Hewitt

Technclogy, USA
HL H o 3

CHAIRMAN: (SHAPIRO) Welcome to
the panel on the theory and practice of
concurrent systems. My name is Ehud
Shapiro. 1 am from the Weizinann Institute
of Science in Israel. 1 think we all enjoyed
the very high quality and stimulating
conference and 1 hope that this panel can
match up to whatever we heard until now
and contribute and be a proper ending for
this conference.

We have here with us several
distinguished scientists that represent a
wide range of views and backgrounds on
this topic of concurrent systems. | hope
that we will benefit from hearing their
views and hearing them debate and
challenge each other’s views, as well as
answering the questions from the audience.

The way the panel will proceed is, first,
we will have a ten-minute presentation
from each panelist followed by short
guestions or comments from the floor or
from the panel, And then we will open the
discussion. The discussion will be based on
questions either from the panelists or the
floor, and after each question we will go in
some round-robin fashion among the
panelists. If people from the audience want
to ask questions or make short position
statements, not too long please, then you
are always welcome and 1 will try and make
specific points in the panel where we will
stop and take some comments from the
floor.

We have with us William Dally, who
got his Ph.D. from CalTech, where he
designed, among other things, the Torus
routing chip. Prof. Dally is presently at
MIT, where he leads a research group that
is building the J-machine, a fine grain
concurrent computer.

We also have Carl Hewitt who is a
professor at MIT, where he also got his
Ph.D. Among the major contributions of

Prof, Hewitt is the Planner’s formalism
and Actors formalism for concurrent
computation. And we will probably hear
about it some more today.

We also have Robin Milner, who is
professor at Edinburgh University and also
an elected fellow of the Roval Society of
London. Among the fundamental contri-
butions of Prof. Milner are the program-
ming language ML and the standard
version for standard ML, which he is
working on presently, and contributions to
the theory of concurrency via the calculus
of communicating systems CCS.

We also have Kazunori Ueda, who got
hkis Ph.DD. from the University of Tokyo.
He is presently a member of ICOT. Dr.
Ueda is a designer of the concurrent logic
language GHC (Guarded Horn Clauses)
which is at the foundation of a lot of
research carried out presently at ICOT and
in other places around the world.

The last panelist is David Warren, who
is a professor at the University of Bristol.
Prof. Warren made a significant and
fundamental contributions to the techniques
for sequential and parallel implementations
of Prolog, and he will close the first
presentation.

We are missing Prof. Geoffrey Fox
from CalTech, who was supposed to
represent the application side. And 1 am
sorry about that. [expect as a natural
consequence this panel will concentrate on
the areas in which the panelists are strong
at and they are now interested in, namely
concurrent languages, models of concur-
rency, and parallel architectures,

So, please, Prof, Dally.

DALLY: I would like to start off by

making a couple of observations about

how people build parallel systems today.
There are two major approaches that I

have seen people take.

" The first is to simply take whatever the
latest microprocessor is and wire a bunch
of them together with some network. This
does not work very well for several reasons.
The biggest is that the microprocessors
represent the evolution of serial computers
that over the last 40 years have been highly
tuned to the sequential models of
computation. They have stacks hecause
you have LIFQ activations in sequential
programs. They have 1/O architectures
that are tuned for devices like DISCS, that
have latencies in the tens of milliseconds
and transfer blocks with many thousands
of bytes. So, if you try to tie a comrrnica-
tion network on through either an [/O
channel or try to method it into the
memory interface, neither works well.
Because it doesn’t match the needs of the
communication mechanism.

The other approach is to take whatever
your favorite model of computation is and

wire it in the hardware in whatever seems

the most obvious way, and perhaps you are
fairly clever about optimizing and doing
good engineering. But this also has
problems. Because you've implemented
just one model of computation. And a few
months later you may decide to change that
or you may discover that somebody else
has a program that is written in another
model of computation.

These two approach reflect people who
start from what the hardware is, or people
who start from what the software is, and
directly implement that rather than deciding
what the right primitive mechanisms are,
that means middle between hardware and
software.

If you look at many different models of
computation, the actor model that Carl is
going to say some about, the data flow that
we have had some talks on here in the

architectural track, shared-memory which I
think includes logic programming languages
that share variables and communicate
through them, and data paralle] program-
ming is exemplified by Dr. Waltz's talk this
morning—they all have three requirements
of the underlying hardware. They need
communications. Machines are physically
distributed whether the model of
computation is or not, and so you have to
move information from one point in the
machine to another.

They need synchronization, you have
got to decide when the task should execute
hased on the desirability of producing its
result and availability of the inputs that it
requires, and you need to have some
naming convention either to name cells in
the shared memory, to name synchroniza-
tion points in a dataflow program, or 1o
name objects in an actor program.

The challenge for architects is to define
the right interface. That is what the
architects do. Computer designers imple-
ment the interface, The interface is coming
up with mechanisms for communication
synchronization and naming that are both
efficient to implement and easily support
most of the proposed models of computa-
tion that people have. And in fact the early
results we have indicate that it is possible to
do this with performance within a factor of
two or three of a machine that is hard
wired for one particular model of
computation. -

1 would like to give you a couple of
examples of mechanisms that are imple-
mented in the J-machine that we are
currently building at MIT in collaboration
with Intel Corporation. One of these is fast
message handling. This means more than a
fast network, the technology that I
developed when 1 was at CalTech. You can
now build a network that will deliver a

message across the diameter of the machine
of several thousand nodes in just a few
microseconds. That is only part of the
problem. Message delivery from the
mechanism point of view includes initiating
the message SEND, allocating storage for
the message when it arrives at a node, and
synchronizing tasks for message arrival.
Sa, we have to do the four things indicated
here. We have experimented different
mechanisms for sending. We have chosen
the SEND instruction, because it is proper
compromise in our case between expense to
implement and efficiency of communica-
tion. With it we can dispatch a six word
message across the diameter of the machine
for the cost of executing three instructions.
This takes about 200 nanoseconds. The
message then goes through a network
which delivers it to the destination. Many
proposals have been forwarded for clever
neiworks that will do load balancing in the
hardware or adaptively route to avoid
contention bottlenecks, After evaluating
many proposals we found the most critical
problem is to reduce the overhead in the
network, to make the network very fast. It
became a maiter of more throwing features
out of the network and concentrating on
the engineering, to the point that there are
only a few gate delays between the message
entering a node and the message leaving.

Onece the message arrives at a destina-
tion, it has to be put somewhere. This is a
storage allocation problem. Sequential
architectures have been specialized to
allocate storage for activation records and
stacks. Concurrent architectures need
specialized storage allocation for concurrent
activation in message queues, and things of
that nature,

Once a message arrives, the problem
becomes one of synchronizing the arrival
of that message with the computation

going on at the node where it arrives. So,
if we think about message queue being the
box indicated here, from one end we can
think of it as taking messages off the
network. But from the processor’s point of
view, it is a ready list. Every message can be
thought of as corresponding to a task that
is ready to run. Whatever the task is at the
head of the ready list needs to be dis-
patched. This dispatch, if the mechanism is
chosen appropriately, can be done in just
one clock cycle with one fetch from
memory. The dispatch creates thread of
control by forcing an instruction pointer
and an addressing environment by sefting
the segment registers. QOut of this
mechanism, which is as inexpensive as vou
could expect, you_can then build other
things like the Snoopy cache protocol
suggested by Prof. Warren in his talk in
this conference.

The handlers that get dispatched by this
process can be from simple functions such
as updating the state of a line in a Snoopy
cache and dispatching further messages to
handle that protocol, or they can be grown
into full processes by opening a larger
addressing environment. In the J-machine
operating system, growing a message into a
full process takes less than a microsceond.

The other synchronization mechanisms
needed to support these models of compu-
tation include some synchronization on
data presence which can be accomplished
for instance by having a tag that indicates
that data is not vet present. An attempt to
reference that data will suspend the task.

The final mechanism that I am not
going to talk about, since I am limited to
ten minutes here, is naming. I will say that
many things that you see in a specialized
architecture, like the wait and matching
store and data flow machine or the set of
special caches that Prof. Warren referred to

are special cases of generalized translation
functions. What you want to do is to
associate some key and produce from that
piece of data. You can take for all of these
models of computation the requirements
for naming particular locations or naming
particular elements of data and try to refine
from that what the most primitive
mechanisms are to implement those
models. One set that we have chosen is to
have the general translation mechanisin to
transit the key into data and to have some
mechanism for protecting storage. We have
chosen segmentation.

The kev in picking these mechanisms is
not so much to come up with the
mechanisms that are most arrogant or most
directly represent model or computation or
algorithm that is being solved. And it is
quite easy to propose a network that
specializes for particular algorithm because
the network captures the logical intercon-
nect of the algorithm. But it is usually more
efficient to pick a general network and map
a logical network of the algorithm onto
that. And often vou get even better
performance because you can then share
communication resources between different
logical links in the logical communication
network.

The key challenge in choosing these
mechanisms is to pick mechanisms that can
be implemented with little overhead. In the
J-machine the communication mechanisms
1 have described formatting a message and
sending it, delivering it across the diameter
of a 4000-node machine and buffering it at
the destination for a six word message in
the end, takes about two microseconds.
This is about two orders of magnitude
better than in the connection machine
model 2, and about three orders of
magnitude better than Intel IPSC-1
hypercube. L

-The synchronization mechanism is &
single clock cycle to dispatch a primitive
handler and less than one microsecond to
create, suspend, destroy or resume a task.
One aspect of efficiency is this overhead
and also the interpretation overhead of
implementing the models of computation
in this mechanism.

Another aspect of efficiency is how well
our hardware makes use of the underlying
resources it is built out of. What is the cost
performance of our architecture? This is a
true measure of efficiency for parallel
machine, not processor utilization as is
commonly used in the literature. If 1 am
building a machine that has N processors
and it takes time T-1 {0 run on One
processor and time T in N processor, the
measure of the cost performance of the
machine is the ratio of area of 1 to the time
of I to the area of N and the time of N, not
just the ratio of the speedup divided by the
number of processors.

Let me leave you with one final
thought, which is that the last formula it
often turns out that the efficiency is greater
than 1 for building a parallel machine. And
the reason for this is that it is not expensive
to build a powerful processor, and the
technology that we have when we are
implementing the J-machine in, the
processor takes approximately 1/10 of the
area of the chip. It is a fairly powerful 10
MIPS 36 bit CPU. The chip is mostly a
memory chip. In fact what a fine grain
concurrent computer is is a machine that
has a very small amount of memory per
processor, not necessarily a machine that
has a weak processor, a single bit
processor, or something of that nature.

So, if we think of these memory chips
as being the jellybean parts of the 90s, then
what we can look forward to is from
defining the right general purpose

mechanisms that we can implement many
models of computation out of, and coming
up with efficient implementations of them,
then we can build jellybean machines from
these jellybean parts. Because many models
of computation can be mapped into the
mechanisms, we can have transportable
parallel programs. People will no longer
wrile a program to run on just one
machine. Instead, they will be able to move
a program from different implementations
that will all support the same mechanisms.
Thank you.

CHAITRMAN: Thank vou very much. Are
there any comments or questions from the
panel or from the floor? We have a couple
of minwies.

WARREN: A brief question. What do you
feel about the ratio of the amount of
memory with (the size of} each processor?
Is there some ideal amount of memory that
a processor needs in such a machine? Or
how do you determine it?

DALLY: Okay, this is a very good question
that many people have brought up. If you
are familiar with the rules of thumb that
Gene Amdahl proposed in the 1960s, he,
working on the traditional sequential
processor architecture, said that to keep the
processor happy vou need to have at least
one megabyte of memory for each MIPS of
performance. If vou look at a jellybean
component such as this, you may have only
about 64,000 bytes of memory in a 20 MIPS
processor, which would seem to violate
Amdahl’s rule quite a bit, The difference is
that he was looking at a machine where the
amount of memory required was deter-
mined by the performance of the 1/0
system. He needed to have enough memory
o0 that the processor could keep busy while

swapping further pages of memory in from
a slow disk. The real figure of merit is how
much memory is available within a certain
time delay when the processor needs it. So,
if we implement an efficient communication
mechanism and use a naming mechanism
to provide a logical virtual address space,
even though the memory is necessarily
physically distributed, vou can keep a
processor busy with a very small amount of
memory locally, We have been experiment-
ing with amount between 10* and 10° bytes,
And it seems that for many algorithms that
is more than sufficient and that the real
critical number is not the amount per
processor, but the total amount in a
machine. You need to have a sufficient
amount of memory for the problem fit in
the machine at a given point in time so that
the problem does not become 1/0 bound.

