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Abstract

The Filth Generation Computer Project was launched
in 1982, with the aim of developing parallel comput-
ers dedicated to knowledge information processing. It
is commonly believed to be very difficult to parallelize
knowledge processing based on symbolic computation.
We conjectured that logie programming technology would
solve this difficulty.

We conducted our project while streseing two seem-
ingly different aspects of logic programming: one was
eslablishment of & new information technology, and the
other was pursuit of basic Al and software engineering
vesuarch,

In the fovmer, we developed & concurrent logic pro-
gramming lenguage, GHEC, and its extension for practical
paralle] prograiing, KL1, The invention of GHC/KL]
cicabled us to conduel parallel research on the develop-
ment of seflware lechnelogy and parallel hardware ded-
feated to the new language.

We also developed several constraint logic program-
miing languages which are very promising as high level
Fanguiges for Al applications, Though most of them are
based on sequential Prolog lechnology, we are now -
Eegraling constraint logic programoming and coneurrent
logic programming and developing an integrated lau-
guage, GROC,

ln the lalter, we investigated many fundamentel AT
and soltware engiveering problems including hypotheli-
vl reasoning, analogical inference, knowledge represen-
tation, theorem proving, pactial evaluation and program
translormation.

As aoresult. we succeeded i showing that legic pro-
sramiming provides a very frn foundation for many as-
et af iformation processing: from advanesd soltware
techoology for AL aned soltware cogineering, throngh sys-
tenn programing and parelle]l programming, to parailel
architecture,

Tlee vesearch activities are continuing and latest as
well as earlior results strongly indicate the trubly of our
conjecture and sl the facl thet our approach is appro-

priste

1 Introduction

In the Fifth Generation Computer Projech, two main
research targets were pursued: knowledge information
processing and parallel processing. Logic programming
was adopted as a key technology for achieving both tar-
gets simulianeously. At the beginning of the project, we
adopied Prolog as our vehicle to promote the enfire re-
search of the project. Since there were no systematic
research aftempts based on Prolog before our project,
there were many Lthings Lo dao, including the development
of a suitable workstation for the research, experimental
studies for developing a knowledge-based systemn in Pro-
log and investigation inte possible parallel architecture
for the language. We rapidly succeeded in promoting
reseerch in many qlimt‘:inna.

From this ressarch, thres achievements are worth not-
ing. The first is the development of our own worksta-
tion dedicated to ESP, Extended Self-contained Prolog.
We developed an operating system for the workstation
completely in ESP [Chikayama 88]. The second is the
application of partial evalnation to meta programming.
This enabled us io develop & compiler for a new program-
ming language by simply deseribing an interpreter of the
language and then partially evaluating il. We applied
this technique to derive a bottom-up parser for context
free grammar given a bottom up interpreter for them. In
other words, partial evaluation made meta programming
useful in real applications. The third achievement was
the development of constraint legic programming lan-
EUATES. We dE\I‘E;ﬂPE{'I two constraint logic programming
languages: CIL and CAL. CIL is for natural language
processing and is based on the incomplete data struce
ture for representing “Complex Indeterminates” in sit-
uation theovy, It has the capability to represent struc-
tured data like Minsky's {rame and any relationship be-
tween slots’ values can be expressed using constraints.
CIL was used to develop a natural language understand-
ing system called DUALS. Another constraint logic pro-
gramming languege, CAL, is for non-linear equations.
Its inference is done using the Buchberger algorithm for
computing the Groébner Basis which is a variant of the
Knuth-Bendix completion algorithm for a term rewriting



syslem.

We encountered one serious problem inherent to Pro-
log: that was the lack of coneurrency in the fundameatal
framework of Prolog. We recognized the importance of
concurrency in developimg parallel processing technelo-
gies, and we began searching for alternative logic pro-
gramming languages with the notion of concurrency.

We noticed the work by Keith Clark and Steve Gregory
on Relational Language [ClarkGregory 81) and Ehud
Shapire on Concurrent Prolog {Shapire 83]. These lan-
guages have a common feature of committed choiee
nondeterminism to introduce concurrency. We devoted
our efforts to investigating these languages carefully
and Ueda finally designed a new committed choice
logic programming language called GHC [Ueda 86a)
[UedaChikayama 90], which has simpler syntax than the
above two languages and still have similar expressiveness,
We recognized the importance of GHC and adopted it as
the core of our kernel language, KL1, in this project. The
introduction of KL1 made it possible to divide the entire
research project into two parts: the development of par-
allel hardware dedicated to KL1 and the development of
software technology for the language. In this respect, the
invention of GHC is the most important achievement for
the success of the Fifth Generation Computer Systems
projest.

Besides these language oriented researches, we per-
formed many fundamental researches in the field of arti-
ficial intelligence and software engineering based on logic
and logic programming. They include researches on non-
monotonic reasoning, hypothetical reasoning, abduction,
induction, knowledge representation, thesrem proving,
partial evaluation and program transformation. We ex-
pected that these researches would become important
application fields for our parallel machines by the affinity
of these problems to logic programming and logic based
pavallel processing. This is now happening.

In this article, we first deseribe our research efforts
n econcurrent logic programming and in constraint logic
programming. Then, we discoss our recent research ac-
tivities in the field of software engineering and artificial
mtelligence. Finally, we conclude the paper by stating
the diretion of future research.

