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Abstract

This paper describes requirements for databases and
DBEMS in protein information processing, and an experi-
ment on a privately integrated protein knowledge base.
We consider an integrated DBMS-KRL system for an in-
tegrated protein KB-DB.

In order to clarify unknown functions of proteins via
empirical approaches, existing public datebases should
be integrated as part of a private knowledge base, which
can proceed biclogical knowledge discovery. And DEMS-
KRL system should support representability, parallel pro-
cessing, information retrieval, advanced query process.
ing, and gquality management techniques for protein in-
formation.

DBMS Kappa-I and KRL @QUIA0TE, both designed at
ICOT, perform 2 wseful role in processing protein infor-
mation. Kappa-P is for efficiency by its parallel process-
ing and extensibility, while QUIXOTE is for advanced
query processing end quality management, by ils repre-
semtational flexibility of object identification and med-

ule,

1 Introduction

Molecular biclogical information processing is increasing
in importance, as biological laboratories are improving
in their computational environments and biological data
are augmentbing far more fasier than biologisis’ under-
standing. To speed up converting such data into bio-
logical knowledge, biological database should help biolo-
gists by providing conveniences in storing, browsing, and
query processing.

Molecular biological databases have tweo catepgories:
public databases and private databases. Public
databases have hundreds of Mbytes of various data: se-
gquence, structure, functions, and other indispensable
auxiliary information of DNA, RNA, and protein.

There are variation in their sizes and data structures,
As for the sizes, PIR Release 30 (1991) has the proteins
of 1 residue through to 6048 residues. GenBank Release
T0 {1991) has the regions {loei) of the DNA sequences of

3 bases through to 220354 bases. As for the data strue
tures, for example, the feature descriptions of proteins or
loci require multiple nested structures. A protein often
consists of p]ural aming acid SeqUences. A sEqUence af
eucaryote is often coded in several separate DNA regions
[ezons) with separate ezpression regulatory region. The
structure of regulatory regions is so unclear that we can
only describe them as nested patterns of DNAs.

Public databazes are maintained under international
cooperation or specific volunteers, and provide mast
molecular biclogical data freely. Although the amount
of date is increasing rapidly, recent dynamic improve
ments of machine environments allow biclogists to store
such data in their own small systems, and to use them
as part of value-added private databases.

Such environments also allow them to create a
database including their own experimental results, make
cross-references between public and private databases,
add customized guery processing facilities, and try to
conduct knowledge discovery by extracting rules from
data.

In this paper, we focus on such privately integrated
databases which are developed as part of the molecu-
lar biological information processing system of the FGCS
project.

As an example, we are building an integrated protein
knowledge base in the [ramework of deduetive abject ori-
ented database (DOOD), which consists of a knowledge
representation language (KRL) QUIXOTE and a DEMS
Kappa-P. The reason why we choose protein informe-
tion iz due to their moderate amount for storage and
study. As biclogical applications are very new, we had
to check the appropriateness of the system and request
to add several facilities to it.

We have developed Kappa-P and QWTY¥OTE on a par-
allel inference machine PIM. Kappa-P employs a nested
relational model, and has a facility of extensible DBMS,
which appears to be suitable for parallel processing and
sequence retrieval,

QUIXOTE is based on a concept of DOOD. Tt provides
a capability of advanced query processing, rich concepls
such as module, identification, subsumption relation, and
flexibility in describing knowledge.
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This paper describes two types of system integration.
One is database integration of protein information. The
other is DB-KB (database and knowledge base) integra-
tion in Kappa-F + QUIXYOTE. These are shown in See-
tion 6.

We describe the requirements for databases and DBMSs
in Section 2. Overviews of the protein databases we are
focusing on are described in Section 3. The suitability of
Kappa-P and QUIXYOTE as ingredients of our integrated
knowledge base system is discussed in Sections 4 and 5.

2 Requirements for Biological
Database Systems

2.1 Requirements for Databases

Meost of the biologists’ requirements for existing molecu-
lar biological databases are concentrated inte the prob-
lem: it is difficult to access several databases at once.
It is because the differences between the databases: the
attributes’ meanings, the values’ variations, and their re-
lations, must be understood beforehand,

Such requirements. are solved by integrating. them.
There are three approaches to database integration.