QUESTION (Floor): I have a question.
What is the ratio of local access time versus
global access time of vour machine? How
fast is the global access in J-machine?

DALLY: Okay, now when I am speaking
of our machine, I am speaking of a
particular implementation. It is not a
fundamental limitation in any way. To do
a Iocal access in our machine takes 100
nanoseconds. To do a global access, round
trip sending a message having the read or
write message handler at the other hand
perform the memory read or write and
send the message back, takes on the
average 2 microseconds. That gives a ratio
of 20:1.

CHAIBRMAN: Thank you. We can have
more questions during the discussion.
Please, Carl,

HEWITT: What you have just seen is a

good illustration of something I wanted to
talk about, and that is the difference
between the sequential computation and
concurrent computation. In concurrent
computation many things are happening at
the same time. Sequential computation
doesn’t have the problem of having to
watch out for somebody else out there. 1
would like to take my theme here the
principles that lie behind some of the work
that we done on the actor architecture.

I would like to talk about having two
objectivies. '

The first objective is ulira-concurrency
which is implementing concurrent systems
whose concurrency is limited only by the
laws of physics. This is the kind of thing
that Bill Dally has just talked about—that
we are actually getting closer and closer to
it-—the idea of ultra-concurrency. ““Well,
that is going to be the Limit of
concurrency?’? The limit of concurrency is
going to be the laws of physics, and also
the size of yvour pocket-book as well. But
the fundamental limit is of interest since
some people are willing to pay to go all the
way out to the outer envelop of the perfor-
mance curve. So the limits are the laws of
physics and the second objective is
robustness., What is robustness? Here 1
would like to tantalize you by saying that
robustness is different from reliability.

Reliability means completely repeatable.
The system always does the same thing the
same way and gets the same results within
some kind of tolerance. Robustness is more
general than that, in terms of trying to get
something that goes beyond things where
you can only use reliability.

Ulira-concurrency imposes stringent
requirements. It’s performance should be
limited only by the laws of physics, which
requires good engineering, like the kind Bill
Dally talked about. In addition, ultra-

concurrency must be maintained. It is not
suffcient to set up the system go fast. Ultra-
concurrency has to be maintained dynami-
cally as the computation is on-going. Ultra-
concurrency requires that the shape of
concurrent computation has to be adaptable
to the shape of the application, has to
dynamically conform.

We have developed Actors as a
universal congcurrency primitive that has the
capabilities that are required for ultra-
concurrent computation,

Now, one important idea here is the
Actors are really a mathematical model
with corresponding implementations. They
are not a particular programming language.
For example, one of the students in my
laboratory prepared an actor implmentation
of a full Guarded Horn Clause language on
a concurrent machine. So, programming
language independence is a very important
notion that I think leads to its adaptability
and facilitates our ability to avoid certain
linguistic conflicts and even provide a basis
for addressing linguistic conflicts. We also
use Actor to specify and reason about the
properties for concurrent systems. Instead
of giving mathematical specifications, the
usual practice in Computer Science is to
give mathematical specifications which
have to be proved. For example in a
corporalion has an auditor suborganization
who checks so that the corporation’s
financial system meets certain requiements
and specifications the financial system is
supposed to have. The Actor approach is
to provide another concurrent system
which can check up on the first! Because
the only way in the real world that you can
get specifications to hold is by creating
mechanisms that work at enforcement. 30,
not only are Actor systems used for
implementation, but they are also used for
specification as well.

Bill Dally alluded to the need to
interface to these things. He was talking
about building a multicomputer that has
both special purpose processors and general
purpose processors. What we need to do is
to specify a communications interface.
Software systems build down to the inter-
face and are grounded on it. Hardware
systerns build up to the interface wusing
gates, memories, processors, arbiters, etc.
The communication inerface in-between,
needs to be specified to make that kind of
interconnection possible. Actors provide
exactly this kind of interface. Such an
interface provides a number of advantages
to actor systems. One is the machine
transparency yvou gain from this kind of
system, as it poes from multi-processor to
multi-computer, from local area network to
wide area network. The interface provides
the capability to have various different
kinds of speical processors on the systems.
If enables new systems to be connected. A
computation is not predetermined as to
how big it is going to be. The new and open
system principle is the new and later
computers can be connected into it. The
communications interface facilitates ultra-
concurrency by decoupling physical
properties from ability to communicate.
This provides a kind of mathematical
mechanism to specify that it turns into an
engineering specification.

Concurrent computation is much more
interesting and quite different from
sequential computation. One of the most
important differences is that concurrent
computations are indeterminate. Indeter-
minacy means is just plain @ “not
determined” by anything about what the
outcome is going to be. The asychronous
operation of actors result in a certain
necessary indeterminacy. No matter how
much information is collected ahead of the

time we still may know what outcome is
going to be. Suppose we have an account in
Chicago with $60, and in Tokyo attempting
to0 do an electronic fund transfer to
withdraw the money, another party in
London attempting to withdraw $50, and
someone in Boston is getting that $50.
Well, we can say that one of the parties is
going to be disappointed. Furthermore no
matter how much you know about the
structure and initial configuration, the
operation of the electronic funds transfer
system 15 indeterminate. Conflict provides a
macro analysis difference. Various parties
operating concurrently in the world work
at cross purposes with incompatible courses
of action. In many cascs they didn't know
ahead of time that there would be a
conflict. So, we might have an agreement
among the parties that each one agrees not
to take out the last 50 dollars in the bank.
But, lo and behold, there is the cooperative
organization, they do take up the last 50
dollars in the account, because an
emergency arose which required use of the
funds before the other parties could be
notified.

This finally leads me to my definition
of robustness. Namely, “‘robustness” is
keeping comumitments in the face of
indeterminacy and conflict. And this is
how it differs from reliability: to be robust
a system has to be more resourceful. If the
first way doesn’t make it, then it must be
able to assess the situation and decides
what to do. So, robustness is what we need
interested in analvzing. Indeterminacy and
conflict are always present. But I haven’t
explained what commitments are. It is one
of the fundamental tasks for the theory of
concurrent systems to define what com-
mitments are to elucidate their structure
and say how they are related.

The first thing I want to do is to talk

about discovery of a way that won't work.
And thiz is bound to be controversial in
these parts. I see several of you scribbling
away getting ready for a counter attack!

Namely T want to claim that logical
deduction has two fundamental problems.

The first fundamental problem is that
logical deduction is too strong: an axioma-
tization of any ‘‘real’” sitvation will have
inconsistencies. The inconsistencies arise as
a result of various conflicting commitments
that have been made.

Mot only logical deduction it s too
strong; it is also too weak. If you think
back to the example of the shared checking
account where several parties are trying to
withdraw money from the same account.
One of the parties is not going to withdraw
the money that it requests. That conclusion
we can arrive at deductively. However, we
cannot deduce which will get the money!
You cannot deductively concluded the steps
of. And in terms of our message passing
systems, a concurrent computation has
partially ordered events that keep inter-
secting back in and forih, as opposed to the
linealy ordered events of sequential models.
The interwining of the partially ordered
events makes it impossible to use logical
deduction to implement concurrent systems.
And, therefore, I would like to claim that
concurrent computation is not equal to
deduction plus control. No matter what
controls are put on the deductions the
required decisions cannot be deduced.

The next step is to draw implications
for the field of computer science.
Computer science is a new field of research
which is still in search of foundations. One
approach (which I call algorithmics) to deal
with this by attempting to ground compu-
tation and computers in mathematical
logic. The algorithmic approach is to give a
precise specification of a task that has to be

performed, including properties of the
environment in which is operates, and
develop the code to perform the task
alongside the proof of correctness, and to
carry out that proof that the procedure
meets the specification. However, precise
specification can only be developed for
mathematical domains, Rigorous specifica-
tions for open systems always have incon-
sistencies because of conflicting commit-
ments. So, basing computer science purely
on algorithms won't work.

With respect to GHC, the good news is
that it is not logic programming. If GHC
were logic programming then, it would be
stuck inside algorithmics. And algorithms,
only work for mathematics and not open
systems. GHC (like ABACL, AUM,
PARLOG, ete.) is not logic programming.
Furthermore, it is a good thing that it isn't
because otherwise it wouldn’t have the
power needed to do their tasks.

S0, in closing 1 would say what we need
is new foundations for computer science. I
don’t have time to talk about this much
today because my time is up. However, 1
would like to mention the kinds of concepts
that we are going to need in our new theory
of computer science in order to be able to
make systems to operate in the real world.
We need to know things like trials of
strength. We need to know when one
particular party is making a commitment
or has a responsibility. We need to know
about authority, and how authority is
power authorized by other authorities. We
need to know about things like conflict and
cooperation, we need a new notion of
representation, where one party of the
system needs to represent something to
another party of the system. Previously
from Al we have had psychological notions
of representation which is the correspon-
dence between a structure in the mind of an.

intelligent agent and the state of affairs out
in the world. Such Artificial Intelligence
definitions don’t carry over into coopera-
tive, competing social organizations. So,
we have to get new definitions and make a
new science based on the sociology of
science and organizational theory, as a
supplement to the previous psychological
notions. In this way we can develop the
kind of foundation that we need for large
scale concurrent computation.

CHAIBRMAN: Thank vou very much. Carl
eave us sufficient materials to discuss for
two hours. But 1 will now just take one or
two comments from the panel if there are
any and then we will continue. Any
comments, questions? Okay, we will
proceed right on to Prof. Robin Milner's
presentation.

MILNER: I think Carl has said a lot of my
piece for me. 1 am going to take away the
sociology and add the algebra.

I think my first thing is that we are
looking for a descriptive science. And we
are looking for something which doesn't,
like sequential computing, cover a part of
computation. It is actually covering all of
computation and actually a good deal more
besides, Now, | want to talk about three
aspects of the descriptive science, which we
shall probably never find in the ideal. The
first is universality, the second is primitives,
and the third is structure. (Fig. 1)

The first thing which I believe was first
noticed by Carl Petri is that we shouldn’t
have three levels of description. In some
way the von Neumann model forced levels
of description upon us, because we learned
how to describe the behavior of the
machine in a sequential way. That is we
learned how to write sequential programs.
Programming is just description. It is just

Must there be three types of description of
COMPUTER-IN-CONTEXT

1. (Sequential} Program,
upper level description of maching beharlour

2. Automata theory, engineers” diagrams lower
level dascrition of machine behariowr,

3 Prose, or codfied office procedure ‘outer’-
level deseription of activity around the
machine.

Can we unify them? {Petri}
wnamiee. £, UMIFIED THEORY OF

COMCURRENCY
| et acon § PUALS)

Fig.1 Scalable Description

describing something that doesn’t exist yet.
And it happened that we had a very limited
mode of description and that was the
sequential programming. And so it was
quite natural to us to have something else
going - on below it, which was, say,
automata theory describing what went on
underneath and something which went on
above it, which of course would be
different again, no surprise. In this case it
might be just prose or it might be some
more structured kind of narrative, but it
would in a different style. Since we are
already committed to something special at
the programming level, it wasn't really odd
to have all these levels of description. So,
now how do we unify them? Well, it is a
tautologous thing to say that in doing so we
seck a unified theory of concurrency. What
I want to say also is that communication
and concurrency are virtually the same
subject. Concurrency without communica-
tion is boring, communication without
concurrency cannot exist. So, those two
things are precisely the same.

