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Abstract

We have developed a multiple alignment system for
protein sequence analysis. The system works en a par-
allel inference machine PIM. The merits of PIM bring
prominent features to the multiple alignment system.
The system consists of two major components: a par-
allel iterative aligner and an intelligent refiner. The
aligner uses a parallel iterative search for aligning pro-
tein sequences. The search algorithm is the Berger-
Munson algorithm with its parallel extension. Our
implementation shows that the algorithm extended in
parallel can rapidly produce better solutions than the
original Berger-Munson algorithm, The refiner uses
condition-action rules for refining multiple sequence
alignments given by the aligner. The rules help to
extract motif patterns from ambignous alignment pat-
terns.

1 Introduction

Molecular biology and genetic technology have been
advancing at an astonishing rate in recent years, Ma-
jor activities in these fields are closely related to DNA
and protein, This is because a set of DNA molecules in
a cell contain the genstic information for the complete
design of the living organism. This information is em-
bodied as protein to build up the body and to kecp its
mechanisms alive. Each piece of genetic information,
represented by a sequence of nucleic acids, is translated
into a sequence of amino acids to form protein. As the
method fo determine DNA or protein sequences has
progressed to its current state, the amount of known
sequence data has grown rapidly. For example, Gen-
bank, one of the rmost widely distributed databases,
contains information on more than sixty million nu-

cleotides. The growing number of genetic sequences in
databases inevitably makes the field of genetic informa-
tion processing one of the most important application
areas for computer science.

The fundamental technique for analyzing genetic se-
quence data by computer is to examine similarities
among sequences. This usually requires large amounts
of computation to find the similarities, since there are
a lot of sequences in the database to be examined. The
computational preblem can be partly solved with par-
allel implementation. There have been some exper-
iments with parallel sequence analysis [Iyengar 1988].
Another approach to the problem is to furnish the anal-
ysis program with biclogical know-how as heuristics.
Many consider that logic programming languages are
a profilable way of implementing heuristica. Parallel
sequence analysis with a logic programming language
has been tried [Butler ef ol 1990].

We have developed a mulliple alignment system for
protein sequence analysis. The system has heen im-
plemented on a parallel inference machine PIM using
& parallel logic programming language KL1. The aim
of this paper is to show PIM's availability in the field
of genetic information processing. The organization of
the rest of this paper is as follows. In Section 2, we
briefly explain our application problems. We present
our multiple sequence alignment system in Section 3.
Then, the results of experiments and comparison with
other methods are discussed in Section 4. Finally, con-
clusions are given in Section 5.

2 Protein sequence analysis
As described above, the genetic information, stored in

DNA, is translated into sequences of amino acids. A
chain of amino acids folds to become protein in water.



Thae structure of the protein depends on the sequence
itself, that is, the same sequence will form the same
structure. The function of the protein is chiefly deter-
mined by its structure, becanse proteins whose shapes
are complementary can interact with each other,

Every protein is made up of twenty kinds of amine
acids which are distinguished by twenty different code
letters. A protein has about two hundred amine acids
on average and is represented by a linear sequence of
code letters. Because every amino acid has its own
properties of volume, hydrophobicily, polarity and so
om, the order of the amine scids in the protein sequence
gives structure and function of the protein.

The protein sequence delermination technigue has
been so established that more than twenty thousand
sequences have been specified by the letters; this nom-
ber is growing day by day. The structures of proteins
are also being solved. Methods such as Xeray crys-
tallography reveal how the linear chain of amino acids
fold together. But this takes so many months to solve
that only three hundred protein structures have been
determined so far,

An important way of discovering new genetic infor-
mation is inferring the unknown structure of a protein
from its sequence. We do this by analyzing the se-
quence of amine acids, because, fortunately, proteins
that have similar sequences have similar structures,
Multiple sequence alignment is one of the most typi-
cal methods of sequence similarity analysis. The align-
ment of several protein sequences can provide valuable
information for researching the function or structure of
proteins, especially if one of the aligned proteins has
been well characterized.

Let us show an example of multiple sequence align-
ment, The next set of sequences represents four parts
of different protein sequences. Each letier in the se
quences means an amino acid. For instance, GDVEK
stands for a row of Glycine, Aspartic acid, Valine, Glu-
tamic acid and Lysine.