Standardization

Standardization is the most lundamental integration. It
provides the simplest enviconment for the wide use of
databases.

CODATA {Committes on Data for Science and Tech-
nology) in ICSU (International Council of Scientific
Unions) propesed standardization of attributes to realize
the virtual integrated database [JIPID 90). The schema
ol every public database should be a subset of the vir-
tual schema. NLM (Mational Library of Medicine) pro-
vides Genlnfo Backbone Database [NCBI 90]. Accord-
ing to [NCBI 90], it is built as a standardized primary
database, which is assumed to be a basis for secondary,
value-added databases for the specialized interests of dif-
ferent biologists,

Determining a standard, hewever, is expensive. It is
almost impossible to make the widest virtual schema that
covers all attributes of protein information. We should
accurnulate experiences in creating and using most pri-
vate dalabases as hefore. Moreover, both standardiza-
tions started so recently that they have not so widely
distributed yet.

Integrated User Interface

Making an integrated user interface is the fastest way
of getting an integrated environment. It generally pro-
vides not only query processing facilities but also visual
browsing facilities, which are quite attractive and useful

for biologists. It used to need a lot of cost, however, to

" remake an interface when a new database is Lo be added,

GeneWorks' and Entrez? provide integrated environ-
ments to enable access to existing DNA ¥ amino acid se-
quence databases, although they are packaged for brows-
ing only, from a PC or Mac. They are not for adding new
applications or new databases,

5. Smith et al. {(Harvard U. } are developing an en-
vironment for genetic data analysis (GDE?®) which will
help access several databases at once by providing data
exchange tools between representative databases. The
first version is based on a mulliple alignment editor and
allows tools for sequence analysis to be included in the
system. It can reduce efforts for the interface remak-
ing by rich widgets. It has alzo just started and further
improvement is expected,

Integrated Knowledge Base

The integrated knewledge base is our approach. It con-
sists of two stages: to represent all facts in one lan-
guage, and to supplement the rules necessary to get and
use the facts (see Fig. 1). The former corresponds to
standardization, and realizes a syntactically integrated
database. Not only existing public databases but also
privale databases are integrated. In order to provide an
useful integrated database system, efficient DBMS which
allows to store and to access complex data easily.

The latter stage converts a database into a knowledge
base, by accumulating supplementary knowledge, which
are rules or facts recognized by biologists themselves. It
seerms almost impossible to define commen operations
to all knowledge just as relational algebra to relational
databese. Thus, new concepts had better be introduced
to the mechanism, so that each (or a cluster of) knowl-
edge can have intrinsic methods. DOOD is a promising
concept for the mechanism.

2.2 Requirements for DBMS

Ameng the requirements for databases we can find ones
for DBMS or data models which require improvement in
retrieval and identification. Traditionzl ways are not se
appropriate for some molecular biological applications,
£.g., sequence retrieval and quality management,

Information Retrieval

DBEMS is expected to support the facilities of information
retrieval for the sequences of DNA, RNA, and amine acids.
It is partly because a concept of DEMS is rather wider for
biologists than traditional one for database researchers.

TntelliGenetics, loc., Mountain View, CA
"National Institute of Health, Bethesds, MD
3Gensiic Data Environment
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Figure 1: Integrated Knowledge Base of Proteins

Although sequence retrieval is like full text search,
there are some differences in the search criteria: similar-
ity search via dynamic programming (DP) or other algo-
rithms (ex. BLAST{Altshul et af. 90]), with given simi-
larities between characters (namely, amino an:ld.a]

"Keyword" extraction from the sequence is far more
difficult than from the text. In order to process large se-
quences, they should be preprocessed by an information
retrieval technique, as strings are preprocessed to make
&n alphabetical index. Keyword extraction mrre.sponds
to such preprocessing.

However, we should consider first, what word is in DNA
or amino acid sequences. A geneis  sentence, and & DNA
is a charaeter. Thus, a word might be a specfic DNA
pattern closely related to some function, which is not so
clear at present. An amine acid sequence is a sentence,
and an amino acid is a character. So, a word may be
a structural block or a functional block, either of which
is represented as an amino acids' pattern including some
varieties. Determining and extracting “ke;,r'.m:ds” is one
of the big problems in biology.