2 Concurrent Logic Program-
ming

In this seetion, we pick up twoe important topics in
concurrent logic programming research in the project.
One is the design principles of our concurrent logic
programming language Flat GHC (FGHC) [Ueda 86a)
[UedaChikayama 90], on which the aspects of KL1 as
a concurrent language is based. The other is search
paradigms in FGHC, As discussed later, one drawback
of FOHOC, viewing 25 a logic programming language, is
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the lack of search capability inherent in Prolog. Sinece
the capability i3 related to the notion of completeness in
logic prograrnming, recovery of the ability is essential.

2.1 Design Principles of FGHC

The most important feature of FGHC is that there is
only one syntactic extension to Prolog, called the com-
mitment operator and represented by a vertical bar *|".
A commitment operator divides an entire clause into two
parts called the guard part (the left-hand side of the bar)
and the body part (the right-hand side}. The guard of a
clavse has two important roles: one is to specily 2 condi-
tion for the clause to be selected for the succeeding com-
putation, and the other is to specify the synchronization
condition. The general rule of synchronization in FGHC
is expressed as doteflow synchrenization. This means
that computation is suspended until sufficient data for
the computation arrives. In the case of FGHC, guard
compuiation is suspended until the caller is sufficiently
instantiated to judge the guard condition. For exam-
ple, consider how a ticket vending machine works. After
receiving money, it has to wail until the user pushes a
button for the destination. This waiting is described as a
clause such that “if the user pushed the 160-ven butten,
then issue a HH0-yen ticket™.

The important thing is that dataflew synchronization
cen be realized by a stmple rule governing head unifica-
tion which occurs when a goal is executed and a corre-
sponding FGHC clause is called: the information flow of
head unification must be one way, from the caller to the
callee. For exemple, consider a predicate representing
service at a front desk. Two clavses define the predi-
cate: one is for during the day, when more customers are
expected, and another 1s for after-hours, when no more
customers are expected. The clauses have such defini-
tions as:

serve{[First | Rest]) :- <extra-condition> |
do_service(First), serve{Rest).
sarva([]) :- true | true.

Besides the serve process, there should be another pro-
cess guene which males a waiting quene for service. The
top level goal looks lile:

T= gquens(¥s), serve(s).

where “7=" is & prompt to the user af the terminal. Note
that the execution of this goal generates two processes,
gueue and serve, which share a variable Xs. This shared
variable sets as a channel for data transfer from one pro-
cess to the other. In the above example, we assume that
the gueue process instantiates Xs and the serve pro-
cess reads the value. [n other words, queue acls as a
generator of the value of X= and serve acis as the con-
sumer. The process qoeus instantiates Xs either to a
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list of servees represented by [<first-servee>, <second-
servee>,...] or to an empty list []. Before the instanti-
ation, the value of Xs remains undefined.

Suppose Xs is undefined. Then, the head urification
invoked by the goal serve(Xs) suspends because the
equations Xs = [First | Rest] and Xs = [] cannot be
solved without instanfiating Xs. But such instantiation
vielates the rule of one-way unification. Note that the
term [First | Hest] in the head of sarve means that
the clanse expects a non-empiy list fo be given as the
value of the argument. Similarly, the term [] expects
an empty list to be given. Now, it is clear that the uni-
directionality of information fow realizes dataflow syn-
chronization.

This prineiple s very important in two aspects: one is
that the language provides a natural tool for expressing
concurrency, and the other is that the synchronization
mechanism ts simple ensugh to realize very. efficient par-
allel implementation.

2.2 Search Paradigms in FGHC

There is cue serious drawback to FGHC because of the
very nature of committed choice; that is, it no longer
hze an sutematic search capability, which is one of the
most important features of Prolog. Prolog achieves its
search capability by mesns of automatic backtracking.
However, since commitied choice uniquely determines &
clawse for succeeding computation of a goal, there is no
way of searching [or aliernative branches other than the
branel selected. The search capability is related o the
notion of completeness of the logic programming compu-
tation procedure and the lack of the capability is very
serious in thal respect.

One could imagine a seemingly trivial way of real
iing search capability by means of er-parailel search:
that s, 1o copy Lhe eurrent computational environment
which provides the binding information of all variables
Lhat have appeared so far and to continue computations
for each alternative case in parallel. But this does not
work because copyving non-ground terms is impossible in
FGHEC, The reason why it is impossible is that FGHC
epnnol guarantee when actual binding will occur and
there may be a moment when a variable observed at
somie processor remains unchanged even after some goal
has instantiated it at a different processor.

One might ask why we did not adopt a Prolog-like
language as our kernel language for parallel computa-
tion. There ave two main reasons. One is that, as stated
above, Prolog does not have enough expressiveness for
concurrency, which we see as a ]u::,-’ feature not crn]}r for
expressing coneurrent algorithms but also for providing
i frmewerl: for the contrel of physical parallelism. The
other is that the execution mechanizm of Prolog-like lan-
gunges with a search capability seemed too complicated
Lo develop ollicient paralle] implementations.