Now, to proceed to primitives (Fig. 2),
I still don’t believe that vou can get around
this idea, that if you take different primi-
tives for communication, say for example

Two ldeas:
1. Message passing:

Sender

2, Shared mamary:

Receer

e &

Program

+ Program

N

can both be explained by Synchronisad interaction:

Chject |

ACTICN

L

This yields an “OBJECT-ORIENTED™ madel both Programs and Registers are Objects,
G COMMUNICATION AND CONCURRENCY R, Miner. Prenfice Hall, 1889

Object

REACTICN

“Fig.2 Primitives for Communication

things which we know so well the shared
memory model or the message passing
model—they are different of course because
messages have identity, whereas the values
that are set in memory don’t have identity,
you can read them more than once, you
can send them more than once, and so
on—but if vou take those things, vou
inevitably have two kinds of objects in your
world. You have the sender and the
receiver, you have the active object and you
have the thing in between which might be
the message or it might be a register. And
you have these arrows between these
heterogeneous kinds of objects. So, if you
say let’s just have one object in the world,
then vou cannot, as far as 1 can see, get
anything clse but synchronized communi-
cation as a primitive. Now, that of course
people would immediately want to disagree
with, particularly if I say it so forcefully,

which is one reason for saying it forcefully.
One usually says things forcefully if one
isn’t quite sure. But 1 found that that for
me goes on working well. And really that is
nothing more than saying that we are
looking - for an object-oriented model.
““Object-oriented’’ is a conveniently loose
phrase, but it tends to mean things existing
independently and * battling each other
rather than being parts of one and only one
OTganism.

So programs and registers are all
objects. And this makes a surprisingly
smooth model. As a matter of fact, 1 think
all 1 have been doing for many years is
trving to provide some of the mathematics
for Carl’s actor theory.

Thirdly, structure, which I think is an
extraordinarily rich subject (Fig. 3).
Because we can mean so many things by it.
This is where 1 think we are justified in

W must exXpiain, in ong theory,

2. Hierarchic description supemposed on this;

1. Flexd {heterarchich structure of interacting agenis (e.g. maching componeants)

—]

T

-

language)

3. Dvnamically growinglshrinking structure (e.g. pmcm:_lure activiations in a parallel programming

4. Mobility among agents (8.0, jobs in an operating system [HOCESSES aMOong [rooessors)

Fig.3 Hierarchic/Heterachic Structure

going beyond Petri net theory which un-
questionably was the first true theory of
concurrency, namely looking for all the
handles on the structure that we can get
hold of. There are really two different
kinds of structures which look as though
they are the same, One is the physical
structure of the system, which is flat,
heterarchical, merely says something about
how it is interconnected. And that occurs
with virtual systems and with real systeiis.
But the other is much more elusive kind of
structure. It is the structure we impose on
the system in order {o understand it.
Anyone who is trying to understand a
heterogeneous system operating in parallel
knows that yvou get a better decomposition
of the system for some kinds of understand-
ing by associating the elements differently
from another kind of understanding. So,
we impose structure by resolving into sub-
gystems in certain ways. And that is
something which we must be able to do in
our theory.

There are two Ffurther aspects of
structure. One is that i virtual systems
which must be covered just as much as real
gystems by a theory of concurrency, they
grow and shrink. Procedure activations in
a concurrent programming language,
which are very, very hard to understand,

~are an- example of that. But if we can

understard those things semantically then
we release a lot of power.

But more subtle than that—and this is
something which Carl has been dealing
with in his actor model all these years—is
that agents shift their connectivity. And
that is different from growing and
shrinking. In growing and shrinking they
maintain their neighborhood structure, just
within themselves developing some more
new components with new neighborhood
structure, but mnot changing existing
neighborhood structure.

Now, there are two rather subtly
different examples of changing
connectivity, One is jobs flowing through

an operating system; you can think of those
as software. Then you can think of the
shifting association between the processes
and processors. Now, one of the challenges
for a model is not only to be able to
describe hardware and software at the same
time but within the very same expression to
denote a process and a processor and that
association between them which represents
the fact that the process is running on the
processor. And it is not that thai is our
single aim, but that is such an interesting
and challenging aim that, if we find the
theory can do that, then it will probably be
able to do a lot of other things as well.

So, that is all 1 want to say.

Just three themes about a good theory
of concurrency. One is universality, the
second is seeking the right primitives, and
the third is the structure. And we don’t
necessarily find the unique answer (o these
three things.

That is all 1 will say at the moment.
Thank you.

CHAIRMAN: We have time for a few
comments or guestions.

HEWITT: Robin and I have been having
this discussion for years, but 1 still worry
about synchronous commumnications. It
seems to me the only way you can have
synchronous communication is by con-
vention. If you have the synchronous
communication then you have to have two
different names for the same event. What
this means is that if I leave this room here,
then in order for my leaving the room to be
synchronized with my entering the hall
outside, it has to be that entering the hall
outside is the same name as the name for
me leaving the room, because this is one
event there that has two names. But then [
worry about, Robin, your use of registers.

Like I am the programmer over here and
the register is over there. Then I have got
two things. One is I push off the message
here and there is the second event where it
arrives over there, and now it looks like |
don’t have two names for the same event or
that cannot possibly be synchronous.

MILNER: In that case, my answer is that
they are not the same event but there is
some intermediate medium which takes
part in first one event and then the other.
That is all, we agree on that, I think.

CHAIRMAN: Any other comments?

(FLOOR): I guess [have a comment on the
same line, If you go to a synchronous
communication models, the basic problem
you have is whether you can dynamically
create the agents to provide an unbounded
buffer or not. Otherwise you have a pro-
blem with things like recursive computa-
tion, where you can not guarantee the
delivery of communication, unless you
have an unbounded buffer or potentially
unbounded buffer.

MILNER: Yes, so, you must be able to
create new agents during that execution.
That is true.

(FLOOR): And an unbounded number to
provide the same kind of guarantee.

MILNER: Certainly in the model I have
been dealing with, 1 have always been able
to create new agents, and I left out the
ability to shift the connectivity of agents,
which is a different thing. Because [wanted
to deal with the algebra in a way in which
I knew how. Now, I think we had slowly
developed and 1 think one can proceed
toward the idea of mobility. But I entirely

take vour point. But 1 think it starts...

(FLOOR): Right, I think that is the basic
difference between the power of something
like CSP and CCS. Once you can create
these agents dynamically, then you can
define or buffer these synchronous
communication in terms of synchronous
communication. However, if you are not
able to create an unbounded number of
agents, fast enough in some sense, then the
power of these iwo systems is quite
different.

MILNER: Yes, agree.
CHAIRMAN: Bill, you have a comment?

DALLY: Yes, Robin, you proposed this
synchronous interaction as a fundamental
descriptive primitive because it capiures
both message passing and shared memory
without hiding state as message passing
does or hiding communication as shared
memory - does. ‘Do you think this is
something that is also prescriptive in terms
of how machine should be constructed, or
do you think the two are quite different?

MILNER: [am very glad for that
question. Because one thing that strikes me
is that primitives for mental model aren’t
necessarily the same primitives as the ones
you want for construction of a machine. I
am sure there is a very good example of
that, or many good examples in program-
ming, where the idea of refunctional
application is a beautiful primitive for a
mental model. But you implement function
application and you will find it is far from
primitive on any machine which involves
change of environmental kinds of things
which seem for us in a mental model. We
seem Lo be able to understand it and it may

be just that because our mental machines
have developed over a long time, so what is
primitive for us is really not primitive for a
machine.

So, I don’t believe it is prescriptive but
1 believe there may be a happy agreement
in this one case, I don’t know whether vou
would agree about that. In other words, the
synchronized communication is a good
primitive idea for both the mental model
and for the machine model. Would vou
agree it is good for hardware as well as for
mental model?

DALLY: I think that in hardware it is
difficult for the reasons Carl described to
do that. Because you tend to bave hidden
state flying our wires and things of that
nature. And it is easier to deal with the
synchronous model at least at some model,
where you have hidden state in messages.

MILNER: Okay, then, this is another
example of a mismatch of primitives, I
believe. Thank you.

CHAIBRMAN: Okay, we can continue on
this point perhaps later. So, we will have
Kazunori Ueda’s presentation now.

UEDA: I would like to talk about the role
of kernel languages in the FGCS project.

The outstanding feature of the FGCS
project is that it took the middle-out
approach, one direction going from the
kernel language down to hardware and the
other direction going from the kernel
language up to application software (Fig.4).
This approach was adopted as a hypothesis
of the project when it started. 1 will ex-
plain why and how we designed on kernal
language.

In the initial stage, we assumed logic
progrmmig as the best framework for a

Application
Software

kL1

Thi
GHC il

*aimple,
gbstract, ..

Parallsl
Hardware
multi-PSLIFEIM)

L.

Fig. 4

kernal language and designed KLO based
on Prolog. And now in the intermediate
stage, we have a basic language GHC and
its practical version KL1., What is the role
of the kernal language layer? I think it is
not just a programming language. 1 mean,
if it is just a programming language, then
we can design any powerful language that
is good for parallel implementation and
also for application software.

However, a kernel language is the first
thing we have in the middie-out approach,
so it should stand by itself without relaying
on ohter layers. Instead, a kernel language
should be supported by sound principles or
good theories. This is what I like to stress
in may talk. Possible guidelines include
simplicity or abstractness.

A kernel language must provide a
framework of thought in which to clarify
many different concepts and requirements.
This layer should also reconcile theory and
practice, and should connect applications
and hardware. The kernel language layer
has all these roles.

We are often asked whether parallel
programming is difficult. I think a
technically fair answer can be given only
after making much more effort to create
parallel software. The amount of effort so

far is much less than the effort made for
creating sequential software, We are too
much accustomed to the sequential
programming of von-Neurnann computers,
and this is causing a problem in putting the
project into practice. In particular, we
suifer from relaying on sequencing (o
ensure the correctness and the efficiency of
a program, and the assumption of
constant-time access has kept us from
exploiting locality of programs.

So, one possible clue to solve these
problems is to provide an easy-lo-use
parallel language, along with its efficient
implementation. And this is exactly what
we are trying to do now. We are
encouraged by the success of the object-
oriented programming, because process
oriented programming and object-oriented
programming are very similar. We still have
to choose how to design the kernel
language. There are two alternatives: one is
to augment a sequential langauge, and the
other is to design an inherently parallel
Janguage. This table compares these two
alternatives. In the first alternative, control
can be over-specific, but in the second
alternative on essential sequentiality can be
specified. An augmented sequential lan-
guage lacks flexibility in that language
defines the granuality. In constrast, &
program written in an inherently parallel
language expresses any potential paral-
lelism. From programmers’ point of view,
the first approach allows programmers 1o
rely on sequentiality, while second approach
encourages the change of thought. So in
the long run I believe that the latter
approach is more promising.

Another concern is whether to choose a
language without control or to choose a
language with control. Here by “‘control’”,
1 mean control for the correctness of a
program rather than control for efficiency.

So I think the difference to these lanzuages
is more a matter of formalism rather than
a matter of absiractness, because, for
example, GHC 15 a very abstract language
with control. I think these two languages
will be used at different levels for different
purposes.

Let's see how these two kinds of
languages should be related. (Fig.3) These
figures look wvery much like the figure
given by Carl Hewitt.

The left figure shows the usual case in
our computing practice, There may be a
good closed language without control and
there may be a good theory within this
inner framework. But we are living in this
outside world and we have to implement
somehow this beautiful language using
some lower level sequential language.
Curently there are almost no principles to
guide us in filling in the gap between the
inner framework and the outside world.
What we are trying to do is to reconstruct
the left fipure into the right figure. The
right figure we should try to find good

principles and a language for interfacing
between the inner framework and the
outside world. In designing a good
language for this gap we should carefully
reexamine the current practice shown in the
left figure. I mean that we have many
problems, for example, in the use of Prolog
systems. In Prolog, we make heavy use to
extralogical features, but such features
should be reconsidered and reconstructed
by designing a good langauge surrounding
the inner layer of pure Prolog.

My principle is that we should separate
different concepts first. After that we could
reintegrate the inner layer and the outer
layer. But we have to do this very carefully.

This shows why we chose to expose
paralielism. One reason is that we believe
that the development of concurrent systems
should be supported by many people
working on various lavers., I think that
parallelism is too tough and too difficult to
be considered by a small number of people
working on a limited area of computer
science,

Outside World Outside World
Open Language
Mo Principlos) with Contral
Reconstruct
Closed Land. Closed Lang.
. without g without

Control Contral
Interface should be
carefully designed.