Af present, the sequences should be regarded as char-
acter strings, and not as paragraphs or sentences which
consists of words. Moreover, we have to consider the
following features of the sequences.

+ DNA and RNA sequences consists of only four char-
acters,

* Proteins mostly consist of 20 characiers, but there
are some exceptions.

» Similarity between the characters are defined.

Identification Facilities

DBMS is required to provide rich identification facili-
ties. In treating molecular biological data, we should
consider at least two kinds of errors: experimental er
rors and sdentification errors. Experimental errors are

i

inevitable in molecular ]Jiulugir:a.l databases. It is neces-
sary to repeat experiments to reduece them. In reading
DA sequences, for example, the same region should be
repeatedly read to wverify the resunlt. In such case, Gen-
Bank iz useiul in reducing efforts of verifying. though it
has sequences with various qualities. It contains many
staff-reviewed sequences with many references, while it
also contaings a lot of SEgUences each of which has heen
just registered by a researcher,

Identification errors possibly cecur in this verification
process. It is not so clear whether we can get the se-
quence of the same region because of slightly different
repeating regions, or natural errors such as diseases or
mutations.

Representation of relations between proteins and fune-
tions are more ambiguous than relations between loci and
DA sequences in the example above. We should always
consider identification errors in both proteins and fune-
tions. As experimental facts are accumulated, for exam-
ple, “cytochromes transfer electrons” may turn into rela-
tions such as “cytochromes and ubiquinone transfer elec-
trons” (protein identification is relaxed) or “cytochromes
transfer electrons to generate energy” I[f'u.nctiou identifi-
cation is detailed). o

A concept of object identity is Jmp{:u:tant in such cases.
HResults including experimental errors should be treated
23 different objects to store them avoiding mtegrity prob-
lems, whereas they should be treated as an object when
we ask the “verified” result. PFurthermore, identifiers
should be so flexible that we can change them with as
few difficulties as possible.

3 Protein Databases

In Section 2, general issues on molecular hiclogical
databases and DBMS are shown. This section focuses
on protein databases and overviews the reasons for using
existing public databases, as well as their general usge, in
order to consider the necessity of an integrated knowl
edge base.

3.1 Public Protein Databases

Protein information includes amino acid sequences, 31
structures, and funetions. Protein functions include
thermodynamic, chemical, and organic functions of total
or partial proteins. Tn addition, there 18 important auxil-
iary information such as the authors, titles, and journals
of the references relating to the data, source organisms,
and experimental conditions.

Public protein databases have been trying to cover all
protein information: amine acid sequences (PIR, Swiss-
Prot), structures (PDB), partial patterns (ProSite), en-
zyme functions, and restricted enzymes (REBASE). All
databases contain the auxiliary information mentioned
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above.

The amount of information contained for each area is
shown in Table 1. It seems possible that whole databases
can be held privately in order to catalyze a change in
their use: from databases accepting biclogical applica-
tions to knowledge bases including public databases and
processing advanced biological queries,

Table 1: Public Protein Databases

[ database | release entries size |
PIR 30.0 (9/91) | 33,989 | 9,697,617 residues |
Swiss-Prot | 18.0 (5/91) || 20,772 | 6,792,034 residucs
PDB T7/91) 683 ° 152 Mbytes
ProSite | 7.0 (/1) 508 T Mbytes
IREBASE |[(1/92) 1975 16 Mbytes

3.2 Purposes of Protein Databases

The final goal of using protein databases is to pre-
dict the unknown functions of a protein. Biclogists
gather enough of a known relations between functions
and proteins to predict the unknown functions of a
knownfunknown protein as accurately as possible.

Itz subgoals are important for molecular biology:

¢ Understanding of the relation between protein struc-
ture and function

Most of protein functions are due to their strucbure,
Structure might be predicted from their amino acid
sequences, by molecular dynamiecs or several kinds
of empirical approaches.

# Prediction of the 3D structure from the amino acid
sequence

Theoretically, most of protein 3D structures are cal-
culated by melecular dynamics. It costs, however,
enormous time to compute at present. Thus various
empirical approaches have been tried, and would be
tried.

The sequence similarity search, especially for extrac-
tien of common sequence patierns or similar regions
(which are often called ‘consensus sequences’ in molecu-
lar biology) is a first step of empirical approaches. How
to represent and how to use biclogical knowledge to pre-
dict unknown structures or unknown functions are other
early problems.