We tried to recover the search capability by devising
programming techniques while keeping the programming
language as simple as possible. We succeeded in invent-
ing several programming methods for cpmputing all so-
lutions of a problem which effectively achieve the com-
pleteness of logic programming, Three of them are listed
as follows: _

(1) Continuation-based method [Ueda 86b]

{2) Layered stream method [OkumuraMatsumoto 87

(3) Query compilation method [Furukawa 92)

In this paper, we pick up (1) and (3), which are
complementary to each other. The continuation-based
method is suitable for the efficient processing of rather-
algorithmic problems. An example is to compute all ways
of partitioning a given list into two sublists by using
append. This method mimics the computation of OR-
parallel Prolog using 4 ND-parallelism of FGHC., AND-
seriel computation in Prolog is translated to continu-
ation processing which remembers continuation points
m & stack, The intermediate results of computation are
passed from the preceding goals to the next goals through
the continvation stack kept as one of the arpuments of
the FGHC goale. This method requires mput/output
mode analysis before translating a Prolog program into
FGHC. This requirement makes the method impracti-
cal for database applications because there are too many
possible input-output modes for each predicate.

The query eompilation method sclves this problem.
This method was first introduced by Fuchi [Fuchi 90]
when he developed a bottom-up theorem prover in KLI.
In his coding technique, the multiple binding problem is
avoided by reversing the role of the caller and the callee in
straightforward implementation of database query eval-
uation. Instead of trying to find a record (represented
by a elause) which matehes a given query pattern repre-
sented by a goal, his method represents each query com-
ponent with a compiled clause, represents a databasae
with a data structure passed around by goals, and tries
to find & query component clause which matches a goal
representing a record and recurses the process for all po-
tentially applicable records in the database'. Since ev-
ery record is & ground term, there is no variable in the
caller. Variable instantiation occurs when query com-
ponent clauses are searched and an appropriate clause
representing 2 query component is found to mateh a
currently processed record. Note that, as a result of re-
versing the representation of queries and dalabases from
straightforward representation, the information flow is
now from the caller {database) to the callee (a query
component). This inversion of information flow avoids
deadlock in query processing. Anocther important trick
is that each time a query clause is called, a fresh wari-
able is ereated for each variable in the query component.
This mechanism is used for making a new environment

We need an ensiliary query clause which matches every record
after failing to match the record to all the real query clanses.



for each OR-parallel computation branch., These tricks
make it possible to use L1 variables to represent object
level variables in database queries and, therefore, we can
avoid different compilation of the entire datebase and
eueries for each input/eutput mode of queries.

The new coding method stated above 35 very gen-
eral and there are many applications which ean be pro-
gramme in this way. The only limitation of this ap-
proach is that the database must he more instantiated
than queties. In bottomeup theorem proving, this re-
guirement is referred to g3 the range-restrictedness of
each axtom. Range-restrictedness means that, after suc-
cessfully finding ground model elements satislying the
antecedent of an axiom, the new model element appear-
ing as the consequent of the axiom must be ground.

This restriction seems very strong. Indeed, there are
problems in the theorem proving area which do not
satisfy the condition. We need & top-down theorem
prover for such problems. However, many real life prob-
lems satisfy the range-restricledness because they al-
mosi always have finite concrete models. Such prob-
lems include VLSLCAD, circuit dirgnosis, planning, and
scheduling,. We are developing a parallel bottom-up
theorem prover called MGTP (Model Generation The-
orem Prover} [FujitaHasegawa 91] based on SATCHMO
developed by Manthey and Bry [MantheyBry 83]. We
are investigating new applications to utilize the theorem
prover, We wiil give an example of computing abduction
nzing MGTP in Section 5.

3 Constraint Logic Program-
ming

We began our constraint logic programming research
almeost 2t the beginning of our project, in relation to
the research on nalural language processing., Mukai
[MulkaiYasukawa 85] developed a language called CIL
{Complex Indeterminates Language] [or the purpose of
developing a computational model of situation seman-
tice. A compler indeferminale is 2 data structure allow-
ing partially specified terms with indefinite arity. During
the design phase of the language, he encountered the idea
of freeze in Prolog I by Colmerauer [Colmerauer 86]. He
adopted freeze as & proper control structure for our CIL
language.

From the viewpoint of constraint satisfaction, CIL only
has & passive way of solving constraint, which means
that there is no active computation for solving con-
straints such as constrzint propagation or solving si-
multanecus equations. Later, we began our research on
constraint logic programming invalving active constraint
solving. The language we developed is called CAL. It
deals with non-linear equations as expressions to spec-
ify constraints. Three events triggered the research: one
was our preceding efforts on developing a term rewrit-
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ing system called METIS for a theorem prover of linear
algebra [OhsugaSalkai 91). Another event was our en-
counter with Buchberger’s algorithm for computing the
Gribner Basis for solving non-linear equations. Since the
algorithm is a verient of the Knuth-Bendix completion
algorithm for a term rewriling system, we were able to
develop the system easily from our experience of devel
oping METTS. The third event was the development of
the CLP(X) theory by Jaffar and Lassez which provides
a framework for constraint logic programming languages
[JaffarLasses 86].