GDVEKGHIFIMKCSQCHTVEKGGKHKTGPHLHGLFG
ASFAEAFPAGTTGAEIFETKCAQCHTVEGHEQGNGLFG
PYAPGDERKGASLEKTAQCHTVEKGGANEVGPNLHGVFG
PPHARAPLPPGDAARGEELRAAQCHTANQGGANGVGYGLYG

A good multiple sequence alignment for the given se-
quences is as follows:

====see———(NVEKG-KIF IHKCEQCHTVEK GOEHETGPRLHGLEG
-—ASFAEAPAC—-TTGAKIFKTECAQCHTV-KG--HEQG---NGLFG
~-====FY A PGIEKKGASLFET -~ AQCHTVEK GGANKVGPNLHGVFG
FPEARAPLPPGDAARGEKL---RAAQCHTANGGGANGYG---YOLVG

* * +REE W “ %

Each sequence is shifted by gap insertion—dash char-
acters. Bach colurmn of the resuitant alignment has the
same of similar amino acids. An identical pattern such
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as QCHT iz considered to be an important site called a
sequence molif, or simply & motif, because an impeor-
tant protein sequence site has been conservative along
with evolutional cycles between mutation and natural
selection. Multiple sequence alignment is useful not
only for inferring the structure and function of pro-
teins but also for drawing a phylogenetic tree along
the evolutional histories of the creatures,

Figure 1: Pairwise dynamic programming

Computers partly solve the problem of multiple se-
quence elignment automatically, instead of relying on
the hands and eyes of experts. The results obtained
by computers, however, have not been as satisfae-
tory as those by human experts. That is because
multiple sequence alignment is one of the most time
and space consuming problems. The dynamic pro-
gramming algorithm  [Needleman and Wunsch 1970,
Smith and Waterman 1981,

Goad and Kanehisa 1982), theoretically, provides an
optimal solution according to a given evaluation score.
This, however, requires memory space for an N-
dimensional array (where N is the number of se-
quences) and calculation time for the N-th power of
the sequence length. Though & method was pro-
posed o cul unnecessary computation in the dynamic
programming algorithm [Carrillo and Lipman 1988), it
still needs too much computation to solve any prac-
tical alignment problem. A number of heuristic algo-

-rithms for multiple alignment problems have been de-

vised [Barton 1990, Johnson and Doolittle 1986] in or-
der to obfain approximate solutions within a practical
time. Most of these algorithms are based on pairwise
dynamic programming.

Figure 1 shows the algerithm of dynamic program-
ming applied to a tiny pairwise alignment. The algo-
rithm searches the best path in the figurative network
from the top left node to the bottom right node min-
imizing the total cost of arrows. Each cost indicated
on an arrow reflects the similarities between the char-
acters being compared. The best path corresponds to
the optimal alignment; each arrow in the path corre-
sponds to each column in the alignment. Vertical and
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~-PNPRI-SA--
ARNYKIPLT-—~-
-~KFGIP-N——-
~~MFNIP-REQA
~~TLOGA-T—~~-

Figure 2: Iterative strategy of Berger-Munson algorithm

horizontal arrows indicate the insertion of gaps.

3 Multiple alignment system

We have developed a multiple alignment system for
protein sequence analysis on PIM. The system con-
sists of two components: a parallel iterative aligner
and an intelligent refiner. The aligner uses a paral-
lel iterative search for aligning protein sequences. The
refiner uses condition-action rules for refining multiple
sequence alignments given by the aligner.

3.1 Parallel iterative aligner

The search algorithm in the iterative aligner is the
Berger-Munson zlgorithm extended in pacallel. The
B-M algorithm [Berger and Munson 1981] is based on
the same pairwise dynamic programming method as
conventional heuristic algorithms for rultiple sequence
alignment. The algorithm, however, features a novel
randomized iterative strategy so as to generate a high-
score multiple alignment.

Figure 2 illustrates the iterative strategy, whose pro-
cedure is as follows: the initially aligned sequences are
randomly divided into two groups (step 1). By fixing
the alignment of sequence members within each group
we can optimize the alignment between the groups, us-

ing the pairwise dynamic programuming method (step
2). The resultant alignment, in turn, is the start-
ing point for the next alignment of a different pair of
groups (step 3). Fach iteration that improves the align-
ment between two sequence groups will also improve
the global alignment.

Though the B-M algorithm often results in a much
better multiple alignment than those obtained by con-
ventional algorithms, its randomized iteration needs
more than & few hours to solve multiple alignment of
a practical seale. When a parallel machine is avail-
able, the iterative strategy extended in a paralle]l way
is fairly helpful for reducing execution time. The B-M
algorithm extended in parallel iz as follows: all #%-1—1
possible partitions of n aligned sequences are respec-
tively evaluated by the pairwise dynamic programming
method. In each iteration, the evaluation is executed
in parallel and the alignment which has the best score
is selected as the starting point for the next iteration.