3.3 General Use of Protein Databases
Similarity Search

Mest traditional uses of protein databases are supported
by traditional DBMS, except for similarity searches in the
sequence database. Biologists ask the database to get a
get of proteins whose name is, for example, “cytochrome
", or proteins which are found in “E.Coli. This type
of retrieval is supported by the traditional DBEMS.

They often want to examine such a set of sequences to
discover a description of the similarity of a certain pro-
tein set, such as the existence of consensus sequences.
They use multiple alignment [Ishikawa ef al. 92] after
they get all sequences they want. In this case, we con.
sider interaction between application and database in
rather higher level (see Section £).

Another important use is similarity search. They
search for amine acid sequences in the database that are
similar to the unknown sequence they have, The un-
known sequence may be a fragment or a whele sequence.
The former is motif search, which is regarded as text
content search, while the latter is Aomology search.

Biologists want to get accurate results in these searches
and examination. Becanse the accuracy affects the qual-
ity of function prediction and structure prediction. They
would like to retrieve the several of the best sequences of
similar functions in the database.

In order to improve recall and precision ratios in
protein similarity search, plenty of biologists’ empirical
knowledge and experimental results are indispensable,
In addition to them, two problems have to be solved:
finding an efficient algorithm for the homology and mo-
tif searches, and speeding up basic retrieval. The former
needs the cooperation of biclogists and computer scien-
tists, whereas the latter could be devised independently
by computer scientists, for some basic operations might
be taken from techniques of the partial string mateh in
the text database.

Data management

Data management, such as designing schema, storing
data, and checking integrity, are owing to great efforts of
the staffs of public databases.

Recently, schema of existing public databases are grad-
ually standardized (2s shown in Section 2), however,
each existing database still employs independent naming
rules using alphanumeric symbols such as ‘P08478(PIR),
‘AMDISXENLA(Swiss-Prot), and ‘1.14,17.3'(Enzyme
DB). Biologists are annoyed by updating cross-references
among public databases and private onea.

As for storing, public databases accept an electronic
form of registration to reduce staffs’ efforts for quick
storing. The U.S. National Institute of Health pro-
poses a standard format for data exchanging (ASN.1
[NCBI 90]), which simplifies registration procedures and



is useful in gathering them into personal systems.

In order to distribute recent data as quickly as pes-
gible, PIR distributes less verified data for biologists.
Thus, it reduces staffs’ efforts for quick checking. When
such data are used, verification process is owing to the
biologists who would like to use them. PIR has three
kinds of indications by their verification level: *Annc-
tated and Classified’, ‘Preliminary’, and ‘Unverified”. [t
is obvious that sueh indieations are not enough for biel-
ogists’ private data management.

Cooperation with biclogists is indispensable in seitling
how to identify data with their guality and make cross
reference data, although some management can be inde-
pendently devised for advanced uses.

4 Kappa-P: An Extensible Par-
allel DBMS

We use Kappa-P as an ingredient in our integrated sye-
tem. Kappa-P provides several facilities suitable for pro-
tein information. The efficiency of the nested relational
model of Kappa is shown in [Yokota et of. 89], where eff-
clent usage of storage and Bexibility of schema evolution
are described. In this section, we show the effectiveness
of Kappa-P as an extensible DBMS for protein informa-
tion processing and how to embed information retrieval
facilities into Kappa-P.

4.1 Parallel DEMS

As the sequence search is executed exhaustively on a full
sequence, its parallel processing is obviously effective,
Fig. 2 shows the cofiguration of our system.

Application
b ArLAS

Command] O tﬁwunss

Application
uer

Query |} Angiwer

C_fawr O
W
(ac) (ac) (ac)
clotr clotr clotr
lag lozal loeal
Kappa KappaP

Sequential DBMS Parallel Thstributed DBMS

Figure 2: Configuration of Kappa-P

The aim of the extensibility of Kappa (sequential
DBMS) is to reduce interaction with applications, and
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to customize the command interface for each applice-
tion. The modules of an application which frequently
use Kappa commands are included in Kappa system so
that the number of communication among processes on
the left-hand side of Fig. 2 decreases.