There is further remarkable research on constraint
logic programming in the field of general symmbol pro-
cessing [Tsuda 32]. Tsuda developed a language called
cu-Prolog. In cu-Prolog, constraints are solved by means
of program transformation techniques called unfold/fold
transformation (these will be discussed in more detail
later in this paper, as an optimization technique in re-
lation to software engineering). The unfold/feld pro-
gram transformation is used here as a basic operation
for solving combinaterial constraints ameng terms, Each
time the transformation is performed, the program is
modified to a syntactically less constrained program.
Mote that this basic operation is similar to term rewrit-
ing, a basic operation in CAL. Both of these operations
try to rewrite programs to get certain canomical forms,
The ides of cu-Prolog was intreduced by Hasida during
his work on dependency propagation and dynamical pro-
gramming [Hesida 82]. They succeeded in showing that
contesxt-free parsing, which is as efficient as chart parsing,
emerges a5 a result of dependency propagation during the
execution of a program given as a seb of grammar rules
in cu-Prolog. Actually, there is no need to construet a
parser. cu-Prolog itself works as an efficient parser.

Hasida [Hasida 9] has been working on a fundamental
izgue of artificial intelligence and cognitive science from
the sspect of a computational model. In hia computa-
tion model of dynamical programming, computation is
controlled by various kinds of petential energies associ-
ated with each atornic constraint, clause, and unification.
Potential energy reflects the degree of constraint viola-
tion and, therefore, the reduction of energy contributes
constraint resclution.

Conetraint logic programming preatly enriched the
expressiveness of Prolog and is now providing a very
promising programmeng environment for applications by
extending the domain of Prolog to cover most Al prob-
lesmrus.

Oune big issue in our project is how to integrate con-
straint logic programming with concurrent logic pro-
gramming to obtain both expressiveness and efficiency.

This mtegration, however, is not easy to achieve be-
cauge (1) constraint logic programming focuses on a con-
trol scheme for efficient execution specific to each con-
straint solving scheme, and (2) constraint logic program-
ming essentially includes & search paradigm which re
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quires some suitable support mechanism such as auto-
matic backiracking,

It turns out that the first problem can be processed ef-
ficiently, to some extent, in the concurrent logic program-
ming scheme utilizing the data How control method. We
developed an experimental concurrent constraint logic
programming language called GDCC (Guarded Defi-
nite Clauses with Constraints), implemented in KL1
[HawleyAiba 91]. GDCC is based on an ask-tell mech-
anism proposed by Maher [Maher 87], and extended by
Saraswat [Saraswat 89]. It extends the guard computa-
tion mechanism from a simple one-way unification solv-
ing problem to a more general provability check of con-
ditions in the guard part under a given set of constraints
using the ask operation. For the body computation, con-
straint literals appearing in the body part are added to
the consteaint sel using the fell operation. H the guard
conditions are not known te be provable becavse of a
lack of information in the constraints set, then compu-
talion is suspended, If the conditions are disproved un-
der the constraints set, then the guard computation fails.
Maote that the provability check controls the order of con-
straint solving execubion. New consiraints appearing in
the body of a clause &re not included in the constraint
set until the guard conditions are known io be provable,

The second problem of realizing a search paradigm in a
comenrrent constraiot logic programming framework has
not. been solved so far. One obvious way is to develop an
O parallel search mechanism which uses a full unifica-
Lo engine implemented using ground term representa-
tion of logical variables [Koshimura et al. 91], However,
the performance of the unifier is 10 to 100 times slower
than ihe built in unifier and, as such, it is not very practi-
cil. Another possible selution is to adopt the new coding
technique inbroduced in the previous section. We expect
to be able to efficiently introduce the search paradigm by
applying the coding method. The paradigm is erueial if
parallel inlerence machines are to be made useful for the
wnnerous applications which require high levels of both
expressive and computational power,

4 Advanced Software Engineer-
ing

Software engineering aims &t supporting software devel-
opment in various dimensions; increase of software pro-
ductivity, development of high quality software, pursuit
ol easily maintainable software and so en. Logic pro-
gramuning has great potential for many dimensions in
soltware engineering. One obvious advantage of logic
programming is the affinity for correctness procf when
given specifications, Automatic debugging is a related
issue. Also, there is a high possibility of achieving auto-
matic program synthesis from specifications by applying
pproof techniques as well as from examples by applying

inducticn. Program optimization is another promising
direction where logic programming works very well,

In this section, two topics are picked up: (1) meta
programming and its optimization by partial evaluation,
and (2) unfold/feld program transformation.

4.1 Meta Programming and Partial
Evaluation

We investigated meta programming technology as a ve-
hicle for developing knowledge-based systems in a logic
programming framework inspired by Bowen and Kowal-
ski's work [BowenKowalski 83). It was a rather direct
way to realize a Imowledge assimilation system using the
meta programming technigque by regarding integrity con.
straints as meta rules which must be satisfied by a knowl-
edge base. One big problem of the approach was its inef-
ficiency due to the meta interpretation overhead of each
ohject level program. We challenged the problem and
Takenchi and Furukawa [TakeuchiFnrukawa 86] made a
breakthrough in the problem by applying the optimiza-
tion techmique of partial evaluation to meta programs.
We first derived an efficient compiled program for an ex-
pert system with uncertainty computation given a meta
interpreter of rules with certainty factor., In this pre-
gram, we succesded in getting thres times speedup over
the original program. Then, we tried a more non-trivial
problem of developing a meta interpreter of a bottom-up
parser and deriving an efficient compiled program given
the interpreter and a set of grammar rules. We suc-
ceeded in obtaining an object program known as BUP,
developed by Matsumote [Matsumoto ef el 83). The
importance of the BUP meta-interpreter is that it is not
a vanilla meta-interpreter, an obvious extension of the
Prolog mterpreter in Prolog, because the control strue-
ture is totally different from Prolog's top-dewn control
structure.

