription, non-monotonic
reasoning, and so on). In the process, the notion
of what is a logic has been stretched and modified
in many different ways, and the current picture is
one of busy experimentation with new ideas.

4.5 LOGIC AND NEUROCOMFUTATION

Von Neumann's view of Al was a 'logico-neural’
version of the Strong Al thesis, and he acted on it
with typical vigor and scientific virtuosity. He
sought. to-formalize, in .an abstract model, aspects
of the actual structure and function of the brain
and nervous system. In this he was consciously
extending and improving the pioneer work of
McCullogh and Pitts, who had described their
maodel as 'a logical caleculus immanent in nervous
activity’. Here again, it was logic which served as
at least an approximate model for a serious attack
on an ostensibly nonlogical problem,

Von Neumann's logical study of self-
reproduction as an abstract computational
phenomenon was not so much an Al
investigation as an essay In quasi-biological
information processing. It was certainly a
triumph of abstract logical formalization of an
undeniably computational process. The self-
reproduction method evolved by MNature, using
the double helix structure of paired
complementary coding sequences found in the
DMA molecule, is a marvellous solution of the
formal problem of self-reproduction. Von
Neumann was not aware of the details of
MNature's solution when he worked out his own
logical, abstract version of it as a purely theoretical
construction, shortly before Crick and Watson
unravelled the structure of the DNA molecule in
1953. Turing, too, was working at the time of his
death on another, closely-related problem of
theoretical biology—morphogenesis—in which
one must try to account theoretically for the
unfolding of complex living structural
organizations underthe control of the programs

209

coded in the genes. This is net exactly an Al
problem. One cannot help wondering whether
Turing may have been disappointed, at the end of
his life, with his lack of progress towards realizing
AL If one excludes some necessary philosophical
clarifications and preliminary methodological
discussions, nothing had been achieved beyond
his invention of the computer itself.

The empirical goal of finding out how the human
mind actually works, and the theoretical goal of
reproducing its essential features in a machine,
are not much closer in the early 1990s than they
were in the early 1950s. After forty years of hard
work we have 'merely’ produced some splendid
tools and thoroughly explored plenty of blind
alleys. We should not be surprised, or even
disappointed. The problem is a very hard one.
The same thing can be said about the search for
controlled thermonuclear fusion, or for a cancer
cure. Our present picture of the human mind is
summed up in Minsky's recent book The Society
of Mind, which offers a plausible general view of
the mind's architecture, based.on. clues from the
physiology of the human brain and nervous
system, the computational patterns found useful
for the organization of complex semantic
information-processing systems, and the sort of
insightful interpretation of observed human
adult- and child-behavior which Freud and Piaget
pioneered. Logic is given little or no role to play
in Minsky's view of the mind.

Minsky rightly emphasizes (as logicians have long
insisted) that the proper role of logic is in the
context of justification rather than in the context
of discovery. MNewell, Simon and Shaw's 1956
well known propositional calculus theorem-
proving program, the Logic Theorist, illusirates
this distinction admirably. The Logic Theorist is a
discovery simulator. The goal of their experiment
was to make their program discover a proof (of a
given propositional formula) by ‘heuristic’
means, reminiscent (they supposed) of the way a
human would attack the same problem. As an
algorithmic theorem-prover (one whose goal is to
show formally, by any means, and presumably as
efficlently as possible, that a given propositonal
formula is a theorem) their program performed
nothing like as well as the best nonheuristic
algorithms. The logician Hao Wang soon (1959)
rather sharply pointed this out, but it seems that
the psychologeial motivation of their
investigation had eluded him (as indeed it has
many others). They had themselves very much
muddled the issue by contrasting their heuristic

210

theorem-proving method with the ridiculously
inefficient, purely fictional, 'logical’ one of
enumerating all possible proofs in lexicographical
order and waiting for the first one to turn up with
the desired proposition as its conclusion. This
presumably was a rhetorical flourish which got
out of control. It strongly suggested that they
believed it is more efficient to seek proofs
heuristically, as in their program, than
algorithmically with a guarantee of success.
Indeed in the exuberance of their comparison they
provocatively coined the wicked but amusing
epithet 'British Museum algorithm' for this
lexicogaphic-enumeration-of-all-proofs method—
the infended sting in the epithet being that just as,
given enough time, a systematic lexicographical
enumeration of all possible texts will eventually
succeed in listing any given text in the vast British
Museum Library, so a logician, given enough
time, will eventually succeed in proving any
" given provable proposition by proceeding along
similar lines. Their implicit thesis was that a
proof-finding algorithm which is guaranteed to
succeed-for-any- provable- input- is necessarily
unintelligent. This may well be so: but that is not
the same as saying that it is necessarily inefficient.

Interestingly enough, something like this thesis
was anticipated by Turing in his 1947 lecture
before the London Mathematical Society:

- if a machine is expected to be infallible, it cannot also be
intelligent. There are several mathematical theorems which
say almost exactly that.

5 CONCLUSION

Logic's abstract conceptual gift of the universal
computer has needed to be changed remarkably
little since 1936. Until very recently, all universal
computers have been realizations of the same
abstraction. Minor modifications and
improvements have been made, the most striking
one being internal memories organized into
addressable cells, designed to be randomly
accessible, rather than merely sequentially
searchable (although external memories remain
essentially sequential, requiring search). Other
improvements consist largely of building into the
finite hardware some of the functions which
would otherwise have to be carried out by
software (although in the recent RISC
architectures this trend has actually been
reversed). For over fifty years, successive models
of the basic machine have been 'merely’ faster,
cheaper, physically smaller copies of the same
device. In the past, then, computer science has

pursued an essentially logical quest: to explore the
Turing-von MNeumann machine’s unbounded
possibilities. The technological -challenge, of
continuing to improve its physical realizations,
has been largely left to the electrical engineers,
who have performed miracles.

In the future, we must hope that the logician and
the engineer will find it possible and natural to
work more closely together to devise new kinds of
higher-level computing machines which, by
making programming easier and more natural,
will help to bring artificial intelligence closer.
That future has been under way for at least the
past decade. Today we are already beginning to
explore the possibilities of, for example, the
Connection Machine, various kinds of neural
network machines, and massively parallel
machines for logical knowledge-processing.

It is this future that the bold and imaginative
Fifth Generation Project has been all about.
Japan's ten-year-long ICOT-based effort has
stimulated_(and._indeed challenged) many. other
technologically advanced countries to undertake
ambitious logic-based research projects in
computer science. As a result of ICOT's
international leadership and example, the
computing world has been reminded not only of
how central the role of logic has been in the past,
as generation has followed generation in the
modern history of computing, but also of how
important a part it will surely play in the
generations yet to come.