3.2 Intelligent refiner

Aligning multiple protein sequences requires biclogi-
cal know-hew, since the alignment score is not suffi-
cient to evaluate them. The intelligent refiner holds
dozens of condition-action rules that reflect the biclog-
ical know-how for refinement. Part of the biological
know-how has been obtained by interviewing human
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Figure 3: Comparing alignment score histories

experts. Another part of it corresponds to the infor-
mation contained in a motif database PROSITE,

Let us explain an example of the condition-action
rule, which features a well-known motif pattern called
Jine Finger. Tinc Finger is characterized by two sep-
arated Cs, Cysteines, and two separated Hs, Histidines,
The condition part of the rule checks whether an align-
ment has the half-aligned motif pattern of Zinc Finger
or not, and if it finds the weak motif pattern, it tries,
in its action part, to enhance the weak pattern to make
it strong {see Figure 4). Every condition-action rule is
represented with a parallel logic programming language
KLL

4 Experimental results

Our multiple sequence alignment system works on
PIM/m, & MIMD-type parallel machine equipped with
up to 256 processing elements (PEs). We have inves-
tigated the performance of our system by testing the
two components separately,

4.1 Parallel iterative aligner

The B-M algorithm enables us to gradually improve
global multiple alignment. Improvement is evaluated
by the alignment score. We have defined the alignment
score as follows. The alignment score is a total sum-

mation of the similarity scores of every pair of aligned
sequences, each of which is derived by summing up the
similarity values of every character pair in the column.
Each similarity value is given by the odds mairiz. A
gap penalty corresponding to each row of gaps in the
two sequences is added to the similarity score,

We use PAM250 [Dayhoff et al. 1978] as the odds
matrix, each value of which is a logarithm of the muta-
tion probability of a character pair; zero is the neutral
value, We have reversed the sign of each value of the
matrix to assimilate the habit of optimization prob-
lems. So the most similar character pair, ¥ vs. W, gives
the lowest value, ~17, and the least similar pair, W vs,
C, gives the highest value, 8,

The gap penalty imposed on a row of k gaps is a
linear relation: a + bk where a and b are parameters.
We set @ = 4 and b = 1 as defanlt values, The lin-
ear relation is feasible and popular for alignment done
by the dynamic programming algorithm [Gotoh 1982].
Character pairs gap vs. gap and ocutside gap vs. any
character are ignored; they are assigned the newtral
value zero,

We have implemented three algorithms for compari-
son analysis: the original B-M algorithm, the B-M al-
gorithm extended in parallel and the tree-based algo-
rithm. The tree-based algorithm [Barton 1990] is one
of the most typical and conventional methods for mul-
tiple sequence alignment. Figure 3 compares the histo-
ries of the alignment scores obtained by the algerithms.
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{1)Bafore:
------------ ILD-=~FHE-KLLHPGIQKT---TELF--GET---YYFPNSQLLIQN¥ I INECSICNLAKTEHRETDM==P=TKTT
------------ LLO===F=~==--LHQLTHLSFSEMKALLERSHSFYYMLNRDRTL-X¥ ITETCRAC--AQVNASKSAVEQG-TR=-
LTDALLIT=-==PVLO===-LSP-AELHSFTHCG=--=-0TAL--TLQ=-=--GATTTEA- =S¥ ILASCHAC---RGONPQHOMPRGHI --~
------ YADSQATFOAYPLREARDLHTALHIG=~~PRAL--SKA---CNISHQQA--REVVQTCPHC-==~=-HSAPALEAG-VH-~
—=—==—=—er==[S0==FTHEATQAHTLEHLN ===AHTL==RLL===YEITREQA==RDIVEACKQC= ==V VATPVPHL--G=TH=-~
------------ ILT--ALESAQESHALERON---AARL--RFQ---FHITREQA--REIVELCPNC---PDNGSAPGL-—G-VH~-~
{score = -T81) = = = T om o= -

(2)after:
“““““““““““ ILD===F------HEKLLHPGIQRTTELF-GET---Y¥YFFNSOLLIQNIINECSICNLAXTEHRNTDM~-P-TKTT
------------ LLD===F«===-LHQ-LTHLEFSEMHALLERSHSPYYHLNRDRTL- XN I TETCRAC-- AQVHASKSAVENG-TR-~
LTDALLIT===PVLL===LEP=AELHS=-FTHCG===QTAL==TLQ====CGATTTEA==8NILASCHAC-——-ROGNPQHONPRGHI~--
------ VADSQATFQAYPLAEAKDLHT - ALHI G===PRAL=-=3KA~--CNISHQQA--REVVTCPHG======-NSAPALEAG=-VH=~
se=sse— e e TED—-PIHEATOART-LEHLN-—- AHTL-~-RALL---YEI TREQA--ADIVEACKQC=-==VVATPVPHL--G-VH--
------------ ILT--ALESAQESHA-LEHQN---AAAL--RF---FHITREQA~-REIVKLCPNC-~ -PDWGSAPQL--G=Vl-~
(ecore = =7T62) . " * - + ™

Figure 4: Application of intelligent refiner

Every algorithm solves the same small alignment prob-
lemn which consists of seven sequences with eighty code
letters each. The initial state of the alignment problem
has no gaps inside the sequences.