Fig. 5

Another reason is that the effective use
of parallel computers require the accumula-
tion of good parallel algorithms. I think
this is clear when we see the current culture
of sequential computation, which is well
supported by the accumulation of sequential
algorithms. 1 believe that the applications
programers should have access to paral-
lelism. I am not saying that all applications
programmers should program parallelism.
1 am saying that they should be able to
program parallelism if they want. Our
approach is to encourage exploiting paral-
lelism by exposing parallelism in a simple
and abstract form rather than to conline
parallelism in some layers.

The last two slides show the overview
of GHC and KL1. These two languages are
actually our theoretical and practical
version of concurret kernel languages. Our
first kernel language in the initial stage was
KLO which was based on Prolog. It was a
sequential language, and was good for
describing closed systems. But we had to
make many ad hoc extensions to Prolog to
write an operating system SIMPOS. We are
now at the intermediate stage, and GHC
was designed to be inherently parallel and
good for describing open systems that may
interact with the outside world. But still we
have to step up to the next stage, because
the theoretical version of our kernel
language, namely GHC, excluded meta-
level operations necessary for observing
and controling parallel execution.
Accordingly the practical version of the
kernel language, KL1, had to feature meta-
level operations in a rather ad hoc way to
write an operating system PIMOS, In the
next stage, we plan to reconstruct meta-
level operations and reflection capabilities
in a more elegant way.

Why did we choose GHC and KL as
the kernel langauge? The reason is that

GHC is a very primitive language that
allows multiple views. First of all, it can be
viewed as a process description language,
but GHC is so primitive that even
communication channels are not primitive
constructs of the language bul are pro-
grammed in the language. This language
can be viewed also as a dataflow langauge
and as a parallel assembly language. The
design goal of GHC has not so much to do
with logic programming, but GHC can still
be viewed as a logic programming language
amenable to declarative reading.

1 am very interested in keeping the core
part of the kernel languge as simple as
possible, because simplicity means firmness
or robusiness. Simplicity reveals the essence
of parallel computation, Simplicity also
helps us to tell one thing from another. As
Dr. Shapiro said, GHC may be too simple
for some applications like systems
programming, but it serves as the reference
point for comparing different concurrent
logic languages. We have too many things
to- consider at once, S0 now we are concen-
trating on basic things. As I said, discre-
pancy between GHC and KL1 still exist,
but are much smaller compared to the
discrepancy between pure Prolog and KI1.0.

Another point on simplicity is that it
enables us to have useful, formal semantics,
which is what [am now working on.
Simplicity also encourages the development
of formal methods for program anaylsis
and transformation and optimization,
These are the reasons why we have still two
versions of owr kernel language: a
theoretical one and a practical one.

CHAIRMAN: Any comments or questions
from the panel or the audience? Please step
to the microphone, if you have,

TAKAYAMA (ICOT): I would say 1 am

too acustomed to mathematical thinking
rather than the von Neumann style of
thinking. As vyou know, mathematical
thinking has little to do with parallelism,
Do you believe GHC gives a good impact
of mathematical thinking, for example to
get the parallelism into mathematical
thinking?

UEDA: What is the last point? Does
mathematical thinking help in constructing
parallel programs?

TAKAYAMA: Not really. Mathematical
thinking is very limited. It does not have
any concurrency. Maybe I hope it can be
extended to a larger area of thinking which
contains a sort of concurrency. Do you
believe GHC gives a good impact or gives
ns a good hint to extend mathematical
thinking to the theory that has
concurrency?

UEDA: The only comment 1 have now is
that anyway the concurrency issue is very
new to mathematical thinking.

CHAIRMAN: Maybe we can contimze this
in the general discussion. Anyv other

comment from the speaker? David, are you
ready to give vour talk?

WARREN: In listening to various position,
[think thre are two concepts which get
confused in my mind at least, 1 will call
these concepts, for want of betier word
“parallelism™ and “‘concurrency”’ (Fig.6).

When [think of parallelism, I think of
the computer itself carrying out activities
simultaneously, with the goal of making
computation actually run faster. And then
there is the other position representing an
interest in “‘concurrency”’, which is looking
at applications where the notion of
communicating objects or communicating
processes 15 intrinsic to the application, for
example designing an operating system,
simulating some complex process, an
airline reservation system, et cetera. So, it
is a question of whether we will be talking
about concurrency in application or
concurrency down in the computer. And
those are really quite different things. So,
for example, we can have a concurrent
application running on a sequential com-
puter, In fact most concurrent application,
for example airline reservations systems,
are actually run presently on large

Mon-concurrent
applications

"‘_.'____._,..--""
Seguential
computer

Parallefism: Computer carries out acthvifies simultaneously to make things go faster,
Concurrency: Computer is modeliing an application which is naturally thought of in terms of
communicating objects or processes.

Concurrent
applications

Faraiel
computer

Fig.6 Parallelism versus Concurrency

sequential machines. One could also, in

principle, run concurrent applications on’

parallel computers. Buf ordinary non-
concurrent applications can also cequally
well be run on sequeniial computers or
parallel ones. So, I think it is important to
distinguish these two different motivations
for what we are discussing,

My own principle interest is more in
exploiting “parallelism' (rather than
“concurrency’), with the goal of making
computation go faster on paraliel com-
puters. But what I believe is important-—
and this is rather in contrast to Ueda-san’s
position—is that we should try to be
making Parallelism invisible to the normal
programmer. Programming is already, as
we know, a difficult enough task without
making it even more complicated by
forcing the programming not only to have
to think about his complex application but
also to have to worry about parallelism
going on inside the computer.

So, 1 think ideally we would like the
paralielism to be invisible to the
programmer, In fact what we normally
think of today as sequential machines are
often really parallel at the lowest level. For
example, with pipelining in a sequential
machine, at the very lowest level we have
some degree of parallelism that typically
only affects the microprogrammer who
develops the microprogram to interpret the
lowest level instruction set. And everybody
else who sees the computer from that level
upwards does not need to be aware of the
parallelism within the machine,

I think we want to achieve that degree
of separation in any parallel machine, even
if we are talking about large scale parallel
multiprocessors. So what we would like is
that the programmer should be rather like
an architect designing a building. The
architect specifies the size and shape of the

building, has a general idea of how much
the building is going to cost, but he isn't
concerned with the details of how the
building is going to be built. That job rests
with the construction company which is
like the underlying computer system. That
underlying system should be solely
responsible of determining how many
resources to operate in parallel to get the
job done as quickly as possible.

Now, a mention has been made of
different languages, whether we need
sequential languages or parallel languages
or what, I think we should classify the

languages into, sort of, three broad
categories—sequential, parallel, and
declarative.

Sequential languages are the conven-
tional von Neumann languages, and the
parallel langoages are more recent—1I
would rather call them conventional lan-
guages designed for programming parallel
machines, In both these kinds of languages,
we think about what is happening down
below in the machines. They have built into
them the notion of state and the notion of
changes of state through assignment
opertions. And the difference between the
sequential and parallel languages is that, in
the sequential language, the state is
changed one step at a time, while in the
parallel languages we may be changing
state at many places at once. But funda-
mentally we are thinking of a program here
as to how to specify what should be going
on underneath inside the machine.

In contrast, the declarative language is
looking more upward toward the applica-
tion. What is it that we are really trying to
do? What is our problem? How can we
best describe that problem, and get it
solved on a computer? And the examples
of declarative languages are Prolog and
GHC and in fact ohter commitied choice

langunages. All these languages are describ-
ing problems in declarative ways. We may
be looking at concurrent applications, for
example operating systems, and for these
applications languages such as Guarded
Horn Clauses have proved very appro-
priate, On the other heand, we may be
looking at applications where concurrency
is not intrinsic to the application, and there
Prolog, T think, is more suitable,

The Chairman, in asking us to prepare
for this session, one of the things he asked
the panelists to discuss was how they
envisage future “‘concurrent™’ computer
systems. So, let me conclude by giving you
my view of what [would like the machines
of the future to look like (Fig.7).

Starting from the botiom, the actual
hardware, in the talk yesterday I described
something called the data diffusion
machine; I will just summarize briefly what
that was. The aim was to have a general
purpose multiprocessor architecture, which
should be scalable to an arbitrary size, and
which should support a notion of global
address phase or shared virtual memory.
But the machine is like a message passing
machine in that it has distributed physical
memory, And the machine is a hierarchical
machine in concord with what Herb Simon
was sayving he though hardware should
look like. This machine is completely
general purpose, although it is motivated
by looking at executing logic programs. In

-

Prolog oL Wider LP Mond P
applicts applic? s applicts applic?s
Andorra Prolog
Language:
Prolog GHG
Man-LP
Basic X softwars
Software: Ancorra Model
general purpose,
scalabie,
Hardware: Data Diffusion Maching shared VM,
distributed mem,
nigrarchical,
Parallel Inference Machine »or-paraliellzm
. + dependent and-parallslism

Fig.7 My Vision of the Future

*which [here take o include “‘parallel™ computer systems

fact, it equally well could be used for any
kind of software applications. 1 have
drawn in this picture examples of non-logic
programming applications passing down
into software which is run on the data
diffusion machine. In fact, today conven-
tional shared memory machine such as the
Sequent and Encore have software which
could run equally well on the data diffusion
machine, So, that is why it’s a general
purpose machine.

But my own interest is particularly in
developing parallel inference machines, We
turn the data diffusion machine into a
parallel inference machine by supplying
some appropriate basic sofiware. The
current thinking of what that basic softwre
should be is an idea called the Andorra
maodel, which was referred to briefly in the
talk by Seif Haridi this morning.

The idea of the Andorra model is to
combine or-parallelism with dependent (or
stream-) and-parallelism. This Andorra
model infact is an idea for extending some
existing work which we have done on the
Aurora system, which is an or-parallel
implementation of Prolog. It is an
implementation which allows the standard
language Prolog to run on a paraliel
machine, with the same semantics as we get
with running Prolog on a sequential
maching,

With the Andorra model running on
top of hardwre like the data diffusion
machine, or indeed existing (parallel)
hardware, we have in principle a parallel
inference machine. What languae is to be
the one to program applications on top of
that parallel inference machine? I should
stress that, as far as the user is concerned,
the parallel inference machine is a black
box and he is unaware of the fact there is
parallelism inside the machine, So, we want
a language which is appropriate for

applications but which hides the underlying
parallelism from the user. And such s
languge, which I will call Andorra Prolog,
is an idea that is still in a state of evolution.
But it is a language which will exploit the
Andorra model, the underlying computa-
tional mechanism. It is a langauge which
will subsume both Prolog and committed
choice languages such as Guarded Homn
Clanses.

So, we envisage this language being
suitable for running applications which
now are written in Prolog. We can map
these directly into Andorra Prolog and run
them as before. Equally, applications
written today in committed choice languages
such as Guarded Horn Clauses could also
be mapped into Andorra Prolog and run
equally well on sequential or parallel
machines. The user is unaware of whether
the underlying machine has only one
processor (and is therefore a sequetial) or
whether it is a parallel macine.

But Andorra Proog is more general
than either Prolog or Guarded Horn
Clauses alone. And the interesting thing is
going to be what Seif Haridi was talking
about in his talk this morning-—applications
which can’t easily be mapped into either
Prolog or committed choice languages, but
which Andorra Prolog makes possible.

I think my time is up.

CHAIRMAN: 1 think the kind of
intellectual battle that is going on here, is
getting clear, Unlike Sumo where everyone
wants to end up on top, here everyone
wants to end up in the bottom level, and
wants the rival to be staving on top. Any
questions?

DALLY: | have two questions, for you,
David. The first is about what iz best
described in terms of a common saying,

about LISP, in that the LISP programmer
knows the value of everything bit cost of
nothing. And in parallel machines most of
the cost is in communications, and
performance of an application is greatly
determined by how well an algorithm
exploit parallelism. It doesn’t make sense
to make tha parallelism invisible from the

Programimer.