Beside these facilities, another kind of extensibility
muat be considered in & parallel system. Parallel DBMS
Ka.ppa.—P consists of server DBEMS and local DBMS, where
server DBMS has a global map of local DBEMSs and co-
ordinates local DBMSs to deal with vsers’ request, while
local DBMS helds users’ data [Kawamuraef al. 92]. In
our environment, most applications work on the same
PIM with Kappa-P. So, if the server DBMS merges all
the answers from local DEMSs into one answer, the effec-
tiveness of paralle]l processing is reduced.

In order to aveid such a situation, the user defined
commands, for example, DP or BLAST, are thrown to
every local DEMS, and they play a role of filter from
local databases to their server. The filters select data
satiefying the given conditions, and send them to the
SECVET PIOCESSOL.

It is obviously efficient to throw application procedures
to every local DBMS. The extensibility in Kappa con-
kributes to efficient parallel processing of sequence search
as in Fig. 2.

4.2 Information Retrieval

Extensible DBMS is also suitable for supporting informa-
tion retrieval, obviously because it allows fo customize
command interface for applications. Sequence similarity
searches, which correspond to full text searches, are im-
plemented easily as “Application Commands (AC)" in
Fig. 2.

We have developed a character-pair based index sys-
tem, especially for motif search, This kind of index sys-
tem is also implemented as application commands, while
indexes are held in each local DEMS. Thus, the number
of communications between local and server DBMS de-
creases.

Motif dictionary such as the public database ProSite
could also be used as another useful index for sequence
similarity searches. Exlensible DEMS is so flexible that
when such an improved index is developed it could be
easily added in the system.

5 Quzxore: A Deductive Object
Oriented Database

We use QUIXOTE as another ingredient in our system.
Though advanced query processing is available by any
logic programming language, facilities of QUIAOTE are
more suitable to represent protein information, especially
protein functions [Tanaka 91].
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In this section we focus on ils representation facili-
ties in data management: schema Aexibility and powerful
rdentification,

5.1 Objects and Modules of guixote
Object Identifier

Objects in QUIXOTE are represented by extended terms
called object terms [Yasukawaei al. 92]. An object term
is of the following form:

D[h =U'I|'-'|In=ur|]

where o is called the head of the abject term, I; is a label,
and w; is the value of the [; of the object term.

The labels and their values of an cbject term represent
the propertics of the object which are infrinsic to identify
it. In such sense, object terms play a role of object iden-
tifiers. An object may have properties other than those
epecified in its object term. To represent such properties
(extrinsic properties) of an ohject, special form of term
representation called an afiribule ferm i3 usad:

olly = vy, .l = v )J[l] = v, B, = 0],

This attribute term represents that the object identified
by the object term o[l = vy, ... I, = v,] has properties
[ = vi,.... 8, = o] . It is important to distinguish
intrinsic properties with extrinsic ones,

Simplified examples are shown in Fig. 3. (1) and (2)
describe the same object and their attribute terms con-
tradict each other, while (1) and (2') represent different
objects.

object_head [oli
[a11

ovi, 012 = ov2, ...] /
avi, al2 = avZ, ...]

1|

(1} faet [labeli=vi] / [labelZsv2].
(2) fact [labeli=vi] / [label2=v3].

(1) fact [labeli=vi, label2=v2].
(2') fact [labeli=vi, labelZ=v3].

Figure 3: Examples of QUIXOTE objects

Such representation of protein information is quite use-
ful, for only the attributes whose values are determined
can be nsed for identification. It is also useful in repeat-
ing local integrity checking, as data set would not stop
increasing in amount,

Madule

Modules in @UIXOTE help object management. Simplh-
fied examples are shown in Fig. 4.

{1} medulel :: objecti.
{2) medule? >*- moduled.
{3) module? :: {{ object?. objectd. }}

{4) medule3 >- medulel.
(8) meduled :: object3.