After our first success of applying partial evaluation
techniques in meta programming, we began the devel-
opment of a seli-applicable partial evaluaior. Fujita and
Furukawa |PujitaFurukawa 88) succeeded in developing a
simple self-applicable partial evaluator. We showed that
the partial evaluator itself was a meta interpreter very
similar to the following Prolog interpreter in Prolog:

solva(true) .
solve({A,B)} := =molve(A), solvelB).
solve(i) t= glausa({A,B), solve(B).

where it is assumed that for each program clause,
H :- B, a unit clavnse, clanse{H , B}, is asserted®. A
goal, solve((d), simulates an immediate execution of the
subject goal, G, and obtains the same result,

This simple definition of a Prolog self-interpreter,
solve, suggests the following partial solver, psolve.

*clamse(_,.) i& available as 2 built-in procedure in the
DECsystemn-10 Frolog system.



psolva(true,true).
psolve((A,B), (RA,RB}) :-
psolve(A,RA), psolve(B,RB).
psolvel(A R} :-
clausel(d,B), psolva(B,R).
peolve(A,A) := ‘$suspend’ (A).

The partial solver, psolve(d, R}, parlially solves a
given goal, &, returning the result, . The resclt, R,
iz called the residunl goalis) fov the given goal, . The
residual goal may be true when the given goal is totally
solved, otherwise it will be a conjunction of subgoals,
cacli of which is a goal. fi, suspended to be solved al
‘$guspend’ (1), for some reason. An auwvilioy predi-
cale, *$suspend’ (P}, is defined for each goal pattern,
P, by the user,
Mote that psolve is related to solve as:

solve(d) :- pzolvelG,R}, solva(R).

That is, & geal, 7, succeeds if it is partially solved with
the residual goal, K, and & in turn succeeds (is totally
salved}. The total selution for G is thus split into two
tasks: partial solution for & and total solution for the
residual goal, i,

We developed a sell-applicable partial evaluator by
madifying the above psolve program. The main modi-
fication is the treatment of built-in predicales in Prolog
and Lhose predicates used to define the partial evalualor
itsell to make it self-applicable. We succeeded in apply-
ing the partial evaluator to itsell and genevated a com-
piler by partially evalualing the psolve program with
respect Lo A given interpreter, using Lhe identical psolve.
W Turther succeeded in oliaining a compiler generator,
which generates dilfovent compilers given different inter-
preters, by partially evaluating the pselve program with
vespect to itsell, using itsell,

Theoretically, it was known that sell-application of
a partial evaluator generates compilers and A compiler
gererator [Futamura 71, There were many allemnpts
to realize sell-applicable partial evaluators in the frame-
work of lunclional languages for & long time, but no suc-
cosses were reported until very recently [Jones ef al. 85,
[Jones et al. 38], [GomardJones 89]. On the other hand,
we succeeded in developing a seif-applicable partial eval-
wator in o Prolog framewerk in a very short time and
also in a very elegant way. This proves some merits of
logic programming languages over functional program-
ming languages, especially i its binding scheme based
on unification.

4.2 Unfold/Fold Program Transforma-
tion
Program trvansformation provides a powerful method-

ology for the development of soltware, especially the
derivation of efficienl programs either from their formal

I
L=

specification or from decralative but possibly inefficient
programs. Programs written in declarative form are of
ten inefficient under Prolog's standard [eft to right con-
trol rule. Typical examples are found in programs based
on & generate and test paradigm. Seki and Furukawa
[SekiFurukawa 87] developed a program transformation
method based on unfelding and folding for such pro-
grams, We will explain the idea in some detail. Let
gen_test(L) be a predicate defined as follows:

gen_test(L) :- gen{L), test(L).

where L is a variable representing a list, gen(L) is & gen-
erator of the list L, and test (L) is a tester for L. Assume
both gen and test are incremental and are defined as
folkaws:

gen{[1).
gen{[L|L]) :- gpen_element(X), gen(L).
tast([1).

test([XIL]} :- test_slement(X), test{L).

Then, it is possible to fuse two processes gen and test
by applying unfold/fold transformation as follows:

gen_test{[XIL1) :- gen{[XIL1), test([XIL]).
unfold ab gen and test

gen_test([X]L]) :- gen_element (%), genil),
test_element(X), test(L).

Jold by gen_test

gen_test([X|L]) :- gen_element(X),
tast_element(X), gen_test{L).

If the tester is not incremental, the above unfold/Told
transformation does not work. One example is to tesl
that all slements in the list are different from cach other.
[nn this case, the test predicate is defined as follows:

test([]).
test([X|L]} :- non_member(X,L}, test{L).

nen_member(_,[1).
non_member (X, [¥IL]):—
dif(X,¥), non_member(X,L).

where di£{X,Y) is a predicale judging that X is mot equal
to ¥. Mate that this test predicate is not incremental be-
cause a Lest for the first element ¥ of the list reguives the
information of the entire list. The solution we gave to
this problem was to replace the test predicate with an
equivalent predicate with incrementality. Such an equiv-
alent program test’ iz obtained by adding an acenma-
lator as an extra argument of the test predicate defined
as follows:
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test?’{{],_).
test  ([XIL], Acc) -
non_membar (X, Acc), test’(L,[X|Azc]).