WARREN: 1 think that (making
parallelism invisible) is the ideal that one
wants in order to run large applications. If
one is going to develop some complicated
natural language systemn, for example, I
think the larger such a system is, the more
the developer is concerned about correctly
modeling the application. If he can run it
faster on a parallel machine he will be very
happy, But he is most concerned about
solving his problem by correctly represent-
ing his problem. So, for that kind of
application clearly I think he does not want
to be involved in parallelism, if that is
going to make his task more difficult.
Mow, | think you are right in saving—
and in what Ueda-san was saying—that we
currently don't know how to map problems
into parallel algorithms. So, I think, ves, in
the short term probably we do want to be
able to control how the parallelism is
exploited inside the machine. But 1 think
this is a sort of short-term goal rather than
a long-term goal. The way I would see that
happening is possibly by a variety of an-
notation to the language which would
specify directly how the parallelism under-
neath is going to be exploited. That is what
ICOT is proposing with the languages
based on GHC, to actually control physi-
cally where this bit of computation hap-
pens, 1 think that is not ideal. Hopefully
when we learn better how to exploit paral-
lelism we can embed all that knowledge in

the underlying system, and therefore get
the system to take care of it for us and not
to have to worry the applications
programmer with these concerns.

DALLY: The second question is about
primitives. I think Robin said it very nicely
a function call assuming which is & nice
primitive first to think about, but no
compiler-writer today wants a function call
instruction in a machine. By the same
notion, a shared memory reference is a nice
thing for us to think about. There is a lot
of work going on underneath to implement
that. Is there any reason why you think a
shared memory reference needs to be
hardware primitive?

WARREN: Whether it needs to be a
hardware primitive or a firmware primitive,
I think for basic application software we
want it to be primitive, because I think the
natural way to think of parallel computation
is in terms of different processing agents,
sharing data, working on that data, each
agent working one step at a time, the
problem data overall being manipulated
several steps at a time. The notion of
sharing data is really, sort of, the same as
the notion of shared virtual memory, where
you just view the virtual address as being a
name for a piece of data. That is why 1
think the shared virtual memory concept is
very important for writing nice parallel
software,

So, whether that is implemented
directly in hardware or in firmware I am
not so0 arguing about. But I do think one
needs an interface supporting shared virtual
memaory.

HEWITT: I wanted to ask David in what
sense do you see GHC as being declarative?

WARREN: 1 think the notion of
declarative language is that one can think
of what the result of the program is in
terms of the declarative meaning of the
statements of which the program is made
up. With GHC and the committed choice
languages, programs tend to be perpetual
processes, so they don’t really produce
results. They develop through time. But
ong¢ can think of what they are doing
through time in terms of producing
conclusions which would follow from some
intermediate -set of assumptions. In that
sense one can view them as correctly
reflecting the declarative content of the
clanses which make them up, But I think it
is important to realize in logic programming
that the logic programming language is not
solely the declarative part, it is also the
control part, it is how we use it. So, simply
understanding the declarative content of
your program will not tell you all you need
to know about it. So we also have Lo reason
about the control part of the program. It
would be nice if we could get rid of the
control part and just have to reason about
the declarative part. But I think in reality
that is not feasible. So we really want a nice
form of control which we can also reason
about well.

CHAIRMAN: Any other comments?

MILNER: Could I question the
assumption that, so to speak, to see the
resulls of a program clearly from the
presentation of the fprogram, that should
necessarily mean that it is inferred logically,
There are many kinds of mathematics and
I can't see any qualitative difference
between seeing what comes out of the
program as a result of mathematical
analysis of something which isn’t logical on
the one hand, and seeing what comes out

of the program as a result of logical
inference. And these two things seem to be

~ exactly on a par. And I don’t think that the

case has been made that logic programming
has any priority here.

WARREN: All I can say is that, for me,
looking at the logic program, it is easy to
understand the program piece by piece
using the declarative content of the
program. [t is easier to look at one little
clause and to know what that clause means
just from the declarative content of the
program rather than trying to reason about
the totality of some mathematical object.
S0, this is what 1 find in logic program.
ming, which I cannot find in other
formalisms. One can look at the program
in small parts, see that each individual piece
is correct, and therefore, conclude that the
totality must be correct.

MILNER: Just to come back briefly on
that, 1 believe that could be, because
concurrency is something very new to us.
And it may be that working with the right
mathematics of concurrency, then we can
develop the same feeling of naturalness as
you now have for logic, and so we get a
programming idea which in some sense
perspicuous but isn’t logical. Maybe a
matier of training for us.

WARREN: [certainly think, with the use
of logic programming for concurrent
applications, the transparency of what one
will say purely from the declarative point
of view is a less all embracing part of the
understanding of the program than it is for
languages like Prolog. So one has to think
more about control when one is thinking
about concurrent applications than when
one is thinking about non-concurrent
applications.

UEDIDA: Professor Hewitt and myself
maintain that Prolog is a good langauge for
describing microtheories in his terminology,
and GHC is a good language for describing
open systems. Prolog has good, simple
semantics. GHC also has fairly simple
semantics. However, 1 don’t think these
languages and semantics can be combined
in a straightforward way. In the case of
Andorra Prolog, how are the semantics
combined? Do you have any semantics for
the integrated language?

WARREN: How would the semantics
combine in the Andorra Prolog? I am
trying to say that Andorra Prolog is siill
not totally defined. But from the
declarative point of view the clauses are
clauses. We all know what clauses mean.
From the operational point of view, I think
it is rather difficukt to explain without
expalining at great length what Andorra
Prolog is. But if you want to write
applications which are in the Prolog vein,
then you will find the operational semantics
is much as Prolog. If vou want applications
in concurrent style you will find the
reasoning you will need to do is very much
what you will do for GHC. Then there are
the applications which involve both non-
determinancy and co-routining, and then
parallelism will really be on both. Sorry 1
have not answered your question very well.

HEWITT: Just a second. If vou look at
FGHC the thing I find mysterious is how to
account for shared objects with a changing
local - state. Suppose I have a shared
account in FGHC. How do I deal with it?
I would like to make a withdrawal. T have
a message for the account. So I assert that
the first element of the stream is a
WITHDRAW message with a write only
variable that he can use to record success or

failure. That is a mechanism like invoking
a procedure in procedural language. The
result comes back, either I got the money
or I didn’t, T can’t logically deduce which
was going to happen, and neither can
anybody else. So that looks very, very
operational, If I think about how [use this
account, 1 -assert that - WITHDRAW
mesages is the first element of the message
stream for the account response variable, 1
wailt on the response and get back, *“Yes
you have got the money,” or “No, vou
didn’t.” The response didn’t follow
logically from what I did. This is not
simply a matter of controlling deductions:
it's problem of not beng able to make
enough deductions,

WARREN: | think my view is that that is
because the logic is not all you need to
know about to find out about whether
someting follows from what you did.
Because a logic program in general is made
up of logic plus control. In this case, where
the control is controlling the concurrency, 1
think it is important to know what that
control language is doing as well, But 1
think we had better let either Ueda-san or
Shapiro discuss that guestion.

CHAIRMAN: So, I wil just continue with
this. There is still a commment to David
even though he is sitting. I think the
classification of language into sequential,
concurrent, an declarative is very useful.
But I think you have misclassified GHC
and the other concurrent logic languages. 1
think they are in the same family as
OCCAM,CSP, et cetera. They alsohappen
to have declarative reading of a much more
complicated and different sort than
declarative languages. And the declarative
reading of concurrent logic languages is
something like: *“‘if the following is the

sequence of possible histories of a process,
then this is also another possible history of
a process.”” But the declarative reasoning in
concurrent logic programs. are about
histories of processes rather than about
logical relations between values like in a
simple logic program. So, even though the
classification is useful, I think GHC should
be put in the concurrence side rather than
in the declarative side, because you must
reason about the control - aspecis to
understand it. And I think this also answers
Carl Hewitt’s point that if you do not want
to think about these languages declaratively,
ne one forces you. There is a precise
operational semantics of these languages.
You can just think about it and ignore the
logical programming aspect.

The point is that many of us believe it
is useful to think about the logic program-
ming aspect in addition to the operational
aspect. If you want no one to forceé you.
But vou have the option to do that.

There was a comment from .
audience.

the

PER BRAND (SICS, Sweden): [would
like to make a comment on Andorra
Prolog. Just now we have quite a precise
operational model for a fragment of
Andorra Prolog. And this fragement is
defined in the paper for the conference and
as David said our system is still in the
situation where we might change the
semantics. So, today we have an exact
operational semantics, we don’t have a
denotational semantics I would say,

But in this operational semantics you
can really write anything vou would like to
write in GHC and you can also write things

‘which combine Prolog and GHC very
easily. There is a very smooth combination
between things you would write in Prolog
and write in GHC.

CHAIRMAN: Any other comments to
Dawd’s presentatmn'?

HENRY LIBERMAN (MIT, U.8.A.):
Yes, 1 would like to talk about the goal of
having parallelism being invisible; I would
like to say that I find that totally incredible
as a goal. And the reason is that in many
applications the whole goal of the applica-
tion is to make the concurrency visible, A
simple example of that would be something
like a flight simulator, where vou have on
screen a display of some train, and a bunch
of ‘gauges that are measuring fuel and
altitude. You definitely like all these things
to operate in parallel in the natural way of
writing the program for gauges, measure
the current amount of fuel and display it
on the screen, measure the current amount
of fuel some X time period and display it
on the screen and so forth. If you canndt
say in your languages that these gauges are
all running in parallel, then I don’t see how
you can possibly write a program like that.
So, I just want to say that I would like to
challenge the notion that parallelism is
invisible,

WARREN: QOkay, obviously my first slide
wasn't very clear. What you are describing
in my terminology is ‘“‘concurrency’’ not
“parallelism.” If your application could
run on a sequential machine, I think you
would be quite happy to do so. So, what [
am saying is not “concurrency” should be
invisible but “*parallelism’® of the under-
lying hardware should be invisible. Do you
see what I mean?—No. For example, as 1
have said in a pipeline machine, the
parallelism is indeed invisible to an
ordinary prngrammer

MILNER: Could I just add something to
this? I think it is possible to have both of

these things. 1 certainly believe when a
person asks a question one must be able to
express concurrency if that is part of the
structure of the problem. 1 equally agree
with a lot of other people that one would
like to decouple that from the parallelism
that is in the machine and 1 don’t in the
least see why either those things mean that
you shouldn’t also be able in a language to
express, il you wish to, that a certain
process that you have in your program
should be run on a certain processor. 1
don't see why programmers should be
denied that. I think we should make sure
that the programmer who doesn’t want to
do that still has the expressive power of all
kinds including concurrency, but 1 don't
see why one shouldn't added to that the
ability to express what is going on on a
particular machine, if that is very much his
concern, what he actually wants to get the
job rua and run last and that may be the
way to do it sometimes.

WARREN: Just to sum up then, I think
“concurrency’’ should be visible,
“parallelism’ should be invisible. Perhaps
that makes it a bit clearer?

HEWITT: I would like to address this issue
about control, where basically logic wasn’t
able to do it by itself, but mavbe control
would be the knight in shiny armor that
would come and rescue us from the
situation with respect to the Guarded Horn
Clauses,

- It seems to me that when Kowalsky
introduced this notion of control, the idea
was to be able to prune the branch of the
tree. You had all these possible deduction;
if one prone that branch of the tree, that
will be okay. But it seems to me that is not
the situation with respect to Guarded Horn
Clauses. In the example of the shared

account, because 1 have my stream and 1
assert the first element that is withdrawn
and send it down. 1 get the result back. It
is not like I has too many deductions that
need 1o be proved okay. Instead I got this
conclusion that didn’t follow deductively at
all. So there may be some problem here.

CHAIRMAN (SHAPIRO): I think Carl
was referring to the role of logic program-
ming and its relations to concurrent logic
programming. With the permission of the
other panelists [have alzo prepared a
presentation, and I think I will answer the
question.

Even though I was all ready to be the
elderly statesman who just sits there as the
manger of the discussion, 1 was told by
other panelists that I am not yet old enough
for that and 1 should also say what 1 am
thinking, so that is what I am doing.

So, 1 would like to propose an image,
a possible hypothetical image of future
compuier systems. As you will see [will
also have a certain idea who should be on
the bottom. This image consists of two
concepts: one is logic programming and the
other is partial evaluation. And 1 will
explain both of them, how they relate to
what was mentioned.