Figure 4: Examples of QUIFOTE modules

“objectl is an object in modulel” is represented as
(1). {3) is an abbreviation form. (2) represents an order
between modules specifying that medule2 inherits all the
objects from modulel, and (4) represents another inher-
itance. Therefore, module? has objecti, object, and
objectd, whereas moduled has objectl and ebjectd,

Although objectd is in both medulel and module3,
it may have different properties in each module, becanse
any relations belween module? and moduled is not de-
fined, We can give different properties to the same ohject
in different modules. Thus, we can use different modules
to avoid database inconsistency when we get different
results by different experiments,

5.2 Identifiers of Proteins
Requiremeants

Since it i= impossible to give the clearest identifier in-

stantly, identification requires that the following he sat-
iafied.

(1) Subsumption relation

An identifier sometimes has to be generalized or spe-
clalized. For example, the sentence “cytochromes
have a certain feature” sometimes has to be recon-
gidered as “cytochromes and hemoglobins have a
certain feature” or “cytochrome ¢ has a certain fea-
ture.” It seemns rare to misidentify completely dif-
ferent objects. Most erroneous identifiers have to
change only their abstraction level, and need not to
be altered completely.

(2) Flexibility
In the process of determining the clearest identifier,
we feel it useful if DBMS accepts tentative identifiers
which can be specialized or generalized at anytime.

We could use trial and error to determine the proper
identifier.

(3) Module

To distinguish ftentative identifiers from fixed ones,
or experimental results from derived ones, a facility
for making modules is required. It allows local in-
tegrity to be checked within the module, and for the



global uniqueness of the labels of the identifiers to
be ignored.

Flexibility along Subsumption Relation

Proteins need identification fransition aleng subsump-
tion relation, as shown above. Fig. § is an example of
how they are represented in QUIXOTE.

(factl) cytochrome[lifename= E.Celi] /

[feature = featX].
{fact2) cytochrome[type= c] /

[feature = featX].
(hypl) cytochrome / [feature = featX].
(ef.1) cytochrome{ E.Coli, _, featX )
cytochromal( _, ©, featX )
cytochroma( [lifename(E.Coli),type(c)],

faat¥ )

{cf.2)

(hyp2) protein[name={cytochrome, hemoglobin}] /
[feature = featX].

Figure 5: Proteins as objects in QUIXOTE

Provided that there is a feature named ‘featX’. As
experiments are repeated, the identifier of the protein
whose feature is “featX' may be changed.

QUIAXOTE expressions (facti) and (fact2) are ex-
amples of the identification of experimental results.
(factl) mentions nothing about ths (fact2) attribute
“type”, and vice versa.

In the relational data model or Prolog, it is neces-
sary to redesign the attributes of tables or arguments
of facts to reflect such schema changes, since atiributes
have to be fixed. This is shown in (cf.1). In Prolog,
we can reflect them by using bists as shown in (cf.2)
[Yoshida et al. 91]. However, it is necessary to support
a particular unifier for the list, and users must manage
the meaning of the list (e.g., connected by *and’ or ‘or’)
carefully, QUIXOTE allows sef concepts with particular
semantics to avoid such mismatches,

When we consider what sort of protein has featX' and
get (factl) and (fact2), we can easily think of a hy-
pothesis (hypl). We can also get this hypothesis by
QUIXOTE , using object lattice of subsumption relation.

Moreover, if we give some relations among ‘cy-
tochrome’, ‘hemoglobin®, and ‘protein’, ancther hypoth-
esis such as (hyp2) is available.

Modules for Data Management

Objects of experimental results, verified results, and pub-
lic databases have to be distinguished by modules, to be
checked by different integrity checking methods.
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Fig. 6 shows an example of verification process. Upper
meadules inherit all facts and rules of their lower modules,
'‘PIR’, ‘Swiss-Prot’, and ‘Experimental Results’ are
modules each of which allows local integrity checking. If
identifiers are conflicted between these modules, they can
be setiled at their upper module,

‘Sequence’ has some rules and cross-references be-
tween PTR and Swiss-Prot so that it can select and re-
ply a specific set of protein sequences contained in these
public databases. “Integrated’ has some rules to verify
experimental results by merging the selected sequences
from public databases. It alsc has cross-references be-
tween public databases and experimental results (but
they are ignored in Fig. 6 to simplify the example).

Integrated
erified seguence[id=protd]
{ verily by merming |
7

Experimental
Results

sequence
[id=protal

[id=protaAl

[ select ]

PIR

sequence
[id=A0B4TE]

Swiss-Prot

Baquence
[id=AMD1$XENLA]

Figure 6: Modules for Verification Process

6 An Integrated System for an
Integrated Knowledge Base

This section shows a system integration and a DB-KB
integration, as to their configuration and their uses.