(a) Original B-M algorithm: The randomized iter-
ative strategy executed by a single PE is applied to the
alignment problem. Each iteration cycle takes twenty-
cight seconds on average. We set thirty-two as the
convergence condilion; execution stops, if no variation
of alignment score is found during thirty-two iteration
cycles. Three runs with distinet sequences of random
mumbers give converged alignment scores: -752, -770
and -851.

{b) Parallel B-M algorithm: The best-choice itera-
tive strategy executed by sixty-three PEs is applied to
the alignment problem. In each iteration, sixty-three
possible partitions of aligned sequences are distributed
to the PEs so that they can be evaluated at the same
time. Each iteration cycle takes thirty seconds on av-
erage. The execution stops if no variation of alignment
score is found. The final alignment, which is obtained
at the fourteenth cycle with score -851, is the same
alignment as one of the three obtained in (a).

(c) Tree-based algorithm: The treebased algo-
rithm is a conventional method to rapidly produce &
practical multiple alignment. The algorithm aligns se-
quences one after another by pairwise dynamic pro-
gramming. The order in which sequences are aligned
depends on the tree-like representation that was previ-
ously determined by analyzing the distance of similar-
ity of every pair in the sequences. Our implementation
of the algorithm solves the problem in eighty seconds.

The alignment score of the solution, -617, is indicated
by a heorizontal line.

We made the following observations from these re-
sults.

1. The paralle]l B-M algorithm (b} solves alignment,
problems about fen times faster than the original
B-M algerithm (a).

2. The original B-M algorithm (a) gives different
alignments depending on the sequence of random
numbers, whereas the parallel B-M algorithm (b)
gives a constant alignment that often has a better
score than obtained by (a).

3. (a) and (b) show that either of the B-M algorithms
gives & much better alignment than the conven-
tiomal tree-based algorithm (c).

Thus, the parallel B-M algorithm can constantly gen-
erate high-score alignments in a small number of cycles,
And PIM can execute the algorithm in a practical time.

4,2 Intelligent refiner

The refiner holds dozens of conditiop-action rules and
checks a given alignment with the condition parts in
parallel, If some condition parts match the alignment,
the action parts paired with the condition parts are ex-
ecuted so as to produce candidates for a refined align-
ment. After evaluation of the candidates, some of them
are displayed as refined aligaments. Let us show an ex-
ample of the refinement.

Figure 4 (1) shows an alignment which contains a
wealk Finc-Finger motif pattern. Cs are aligned com-
pletely in two colummns, but Hs are not aligned com-
pletely in two columns; § exists among identical Hs in



a colummn. (* indicates a completely aligned column
and ~ indicates an almost completely aligned columm.
Application of the intelligent refiner to the alignment
produces Figure 4 (2).

The condition-action rule described in Section 3 has
worked on the refinement process, The Zinc-Finger mo-
Eif pattern is brought into full relief ir the refined align-
ment. Although it has a score that is slightly worse
than the previous alignment, it is a valuable alignment
from a biological point of view.

Thus, the intelligent refiner helps to extract motifs
from ambiguous alignment, patterns and to produce bi-
ologically valuable alignments. Constructing the intel-
ligent refiner on PIM is a profitable way, since KL1,
a logic programming language on PIM, is suitable for
representing such biclogical know-how.

5 Conclusions

We have developed a2 multiple sequence alignment sys-
tem on PIM. The parallel iterative aligner of this sys-
tem with the extended Berger-Munson algorithm can
constantly generate better alignments than conven-
tional methods in a practical time. The intelligent
refiner of this system uses condition-action rules for
refining alignments given by the aligner. The rules re-
flecting biclogical know-how help us to extract motif
patterns from ambiguous alignment patterns. These
results show that PIM iz fairly available in the field of
genetic information processing.

The extended algorithm searches all 2"~? — 1 possi-
bilities in parzllel and selects the best one. There is a
problem because the number of possibilities increases
expenentially as the number of sequences grows. Some
praciical alignment problemns with more than twenty
sequences have about a million possibilities, In those
cases, preprocessing with cluster analysis is useful for
reducing the possibilities without reducing the quality
of the resultant alignment. The cluster analysis divides
given sequences into a few groups based on similari-
ties between sequences; similar sequences gather in the
SAIME groups.

One of our future works is to represent complex bio-
logical know-how as a combination of simple condition-
action rules,
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