Logic programming started with its
practical realization in Prolog which is still
the main workhorse of logic programming,
but in the last few years we see major and
very improtant developments in logic
programming, which cause it to diversify
and be applied to many different areas.
One of them is application to logic
databases and there is the LDL system
from MCC, the ECRC database system,
etc. There are the very exciting and very
promising developments in the area of
constraint logic programming, Prolog 3,
CLP (R), CHIP, etc, which seem to be

extremely powerful application programm-
ing languages, There are also perhaps less
well known but I believe very important
and significant developments in the direc-
tion of higher order logic programming
and I refer here Lambda Prolog, the work
of Dale Miller and his colleagues. Also
developments which we heard a lot today
during the conference in the area of
concurrent logic languages, GHC, Parlog,
concurrent Prolog, etc. I believe that each
of these directions which logic programming
is developing is very important and has its
own stance which is independent of the

other developments, So, il is not that it is-

threatening other developments or depends
on successes of other developments but it is
a well defined and quite successful avenue
of research which seems to be leading to
very fruitful results.

The question is that we all started
asking several years ago and we are still
asking, is how can we use logic
programming as foundation of our future
computer systems. And how do we
integrate or apply all these areas? And how
will we apply them in the future? Perhaps
the most conventional answer is that we
will have a network of workstations
running UNIX and all these will be
applications on this network.

But 1 believe this direction will not be
very successful, because for every level of
abstraction that you start there is a certain
degree of complexity of a system vou can
build on top and after that the system
collapses under its own weight. So, without
building layers and layers of abstraction,
you cannot build the highly complex
systems that we need to build in the future,
And I think every panelist here was (or
most of them as least were) suggesting
different layers of abstraction to build their
systems on, and | am going to discuss one

of them now.

Closely related to the concept of lavers
of abstraction is the idea of partial
evaluation. What are implications of the
idea of partial evaluation? We heard an
excellent talk by Dr. Futamura—I will not
repeat the ideas, just the implications.
Perhaps the most important implication is
that there is no intrinsic overhead.
associated with high level formalisms. So,
it is not the case that if you use a high level
formalism to specify a solution your
specification must run slowly, and if vou
use a low level formalism it will run faster.
If you use a high level formalism just to
specify a solution, then you can partially
evaluate the formalism plus the solution on
any particular strata, and in principle there
should not be any additiona! overhead
besides what vou specified in the solution.
So, therefore, the expressive power of
formalisms that we use is of fundamental
importance, perhaps more than the
“overhead™ associated with it whether it is
too high level or not.

Another implication is that overhead of
layers of abstraction can be eliminated. So
we should not be too scared of building
layers and layers of abstraction, because in
principle we have the concept of how to
eliminate them—this is partial evaluation,
So, jsut as an illustration, in principle we
can take the high level language application
program which specifies some solution and
a compiler for this high level language,
which compiles some to architecture, and
the hardware description of the architecture
in some hardware description language,
then partially evaluate the whole thing into
a specialized hardware description, which
can then, using VLSI compilers, generate
hardware. So partial evaluation knows no
limits in some sense. You can partially
evaluate through arbitrary layers of

abstraction with enough ingenuity.

S0, to conclude these implications, I
think that an abstract formalism which
embeds naturally and efficiently all other
useful formalisms can be employed as a
foundation of a general purpose computer
system.

And my personal conclusion is that
concurrent logic languages offer such a
formalism. So, this may explain a little bit
why my research is so obsessed with
embedding every formalism that someone
invents in concurrent logic languages.
Because | wani to be sure that the
concurrent logic languages are expressive
enough to support natural and efficient
embedding of this new formalism or some
old formalism.

And if this is possible, then we can have
this possible view of the future computer
system. At the bottom we have the
hardware, which has work stations, parallel
computers probably (in some foreseeable
future) three dimensional meshes, data
base machines, and on top of this laver of
abstraction that | described based on the
concurrent logic languages, the operating
system, and on top of these all other
languages. 1 think are applications in which
you want to progrm in a concurrent logic
language, but also there are applications
that you want to program in a constraint
language which does not show parallelism,
and you want applications to program in a
function language. So, you would like to
support all formalisms or useful forma-
lisms in this computer system.

What do vou do with the overhead?
The answer is to partially evaluate it. So,
with appropriate partial evaluation
techniques, the applications can be mapped
directly to the hardware and eliminate all

these layers and layers of abstraction which-

we build in software.

So, if there are any comments from the
panelists I will take them.

WARREN: What do you do to have a
precise notion of how efficient an
embedding is? How efficient is it and how
do you characterize it?T

Because my feeling is that embeddings
we have seen from high level languages into
concurrent language aren’t efficient
enough, They are not constant time
embeddings, whereby one operation in a
high level language maps down into a single
constant time operation in the concurrent
logic language, and therefore they are not
adequate for the task..

CHAIRMAN: The answer is: Yes, there
are constant time embeddings. Actually
there is a paper in the concurrent prolog
book which talks about a test for the
adequacy of a language for an architecture,
which proposes a criterion of having
constant lime and constant space overhead
embeddings as a criterion for suggesting
such a language. And I showed it for the
particular model of FCP, or FGHC is the
same in this case. So, the answer is yes, you
can have constant time embeddings. And it
can be proved formally. Whether vou can
find for a particular high level language an
efficient embedding, that is another matter.
Because the former proof goes by simula-
tion of a von Neumann machine. So you
can take your Prolog compiler which
compiles into a von Neumann instruction
set, and then simulate the von Neumann
machine in FGHC, This will give you a
constant time overhead in the proof.
However, to get practical embeddings, you
need more . ingenious schemes. For
example, there is another paper there on
OR-parallel Prolog compilation into flat
concurrent Prolog, which shows a more

— L) —

practical embedding of OR-parallel Prolog
mto a concurrent logic language. This is
arguable but it seems to pive practical
results.

So my answer is that using today’s
implementation techniques, mayhe we can
get reasonable but not competitive resuls,
but certainly we have a proof of principle.
And the concept of partial evaluation has
ne limitations. So whether we can do it
today or not, that maybe depends on our
understanding of how to apply partial
evaluation techniques. But in principle
there is no intrinsic overhead associated
with high level formalisms, provided that
can prove this constani time overhead
theory.

WARREN: Are you saying you think you
can do that for OR-parallel Prolog down
into committed chomr: language? '

CHAIRMAN: Yes, concurrent logic
languages, ves.. 1 believe this can be done,
and I have given some evidence to this,

WARREN: It can be done or it has been
done? I haven’t seen any where it appears
to me there is evidence that it has been
done.

CHAIRMAN: This has been done for
Prolog and the theoretical analysis shows
that for the balanced trees you have a
logarithmic overhead compared to sequen-
tial implementation, for the particular
implementation techniques are used.

WARREN: [mean, that’s showing that for
a subset of programs there is a logarithmic,

not constant-time, overhead. That isn’t
quite what we are looking for,

CHAIRMAN: Well, we all are doing

research, and we are at different stages of
having half baked ideas and half baked
results. But [think this result is at least for
me convincing enough to try and apply it to
Andorra. And actually that is one of the
computational models 1 am going to rush
to embed in FCP after this conference, and
we can discuss the results. maybe in some
other conference. Then we can say if it is
realistic or not. We can also compare it to,
for example, how much effort it would be
for me to write an Andorra interpreter in
FCP, versus how much slower it will take
to run, versus how long it will take for you
to write an Andorra interpreter and see
how long it will run.

DALLY: From a system’s point of view,
you did not talk so much whether you have
constant time embedding or not, but what
in fact the constant is. And perhaps I am a
minority here and I am not having a
religious fervor about logic programming,
But I question whether a language that is as
powerful as providing unification as the
primitive construet is primitive enough to
be able to model languages that use
communication in a much more basic way.
When you say partial evaluation, are you
thinking of compiling things -:iwm well
below the level of FCP?

CHAIRMAN: Well, in general, ves. But
the answer holds even for languages like
FCP, FGHC or Prolog, | think the success
of the Prolog precisely depended on the
fact that we compile special cases of
unification to constant time von Neumann
operations. The practice of Prolog shows
that in 90%s of the time or 95% of the time
programs do not use general unification
but use unification to simulate the simple
operation of load, store, cons, car, odr, ete.
And they are compiled efficiently enough

— 101 —

s0 that the overhead of using them for
these purposes are small. So the advantage
of having such (some people say) wide
spectrum formalism is that if you stick with
the subset which does not exploit the full
power-of it, it can be compiled without the
overhead associated with the full power.
But in the X percent case where you use the
full power, then you pay for it, but you
know what you are getting.

S0 my answer is ves on the fact that
even without further compiling, just the
languages as they are, are already
implemented, the operations which simulte
simple operations take constant time, and a
small constant time. I also believe that
technigues of partial evaluation can be used
t0 cross this laver of abstraction if needed.
But that is a cojecture.

Let’s go round robin again.

MILNER: Yesterday we have heard in Dr,
Futamura’s talk that partial evaluation is
of course perhaps a restricted kind of
program - transformation, and so s
compilation. 1 believe that perhaps it is a
litthe bit restricted to think of just the
method of partially evaluating programs
down through a logic programming
language, in order to get efficient jmple-
mentation. I think we should think much
more broadly about the business of
transforming programs from a wvery
pleasant and natural way for its particular
application into another languages which
may be one close to a particular machine.
And I think that there is a lot of
unanswered question here, a sort of
presumption that somewhere along this line
there has to be a logic programming
language. And I don’t think that has been
justified. I think in this community, it may
be presumed that that is necessary. But |
believe strongly that the important concepts

of programming have very often come
from some kind of restricted science. For
example, matrices are an important con-
cept which are very useful in programming,
Logic is a very important concept, very
useful in programming. What we are
looking for (and it happens not to have
been discovered as early as logic) is the
mathematics of concurrency which when
found and properly analyzed can then be
imported into programming. I think we are
in danger of following a path where we get
stuck on one particular mathematically
elegant form of analysis, namely logic.

CHAIRMAN: Ueda-san.

UEDA: I am afraid that the partial
evaluation technique is not almighty. For
some higher level languages it may be easy
te write meta-interpreters and partiaily
evaluate them but for other higher level
languages it may be more straightforward
to write compilers rather than interpreters.
Three vears, 1 tried to implement pure
Prolog on top of GHC and found that it is
much more straightforward to write a
compiler directly. The reason is that the
compilation involves data flow analysis.
Maybe the meta-interpreter approach can
be used only when such data flow analysis
is not necessary.

SHAPIRO: | would like to respond io
these two points. First, when 1 said partial
evaluation, I did not mean strictly in the
narrow sense. | meant that there was a
general conceptual framework which shows
a high level description, you do not need to
pay for high level description more tha you
need for a low level description, because
they are equivalent, and there are concep-
tual methods of mapping one to the other,
How this mapping is done that depends on

— 12—

the technology. -

For example in the Logix system we do
a lot of the mappings manually because we
do not have a good partial evaluator.

Also 1 do not suggest that someone is
going to go and rewrite LDL in FGHC,
and partially evaluate it back to its original
form. However, a concurrent logic lan-
guage is expressive enough to specify the
functionality of LDL, and therefore, in a
retrospect construction of such a homoge-
neous system, you can reconstruct LDL, so
that its interface looks as if it is a resnlt of
partially evaluating FGHC prgram and
then it talks to the rest to the FGHC
sysiem.

So, I suggest partial evaluation is a
uniflying concept and the technology in
which we have partial evaluators today or
tomorrow should not stop us. The same
way it did not stop us in Logix to use the
concept for implementing the meta level
functions manually, since we did not have
partial evaluators. But the unifying
framework is that the functionality of
everything should be ag if’ it were specified
by the formalism and then partially
evaluated, whether it was done so in
practice or not is another matter.

To the question of the logic layer, this
is a working hypothesis, and I certainly
agree that we have not proved it. However
there are two ways of doing science. And 1
believe in the Popperian way of doing
science which is making bold conjectures
and then either they are refuted or not. But
the bolder the conjecture is, the more you
learn, when it is refuted. Also the more you
win if it is successful. So, I certainly agree
that at this stage, it is 2 bold conjecture and
other people are welcome to try other bold
conjectures. But I think it is fair to say that
the amount of intellectual effort invested in
exploring this bold conjecture to its full

spectrum is much larger compared to other
models of concurrency from the application
side. I am not talking about the theory side.
I am looking at how to compile other
languages, how to write applications, etc.