We are considering two kinds of integration: Kappa-
P and QuIxoTE (DBMS and KRL), and existing public
databases and biological knowledge (DB and KE).

6.1 Configurations of Integration
DBMS and KRL

There are thres interactions in the integrated system of a
database management system Kappa-P and a knowledge
representation language QUIXOTE (see Fig. 7).

(1) Interactions between Kappa-P and QUIXOTE

All facts (non-temporal objects) in QUTXOTE are
stored in Kappa-F, and Kappa-P activates necessary
objects as the result of retrieval.
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Molecular Biological
Applications
[(2)
Cluixote ) (3)
[{1)
Kappa-P

Figure T: Integrated System of Kappa-P and Quixote

(2) Applications and QUIXOTE

The followings are supported or will be prwudcd [are
under developrment).

» advanced query processing facility {inference)
As QUIXOTE is an extension of Prolog, it pro-
vides more flexible and powerful query process-
g facility.

¢ a standard of the molecular biclogical data
New databases and new rules (knowledge) are

easily available by supporting ASN.1.

s graphical user interfaces
Ad-hoc uses are quite important for biologists,
The system should support ad-hoc queries,
with graphical user-friendly interfaces. Kappa
supporls user interfaces for the nested relation
and for PIR on X-window.

# class libraries for biclogical use

This would include sequence retrieval and data
management (see Sections £ and 5).

{3) Applications and Kappa-P

The systern should support direct access to
databases for simple queries. It currently supports
a graphical user interface to access amino acid se
quences and some libraries to maintain biclogical
data.

Protein Databases and Knowledge Bases

There are many public protein databases (see Section 3).
We are holding several databases ineluding such public
ones as those shown at the bottom of Fig. 8.

An oval represents a module of rules and facts, while
a rectangle represents a Kappa-P database. Modules in
the upper two levels are mostly rules in QUIXOTE, while
ones at the bottom are mostly facts in Kappa-P. The user
may ask the top-level module any gueries.

It can also be integrated with private databases and
customized to be a private knowledge base. An example
of such integration and coustomization is shown in Fig. 6.

Integrated Knowledge Base )

Pmt.

|.mm

Figure §: Integrated Knowledge Base of Proteins

ProSite

6.2 Use of the System
Application of Sequence Analysis

Ishikawa et al. (ICOT) have developed a parallel
processing  algorithm of protein multiple alignment
[lshikawa el al. 92). When the multiple alignment sys-
temn and the knowledge base are connected, and a new
multiple alignment algarithm using motifs is developed,
it becomes an integrated application and knowledge base
system. This is expected to enable antomatic motif ex-
traction and motif accumulation.

Advanced Query Processing

The query processing facilities of QUIXOTE realize a
data pool of experimental results with query processing.
They act as a prototype database or knowledge base for
the experiment, which accumulates queries and shows
the tendency of its usage in the integrated environment.

Graphical User Interface

The system has an user inferface which allows it to
use both an advanced query processing interface to
QUIXOTE and a browsing and query-by-example inter-
face for Kappa-P. The query interface provides or will
provide facilities of displaying examples of queries, or
graphs of answers such as the relations of objects given
by a recursive guery,

The browsing interface also provides or will provide
graphical displaying facilities. We have developed a vi-
gual feature exhibition of sequences of both GenBank
and PIR.

7 Conclusion

The requirements of molecular biology, especially protein
engineering, which is a brand-new DBMS/KRI field were
overviewed, Biological applications are now shown to be
stimulating for DBMS and KRL, which are required to
have various functions: information retrieval, deduction,



identification, module concepts, extensibility, and paral-
lel processing.

Such facilities of DBMS/KRL had better be requested
b%r [Dmnputcr—:]biulugiats. It s im,pwta.nt to cooperale
with them to conduct further research.

A private knowledge base including various existing
public databases will procesd biclogical knowledge dis-
covery. Although we have not mentioned in this paper,
distributed DEMS is also necessary in case databases and
knowledge bases exceed the persomal system capacity.
We think DOOD with extensible DBMS also play an im-
portant role, but it will be considered in future.
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