The relationship between test and test’ is given by
the following theorem:

Theorem
test(L) = test' (L, [1}

Now, the original gen_test program becomes
gen_test(L)} :- gen(L), test’(L,[1)}.

We need o introduce the following new predicate to per-
form the unfold/fold transformation:

gen_test'(L,Acc) :- gen(L), test'{L,Acc).

By applying a similar transformation process as be-
fore, we get the following fused recursive program of
gen_test':

gen_test*{[],_).
gen_tast ' {[XIL},Acc) :- gen_element(X),
non_member (X, Acc), gen_test®(L,[X|Acc]).

By symbolically computing the two goals

T tast([X1,...,%n]).

7= test’ ((Xi,...,Xn]).

and comparing the results, one can find that the reorder-
ing of pair-wise comparisons by the inlroduction of the
accumulator is analogous to the exchange of double sum-
mation B, VE Nz, = B, VB, Jz;. Therefore, we refer
to this properly as structural commutativity.

One of the key problems of unfold/fold transformation
is the introduction of a new predicate such as gen_test?
in the last example. Kawamura [Kawamura 91] devel-
oped & syutactic rule for finding suitable new predicates.
There were several atlempts to find appropriate new
predicates using domain dependent heuristic knowledge,
such as append optimization by the introduction of dif-
ference list representation. Kawamura's work provides
some general criteria for selecting candidates for new
predicates. His method first analyzes a given program
to be transformed and makes a list of patierns which
may possibly appear in the definition of new predicates.
This can be done by unfolding a given program and prop-
erly generalizing all resulting patterns to represent them
with a finife nwnber of distinct patterns while avoid-
ing over-generalization. One obvious strategy to aveid
over-generalization is to perform least general gemeral-
ization by Plotkin [Plotkin 70]. Kawamura also intre-
duced another strategy for suppressing unnecessary gen-
cralization: a subset of clanses of which the head can be

unifiable to each pattern is associated with the patiern
and only those patterns having the same associated sub-
seb of clauses are generalized. Note that a goal pattern
13 unfolded only by clauses belonging to the associated
subset. Therefore the suppression of aver-generalization
also suppresses unnecessary expansion of clavses by un-
necessary unfolding.

5 Logic-based Al Research

For & long time, deduction has played a eentral role in
research on logic and logic programming. Recently, two
other inferences, abduction and induction, received much
attention and much research has been done in these new
directions. These directions are related to fundamental
Al problems that are open-ended by their nature. They
indlude the frame problem, machine learning, distributed
problem solving, natural language understanding, com-
men sense reasoning, hypothetical reasoning and ana-
logical reasoning. These problems require non-deductive
inference capabililies in order to solve them.

Historically, most Al research on these problems
adopled ad hoc heuristic methods reflecting problem
structures. There was a tendency Lo avoid a logic based
formal approach because ofja common belief in the lim-
itation of the formalism. However, the limitation of log-
ical formalism comes only from the deductive aspect of
logic. Recently it has been widely recognized that ab-
duction and induction based on logic provide a suitable
framework for such problems requiring open-endedness
in their formalism. There is much evidenee to support
this chaervation.

® In mnatural language understanding, unification
grammar is playing an important rele in integrat-
ing syntax, samantics, and discourse understanding,

* In non-monotenic reasoning, logical formalism such
as circumscription and default reasoning and its
compilation to logic based programs are studied ex-
tensively.

s In machine learning, there are many results based
on logical frameworks such as the Model Inference
System, inverse resolution, and least general gener-
alization.

* In analogical reasoning, analogy is naturally de-
scribed in terms of & formal inference rule similar to
logical inference. The associated inferente is deeply
related to abductive inference.

In the following, three topics related to these issues
are picked up: they are hypothetical reasoning, analogy,
and knowledge representation,



5.1 Hypothetical Reasoning

A logical framewark of hypothetical ressoning was stud-
ied by Poole et al. [Poole et al. 87). They discussed the
relationship among hypotheticel reasoning, default rea-
goning and circumseription, and argued that hypotheti-
cal reasoning is all that is needed because it is simply and
efficiently implermnented and is powerful enough to imple-
ment other forms of reasoning. Recently, the relation-
ship of these formalisms was studied in more detail and
many attempts were made to translate non-monotonic
reasoning problems into equivalent logic programs with
negalion as failure.

Ancther direction of research was the formulation of
abduetion and its relationship to negation as failure,
There was also a study of the model theory of & class
of logie programs, called general logic programs, allow-
ing negation by failure in the definition of bodies in the
clawsal form. By replacing negation-by-failure predicates
by corresponding abducible predicates which usually give
negative information, we can formalize negation by fail-
ure in terms of abduction [EshghiKowalski 89]

A proper semantics of general logic programs is given
by stable model semantics [GelfondLifschitz B8], It is a
natural extension of least fixpoint semantics. The differ-
ence is that there is ne Tp operator to compute the sta-
ble model directly, because we need a complete model for
checking the truth value of the literal of negation by fail-
ure in bottom-up fixpoint computation. Therefore, we
nezd to refer to the model in the definition of the model.
This introduces great difficulty in computing stable mod-
els. The trivial way is to assume all possible models and
se# whether the initial models are the least ones satisfy-
ing the programs or not. This algorithm needs to search
for all possible subsets of atoms to be generated by the
programs and is not realistic at all.