I think we can be proud in the
concurrent logic progrmming community
that we have done a fairly thorough job
until now and we have at least a good
confidence that if we have got this layer of
abstraction implemented efficiently, then it
will be a very useful one.

Let’s continue with the answer.

DALLY: There is no guestion that it is
useful. 1 think in looking at what
everybody’s slides had here in pictrues of
things that were skinny in the middle and
fatter on the top and fatter on the bottom,
there were a lots of models or program-
ming that we wanted to encompass, either
various forms of logic programming or
perhaps extending out to people who want
to write data parallel, data flow or actor
programs as well, and down in the middle
was whatever our favorite kernel language
was, Toward the bottom were perhaps
many implementation wvehicles. The real
guestion becomes what are the proper
criteria for picking the small kernel
languages in the middle. | would argue that
there are two criteria. One is looking up
from the bottom. It is in fact something
that you can implement effectively. The
other is looking down from the top and
from as broad a view from the top as
possible. Is it one where you couldn’t do
much better, if you were to specialize in
some way. In many ways I find logic
programming lacking as the bottom-most
abstraction level for this. And the reason is
to implement object-oriented or actor
language or to implement a more
synchronous parallel language like CSP or

— 103 —

OCCAM. In both cases the process of
sending the message to an actor of falling
off computation or having a rendezvous
can be simply implemented in hardware by
a primitive communication operation, the
synchronization operation in response to
that. But if [have to go through logic
programming, ! wind up having o cons up
the stream. I am allocating storage in some
sense, and have to resolve names of the
stream variables, And so 1 am . putting
much more machinery underneath what
should be a very primitive operation.
Because it can map directly into the
hardware. It may be that the logic
programming or kernel logic programming
language forms a nice layer, a sort of at one
branch up the tree, to say here is the whole
bunch of logic programming paradigms
that map into kernel logic programming
language. But it seems there is a more
fundamental set of primitives that lies
somewhere below that, that needs to be a2
- compilation target for not just the logic
programming languages but a broader set
of abstractions.

CHAIRMAN: So let me ask vou. Let us
consider two implementation techniques of
an actual language, one which goes directly
to hardware and one which goes wvia
concurrent logic programming language.
Below what overhead will you say it is
practical to use the programming enviorn-
ment operating system and etc. of logic
programming language, to use an actual
language rather than to compile a
directory? What is you threshold?

DALLY: I am not sure I understand the
threshold. But I am not suggesting to
compile directly in the hardware. I think
the notion of an abstract machine is quite
important to save investment, if nothing

else, so that as machines will come and go,
as people discover more about the nature
of parallel architecture, we are just
beginning to do that. What vou want to do
is to save the investment in programming
both applications and systems programs as
you move different things around and
underneath.

CHAIRMAN: Okay, that is the point of
one possible area of abstraction such as the
concurrent logic language. So, 1 would like
to repeat my question to vouw.

DALLY: Right, the threshold in terms of
overhead?

CHAIRMAN: Yes, if let’s say 5, 10, 20,
100 times lower, what is the threshold
below which you will say, “Yes, I am
willing to use a concurrent logic language
and intermediate language to get program-
ming environment, operating system, por-
tability, etc. and lose X in performance.”
What is your....

DALLY: Well, the real question is what 1
get in return for acts, if I get long return....

CHAIRMAN: All the software that could
be writtern in this language.

HEWITT: 1 would just like to agree with
Robin, and see if i can’t sharpen this up a
litile bit. It seems to me what we need is a
foundation and a model of these concurrent
object systems on which to build, and not
any given particular programming lan-
guage, because you like the support of a
whole variety different kinds of program-
ming languages of this kind and that kind
and functional or what ever you have got.
S0, what can we say about layer? I think
for sure, as Robin pointed out, we can say

— 104 —

it is going to be fundamentally based on
communication. 5o that is fundamentally
the notion of communication and the
notion of some kind individual, either
concurrent object or an actor, that is going
to define the layer between hardware and
software.

And it seems to me that many of these
languages that don’t use the actor
approach arrive with excess baggage that
ought not to be part of our foundation.
And in terms of the excess baggage for
these Guarded Horn Clauses Languages, |
would propose two kinds of excess
baggage. I think that unification is excess
baggage and I believe that guards are excess
baggage that they sort of got in there
because of historical accidents etc., and
they are not really fundamental to our
notion of communication and actors in this
kind of layer that we are trying to create.

CHAIRMAN: Would you like to respond
to this, Ueda-san? Okay, so, maybe 1 will
respond.

Unification, | agree, is a very powerful
operation. And the point 1 tried to make
before is that if you do not use it in its full
generality it costs no more than car, cdr or
cons costs. The point of guards, the guards
are also in CCS, CSP, OCCAM, all con-
current logic languages have guards in one
form or another.

HEWITT: The Guarded Horn Clauses
Languages have guards, Not all concurrent
programming languages have them.

CHAIRMAN: In CCS, CSP-guards are
hidden in one way or another before non-
deterministic choices, maybe except Actors.

HEWITT: Bill Dally’s language and a lots
of others—there. are many, many object-

oriented concurrent languages that do not
have guards.

CHAIRMAN: Chikayama-san, please.

T. CHIKAYAMA (1ICOT, Japan): Just a
smal! comment about the communication
by using less structure. 1 have in my mind
now just a few minuies ago a sort of
optimization that vou can communicate
between two processors without really
allocating a cons cell. But still in the
language level whether using cons cell
there, This kind of optimization is already
there. Now, you did say most of the part 1
wanted to say. So just for a comment—that
a sort of optimization is also possible. Even
we can eliminate the overhead by allocating
a cons cell well.

HEWITT: It seems to me when we are
talking excess baggage, there are two parts
of it. One is what kind of optimizations
you can do on the machine in trying to
make it run as fast as if you didn’t have it.
That is part of the overhead excess baggage
which we can do something about the kind
of technologies mentioned earlier for
oplimizing special cases. The other part of
the excess baggage is the mental excess
baggage of your having to think about all
this stuff all the time. Even if in most cases
only special cases are used, we still have to
have in reserve explanations for all these
guards and for this complicated unification.

CHAIRMAN: Leon:

L. STERLING {(Case Western Reserve
Univ., U.S.A.): I would like to change the
topic a little bit and move it back to the
central theme of the Fifth Generation
project. Could the panel comment on the
implications of their views on concurrency

— 15—

to the prospects of machine intelligence?

CHAIRMAN: | think you may have hit an
area where the panel is not an expert. But
maybe | will give the panelists the try.

HEWITT: I will give it a try. .

1t seems to me that there is a challenge
here in terms of going beyond the previous
conceptions, Because with these massively
concurrent machines, vou are unable to
deal with them or progrm the in the ways
that are traditional in artificial intelligence.
1 think that somehow we have to bring in
some of the technology dealing with the
large scale organizations, and human
teams, and that kind of thing as the only
way we can keep track of and keep going
on this particular route. Because our old
notion of artificial intelligence which we
originally got from Turing was very much
a psychological notion, where you wanted
to- make somebody who was intelligent.
With all these actors and all these billions
of messages travelling back and forth, we
can support new kinds of organizations
that operate in open systems.
CHAIRMAN: David?
WARREN: Yesg, | think building parallel
inference machines doesn’t directly solve
the problems of machine intelligence, not
even at all. But it does provide a more
powerful tool with which we might be able
to tackle those problems.

CHAIRMAN; Robin?

MILNER; [think what T will say is pretty
much the same sort of thing as David. It is
just that it is more of the nature that
artificial intelligence is almost by definition
the hardest problem that there is, and

therefore we should try to understand our
tools, And the tools will actually be larg-:l:.r
concurrent in the future.

QUESTION {Flﬂor): Let me perhaps be a
bit more focused and push a point a little
hit more.

Something which 1 perceived as
common among all of the presentations
was the breakdown of the world into
individual objects on quite discrete events.
There are commitments as well in terms of
linguistic abstractions. Can 1 push that
point a little bit and have people make a
stand? Do you think that is a fundamental
correct way of viewing the world? Certainly
Carl Hewiit’s view could be pushed saying
there were something potentially problema-
tic with those views, when you didn't know
what the result with the individual trans-
actions were. Somehow we are making
commitment with the design of these
machines and building them into indivual
object in saying something about the
ultimate prospects or intelligence or not of
these machines.

DALLY: Well, the world at some level is
inherently discrete and the computer world
is even more discrete than that. Because if
we do limit ourselves to building digital
computers, we fundamentally have storage
celis that remember bits, and all we can do
with the computer system is to decide how
we are going to connect these storage cells
together and what stage transformational
function we are going to decide, define on
that. So, it’s a very fundamental level of
computer design, where vou have a finite
state alternative. They are communicating
in some sense as all of the models yvou have
seen need to build up from that level. And
the question of linguistic abstraction is that
people don't want to think about every bit

in machine at once, what are the right

models, what are the right abstractions that
we can give them, and they can harness all
of these bits and make them do something
useful.

MILNER: I would like to add that. It does
seem possible to get breakdowns of the
world which could be expressed as
concurrent programs, but in which separate
parts are not necessarily corresponding to
the physical parts of the system. I am
thinking of some of the very interesting
work by Gerard Berry and his team at
Sophia Antipolis in France, where they
model real time concurrent systems in a
kind of process algebra, but there it turns
out that the synchronization between
separate events which we perhaps normally
think of as a comunication, turns out to be
virtual parts or different views of the same
system. So that it is rather like finding
decompositions of, say, finite state
automata in which cach component is not
a physical part of the real machine but a
way of viewing parts of the state structure
of a machine. He even gave a model, for
example the wrist watch or something of
that kind as a composition of such things,
And I think the state charts work of Harel
was also like that. So, in this world of
process algebras or event based models,
vou don’t have to think of the paris as
physical parts, although it is open to vou to
do that.

CHAIRMAN: Ueda-san.

UEDA: | think this project has a very far
reaching goal as regards applications such
as machine intellizence. Ten years ago we
hoped that the semantic gap between appli-
cations and hardware would be smaller and
smaller. But now it seems to me that the

semantic gap between hardware and
applications is getting bigger and bigger.
Computer architecture is now becoming
simpler and simpler, while applications are
getting more and meore complex. At the
hardware level we now have to consider the
physical distribution of objects, What we
should do in the face of this fact is to find
many good concepts to connect these two
ends, but that is a very difficult thing.
What we are trying to establish by working
on our kernel language is one of these
concepts which can help connecting the two
ends of our project.

CHIRMAN: Furukawa-san.

K. FURUKAWA (ICOT, Japan): First
of all, our initial goal was nol to create a
very artificially intelligent brain but to
achieve some foundation for the research
of knowledge information processing
system. I think the concurrency and paral-
lelism is very much related in several
aspects. One is of course to increase the
processing power and the other is to
enhance what we deal in the sense of intel-
ligence. We have to deal with concurrency
objects in that scope also. One other
approach is as we have said that we are
preparing a lot of Jayers bridging from
hardware and application. Since T agree
with these partial evaluation approach very
much, though I don’t think it is very easy,
what 1 think we need is to develop various
kinds of tricks to enable such transforma-
tion from a higher level description to a
lower level.

DALLY: I would like to follow up on
Ueda-san’s comment by saying that if the
semantic gap is getting larger between
hardware and application, we shouid look
upon that as a good thing rather than a bad

— 107 —

thing, because it reflects
understanding in two respects.
The first is by moving hardware down
to the lower level, means that we have
increased ouwr understanding of what are
the right things to build into the hardware.
There was a point in time when hardware
was burdened down with many complexed
features that it didn't need. By stripping
these off, we built much more efficient
hardware. At the same time we can move
the level of porgramming up which enables
people to write much more powerful appli-
cations than they could if programming
was at the level very close to the hardware,
So, the large semantic gap is something to
strive for, not something try to close.

a greater

CHAIRMAN: Please state your name.