Inoue [Inoue et al. 92] developed a much more efficient
algorithm for computing all stable models of general logic
programs. Their algorithm is based on bottom-up model
generation method. Negation-by-failure literals are used
to introduce hypothetical models: ones which assume
the truth of the literals and the others which assume
that they are false. To express assumed literals, they in-
troduce a modal operator. More precisely, they translate
each rule of the form:

;‘l] 1—.&;4.11"'\ candh Am1ﬂﬂfﬂm+1ﬂ.r..ﬁ ﬂp‘-.&“

o the following disjunctive ciauaa which does not contain
any negation-by-failure literals:

Aga A oA, —

(NK Az A oo ANKAG A A) V KAgaa V ... V KA,

The reason why we express the clause with the an-
tecedent on the left hand side is that we intend to use
this clause in a bottom-up way; that is, from left to right.
In this expression, NKA means that we assume that A is
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falee, whereas, KA means that we assume that A is true
Although K and MK are modal operators, we can treat
KA and NKA as new predicates independent from A by

adding the following constraints:
NKA, A =  for every atom A. (1)
NKA, KA —  for every atom A. (2)

By this translation, we obtain a set of clauses in first
order logic and therefore it is possible io compute all
possible models for the set using a first order bottom-up
theorem prover, MGTP, described. in Section 2. After
computing all possible models for the set of clauses, we
need to select only those models M which satisfy the
following condition:

For every ground atom 4, f KAE M, then A e M,
(3)

Note that this translation scheme defines a coding
method of original general logic programs which may
contain negation by failure in terms of pure first order
logic. Note also that the same technique can be applied
in computing abduction, which means to find possible
sets of hypotheses explaining the observation and not
contradicting given integrity constraints.

Satoh and Iwayama [SatohIwayama 92] independently
developed a top-down procedure for answering queries to
& general logic program with integrity constraints. They
modified an algorithm propesed by Eshghi and Kowalski
[EshghiKeowalski 89] to correctly handle situations where
some proposition must hold in & model, like the require-
ment of (3).

Iwayama and Satoh [IwayamaSatoh 91] developed a
mixed strategy combining bottom-up and top-down
strategies for computing the stable models of general
logic programs with comstraints. The procedure is ba-
sically bottom-up. The top-down computation is related
to the requirement of (3) and as soon as & hypothesis of
KA is asserted in some model, it tries to prove A by a

top-down expectation procedure.

The formalization of abductive reasoning has a wide
range of applications including computer aided design
and fault diagnosis. Our approach provides a uniform
scheme for representing such problems and solving them.
It also provides a way of utilizing cur paralle] inference
machine, PIM, for solving these complex AI problems.

5.2 Formal Approach to Analogy

Analogy is an important reasoning method in human
problem solving. Amnalogy is very helpful for solving
problems which are very difficult to solve by themselves,
Analogy guides the problem solving aclivities using the
knowledge of how to solve a similar problem. Another
aspect of analogy is to extract good guesses even when
there is not enough information to explain the anawer.

There are three major problems to be solved in order
to mechanize analogical reasoning [Arima 92]:
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o seacching for an appropriate base of analogy with
respect Lo a given Larget,

o selecling important properties shared by 2 base and
a targot, aud

® sclecting properties Lo be projected through an anal-
oz [roin a hase to a target,

Though there was nueh worl: on mechanizing analogy,
minst of Lhis only partly acddressed Lhe issues listed above,
Arima [Avima 93] proposed an attempt to answer all the
issues at onee. Refore explaining his idea, we need some
preparalions for defining terminology,

Analogical reasoning is expressed as the following in-
ference rule:

S(B) A P(B)
S(T)
P(T)

where ¥ represents the target aliject, 5 the bese object,
5 Ahe simdlarity property between T" and 8, and P the
IIH'l'letl'!.l'l’q’: ropc iy

This inference rule expresses that if we assume an ob-
ject T is similar to another object B in the sense that
they share & commen property 5 then, if B has another
property Powe can analogically reason that T also has
the same property P. Note thal the syntactic similarity
ol this rule o modus ponens. If we generalize the ob-
fect B to auniversally quantified variable X and replace
the wnd connective to the implication connective, then
the first expression of the rule becomes S{X) o P(X),
Lhereby the entire rule becomes modus ponens.

Arima [Arima §2] tried to link the analogical reason-
ing to deductive reasoning by modifying the expression
S{B)A P(B) to

Vr.(J{z) A S(z) D P(z)), (4)

where J{x) is a hypothesis added to S{z) in order to
logically conclude P{x). 1f there exists such a J{xz), then
the analogical reasoning hecomes pure deductive reason.
mg. For example, let us assume that there is a student
{Studentp) who belongs to an orchestra club and also
neglects study. If ene happens to know that another
student {Siudentr) belongs to the orchesira club, them
we tend io conclude that he also neglects study. The
reason why we derive such a conelusion is that we guess
that the orchestra club is verv active and student mem-
bers of this busy club tend to neglect study. This reason
is an example of the hypothesis mentioned above.
Arima analyzed the syntactic structure of the above
J{x) by carefully observing the analogical situation.
First, we need to find a proper parameter for the pred-
icate J. Since it is dependent on not only an object
but also the similazity property and the projected prop-
erty. we assume that .7 has the form of J(z,s, p), where s

and p represent the similarity property and the projected
propertiy.

From the nature of analogy, we do not expect that
there is any direct relationship between the obhject x and
the projected property p. Therefore, the entire J(z, 5, p)
can be divided into two parts:

J{I:--B-P] = J.“[a,F]ﬁJghj{F;ﬁ}; {5}

The first component, Ju(s,p), corresponds to informa-
tion extracted from a base. The reason why it does not
depend on = comes from the observation that informa-
tion in the base of the analogy i independent from the
choice of an object =, '

The second compenent, Ju;(z, £}, corresponds to in-
formation extracted from the similarity and therefore it
does not contain p as its parameter,

Example: Negligent Student

First, let us formally describe the hypothesis described
carlier to explain why an orchestra member is negligent
of study. It is expreased as follows:

Ve, 8, p.{ Enthusiastic(z, s) A BusyClub(s)
AQbstructive to(p, s) A Member of(z,s)
2 Negligent_of(z,p) ) (6)

where ©,s, and p are variables representing a person, a
club and some human activity, respectively. The mean-
ing of each predicate is easy to understand and the
explanations are omitted. Sinee we know that both
Students and Studenty are members of an orchestra,
Membera.of({X,s) corresponds to the similarity prop-
erty §(x) in (4}. On the other hand, since we want to rea-
son the negligence of & student, the projected property
Pz) is Negligent of(z,p). Therefore, the rest of the
expression in (6): Enthusiastie(z,s) A BusyClub(s) A
Obstructive fo(p, s} corresponds to Jiz, 5,p). From the
syntactic fuature of this expression, we can conclude that

Jopil®, 8) = Enthusiastic(z, s),
a5, p) = BusyClub(s) A Obstructive £o(p, s).

The reason why we need J,;; is that we are not al-
ways aware of an important similarity like Enthusiastic.
Therefore, we need io infer an importent hidden similar-
ity from the given similarity such as Member.of, This
inference requires an extra effort in order to apply the
above framework of analogy.

The restriction on the syntactic structure of J{z, s, p)
is very important since it can be used to prune a search
space to access the right base case given the target. This
function is particulerly important when we apply our
analogical inference framework to case based reasoning
systems.



5.3 Knowledge Representation

[nowledge representation iz one of the central issues in
artificial intelligence research, Difficulty arises from the
fact that there has been no single knowledge representa-
tion scheme for representing various kinds of knowledge
while still keeping the simplicity as well as the efficiency
of their utilization. Logic was one of the most promising
candidates but it was weal In representing structured
knowledge and the changing world. Our aim in devel
oping a knowledge representation framework based on
logic and logic programming is to solve both of these
problems. From the structural viewpoint, we developed
an exfended reletional database which can handle non-
normal forms and ifs corresponding programming lan-
guages, CRIL ['Ir-bkuta. EEal. This rt,:prrsm‘t.aﬁm:l allows
users to describe their databases in a structured way in
the logical framework [Yokota ef al. 88b).

Recently, we proposed a new logic-baged knowledge
representation lenguage, Quixote [YasukawaYokota 90].
Quixote follows the ideas developed in CRL and CIL:
it inherits object-orientedness from the extended version
of CRL and partially specified terms from CIL. One of
the main characteristics of the ohject-oriented features
iz the notion of object identity. In Cuixote, not only
simple data atoms but alsoc complex structures are can-
didates for object identifiers [Morita 90]. Even circular
structures can be represented in Quixote. The non-well
founded set theory by Aczel [Aczel 88] was adopted to
characterize them as a mathematical foundation for such
abjects, and unification on infinite trees [Colmerauer 82)
was adopled as an implementation methad.

6 Conclusion

In this article, we summarized the basic research activi-
ties of the FGCS project. We emphasized two differant
directione of logic programming research. One followed
logic programming languages where constraint logic pro-
gramming and concurrent logic programming were fo-
cussed, The other followed basic research in artificial
intelligence and software engineering based on logic and
logie programming.

This project has been like solving 2 jigsaw puzzle. It
is like trying to discover the hidden picture in the puzzle
using logic and logic programming as clues, The research
problems to be solved were derived naturally from this
image. There were several difficult problems. For some
problems, we did not even have the right evaluation stan-
derd for judging the results. The design of GHC is such
an example. Our entire picture af the project helped in
guiding our research in the right direction.

The picture is not completed yet., We need further
efforts to fill in the remaining spaces. One of the most
important parts to be added to this picture iz the inte-
gration of constraint logic programming and concurrent
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logic programming, We mentioned our preliminary lan-
guage/system, GDCC, but this is not yet matured. We
need a really useful language which can be efficientlly ex-
ecuted on parallel hardware. Another research subject
to be pursued i3 the realization of a database in KLI1.
We are actively constructing & parallel database but it
iz still in Lhe preliminary stages. We believe that there
is much affinity between databases and parallelism and
we expect a great desl of parallelism from database ap-
plications. The third research subject to be pursued is
the parallel implementation of abduction and induction.
Recently, there has been much work on abduction and
induction based on logic and logic programming frame-
works. They are expected to provide a foundation for
many research themes related to knowledge acquisition
and machine learning. Also, both abduetion and indue-
tion require extensive aymbolic computation and, thers-
fore, fit very well with PIM architecture.

Although further research is needed to make our re-
sults really useful in & wide range of large-scale applica-
tions, we feel that our approach is in the right direction.
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