J. WOOD (Australia): James Wood from
Australia. When [return home 1 will be
asked by people who probably heard of
Prolog T just read in the paper about the
connection machine with 64,000 processors.
So, what is it about the PIM or the Multi-
PSI with 64 processor, that is getting such
enormous attention? Could the panel give
me a one sentence or one paragraph answer
that I could take home with me, so that 1
can travel overseas again?

DALLY: A processor is a very poor
measure of anything. Well, that’'s one
sentence. I mean people very often pull one
number out of something and then start
comparing numbers that look like are
similar. And it is not the case. The
connection machine, I am sure Dr. Waltz
can say more about it than I can, has a lot
of one bit processors. You can think of
them as two 8 to 1 multiplexers. Because
that is in fact exactly what they are, They
take 3 bits in and you put in an arbitrary 2

table in and they generate 2 bits out. And
that is a very small primitive to start
building from. So, it is hard to compare
that with the processor in a PSI, which is
a powerful 36 bit machine, has a lot of
mechanism built in for handling the logic
and list manipulation languages.

CHAIRMAN: Anyone from the panel
who wants to respond? Ueda-san? Okay,
please;

D. WALTZ (Thinking Machine Corp.,
U.S.A.): I have a question about general
purposeness and also about concurrency
purposes of view,

It seems to me the most interesting
source of concuwrrency is really the real
world, the real visual world as a good
example. A lot of what humans do I think
is to understand concurrency of various
events. It is how we understand the
causality and that wvarious regions are
actually joined to each other, If that is true,
then it ought to be the case if you have a
good concurrent language that you could
deal with things like vision. Now, it seems
to me unless I missed the point completely
that no one has ever proposed a logic
programming or any of the descendants of
it that have any relevance to vision at all. It
seems to me that for the most part logic
programming languages and their descen-
dants and relatives have very little to say
about things like visual processing. On the
other hand for other kinds of machines
such as connection machine, those are
natural problems and they have relatively
less to say about logic abstraction and what
I may call the ragged reasoning. In some
sense, what you really might want is the
general theory, which seems to me in some
sense not really being looked up by either
of those kinds of general views. And [

wonder if vou could pick my comment on
what would really be a good general
concurrent theory that would be satisfactory
for tasks for vision as well as reasoning.

CHAIRMAN: [would like to respond and
maybe others as well.

One way of viewing the relationship
between the simple and highly regular
processing in vision and logic programming
is that it is fairly easy to write systolic like
programs in concurrent logic programs
which specify algorithms that you are
implementing in the connection machine,
So, for formalizing and specifying these
algorithms concurrent logic languages are
very good tools and there arc good
examples. It is true that given today’s
technology of implementing these languages
even on the connection machine probably
this is a long way to go. So, the answer is
maybe today we partially evaluate a mental
or a formal representation and write down
manually connection machine programs in
C. But maybe in some day in the future
there will be a compiler or partial evaluator
that maps these high level descriptions into
highly specialized machines like the connec-
tion machine. So, the view that I proposed
does not exclude the high concurrent
algorithm on specialized machines like the
connection machine, although 1 agree that
the software technology and an under-
standing of how to do it automatically is
stifl far from being realized today.

WARREN: Yes, I think vision is an
interesting problem to look at with logic
programming. Particularly when we do
have parallel systems which will actually be
able to deliver big performance. Vision, of
course, is a great spectrum from the high
level aspects of vision down to the low level
aspects. But certainly, consider a system

with and-parallelism and or-parallelism for
example looking for a face in a crowd. The
or-parallelism is searching in the whole
scene to find a possible face and the and-
parallelism consists of analyzing the
particular face at that position to see
whether it corresponds to the particular
face you are looking for. So, it does seem
to me that it is an application which might
well be of value look at.

CHAIRMAN: Robin?

MILNER: Could I say briefly something
about mathematical models? I am very
impressed with the fact that some of the
fundamental models in computing don’t
really help vou at all when you come to
something as sophisticated and specialized
as vision—so we are really struck by the
enormous contrast between a general
model of computation, which may say
something about basic concepts of
concurrency but certainly doesn’t have any
ability in itself to take advantage of
regularity of structure, and the kind of
machine siructure which is well adapted to
a particular problem. There is an enormous
gap between those models and specialized
models. [think that as model builders we
should feel pretty humiliated by problems
like vision. You can presumably represent
them in a general purpose programming
language. You might find it much easier to
represent them in a specialized program-
ming language. So, I believe the vision is
one of those things which might well
benefit from special programming methods
or special programming language even.

DALLY: As a machine builder rather than
a model building, 1 don’t feel too
humiliated by vision. If you look at what
the connection machine for instance

— 105 —

provides to handle vision, it is a certain
amount of data type specialization in being
able to handle one bit values easily. But in
fact even for early vision people are more
interested in handling things in the range of
6-12 bit depending on the resolution of the
camera systems. And so there is a certain
amount of building up from there.

And the other thing iz a certain amount
of communication specialization being able
to take an advantage of the locality of the
machine. 1If you build the appropriate
priitive mechanisms you can get both of
those out of the more general purpose
machine. You can implement data type
operations on small integers quite
efficiently and you can communicate with
nearest neighbors making very good use of
the available wiring bandwidth, and you
can do all of this without sacrificing the
generality of being able to support
asynchronous models of computation, and
those that require global shared memory.

I think that it is perhaps difficult to do
it in logic programming. But I think there
exists a machine that will provide very good
support for vision. Perhaps you can’t
compete with a specialized vision machine
that has been hard wired for few early
vision functions. But I think it can offer a
good alternative for prototyping.

CHAIRMAN: Would vou like to continue?

WALTZ: Yes, I think I hear the answers
and I think there is some truth in them all,
It is a little hard o express, but it seems to
me that the fundamental thrust of a lot of
the work in the family of languages that
you are most interested in is toward the
selection of just those things that you
should look at and the things that you
should specifically combine. Efficient use
of resouces apply to just the places where

they ought to be applied.

Leaving aside the current computers
entirely, it seems to be the flavor of real
intelligence may well have a quite different
character which is a profligate is use of
many kind of processors most of which
have no relevance most of the time in the
interest of getting extremely fast latency
when it is needed. Or there are a lot of
processors not attempted for real use. A
small number of processors constructs very
efficiently but we are interested in the large
number of processors in order to get a
quick turn around?

CHAIRMAN: Ueda-san, do vou like to
respond?

UEDA: I have one comment. Until now we
have been using concurrent logic languages
for programming parallel computaion, but
now we have a plan to use concurrent logic
languages for programming storage, for
database and other applications. Thus, a
primitive language can cover a wide
spectrum of applications.

CHAIRMAN: I would like to comment as
well that concurrent logic languages are in
some sense a low level algorithmic
languages and they take no stand as to
what style of algorithm you wish to
implement. At least that is the point that
we are trying to investigate.

Any further comments?

T. ITOH (Tohoku Univ., Japan): 1 think
one of the most important and difficult
concepts in the phenomenal concurrency is
existence of deadlock. Proving the existence
of deadlock and recovery from deadlock
will be very important in theory and
practice of concurrent systems, But in the
discussion I have not heard any mention of

— 110 —

deadlock. Are you all free from deadlock?
CHAIRMAN: Anvone?

MILNER: We have a piece of software
built around CCS which recently discovered
a deadlock in the VAX BMS mailing
system. It was a very short activity and it is
being mended, So, we can build software
which helps, based on particular theories,
which does help in discovery and mending
of deadlocks. So at least I can say that that
is onc of the easiest things. It is quite hard
to prove eguivalence, or particular proper-
ties, but it is very easy in the calculus of

communicating systems to discover
deadlock.

CHAIBRMAN: Any comments on deadlock?

HEWITT: With respect to deadlocks 1
think they can basically make the cost go
down to the point where there are basically
transactions sitting around among the
actors that aren't going -anywhere. They
eventually can clean up via time out. But [
think if you get organizational structure
down, the way yvou paste your concurrent
systems together, it would never have any
deadlocks at all, You have those
transactions that are never going to be
completed, but they can eventually be
swept out of the system.

ITOH: I have one more question about
deadlock. Some people stress the
importance of partial evaluation. Partial
evaluation brought new difficult problems
when we discussed recovery from deadlock
or the provable existence of deadlock. Are
there any comments or any idea on that
aspect?

CHAIRMAN: [would like to respond to

this, First of all the possibility of deadlock
is inherent in any concurrent formalism or
programming language. In some sense. the
language that cannot specify a deadlock is
not a concurrent programming language.

With respect to detecting or proving the
absence of deadlock, there is a paper by
John Gallagher, Codish and myself in the
Mecta 88 Conference, which shows how
using techniques of abstract interpretation
you can analyze the deadlock behavior of
concurrent logic programs. So, it is not
partial evaluation but abstract interpreta-
tion, although they are closely related
techniques. And [am sure that there are
some relationships as well to the CCS
technigues that have been mentioned.

Well, we are nearing the end of this
panel. So, we will take one final question,
and then we will have the final words from
the panelists.

QUESTION (Floor): May 1 speak from
the AT and knowledge representation point
of view? I address this guestion to Prof.
Milner.

Historically speaking the present logic
programming effort has evolved from the
assumption that the first chart of logic is a
very good knowledge representation
scheme and can represent most of the
knowedge that machine intelligence
requires. Therefore, Prolog and logic
programming evolved. Prof. Milner was
saying that if we could attack concurrency
directly with a new kind of mathematics.
Do you think this new kind of mathematics
could provide a different knowledge
representation scheme which will diverge
from this network and logic and various
kinds of schemes?

MILNER: I would hope so. 1 just would
like to keep the door open for it, and I

— 111 —

would also like to mention that modal
logics are very good for even systems which
concurrency tends to be concerned with.
" So, one might think of perhaps modal logic
programming as a refreshing means for
bringing together two apparently warring
factions here. I mean, modal logics perhaps
have some of the assertive advantages of
logic programming. They are also very
close to process algebras.

So, I wouldn't give a complete answer
to what vou asked, but I do believe that
there are possibilities, there are sort of
increments towards a solution;

CHAIRMAN: | would like the panelists to
think about one or two sentences which will
symbolize the end of the panel and
summarizes the best they can their
impressions or thoughts, and we will close
with this.

DALLY: 1 would like to close this with
some comunents on architecture in that
from what everyvbody was saying they agree
that there are a sort of abstract machine at
some level. And I would like to suggest the
challenge for architects 15 not either to try
to wire together what is available today in
the best way or to hard wire their favorite
linguistics model, but to identify some
general efficient mechanisms. And just as
the processor in a PIM or Multi-PSI not
equivalent to a processor in conneclion
machine, they need to be guite careful
about what the costs are in the machine,
and then it is not how many processors are
being used at a particular point in time or
the fraction of processors that are used, but
the cost of building the machine versus how
fast the problem is solved.

Another comment on mechanisms is
that the right mechanisms to build as an
abstract machine model from an

architectural point of view, are unlikely to
be the same ones that you would choose a
linguistic point of view or from the
descriptive point of view.

CHAIRMAN: Carl.

HEWITT: 1 actually think that these are
very exciting times particularly here with
new generation concurrent systems. From
the beginning, 1COT correctly concentrated
on the concurrency as the absolutely
fundamental issue and at the same time
coupled it with advanced information
systems. I think that really is right at the
heart of the matter. In fact, this marks the
transition from artificial intelligence based
on psychology with sequential streams of
consciousness thoughts and proof ways of
doing business to a more sociological
approach on commitments, negotiations,
responsibilities, etc. It is fundamentally
goncurrent instead of being sequential and
it is fundamentally based on commitments
and negotiations instead of being based on
arguments and proof,

MILNER: [would just like to say that 1 do
believe in bold conjectures and the more
well delineated the conjectures, the better.
And let’s have many contrasting
conjectures. I would also hike to say that
nobody has persuaded me that inference is
more fundamental than action. 1 still think
possibly that action is more fundamental
than inference,
That is all I want to say.

UEDA: Let me suggest two directions for
our kernel language research. There are
two problems with the current kernel
language. One is that it is too weak because
it does not yet provide an elgant framework
for systems programming. So, we have to

— 112 —

consider reflection capabilities of parallel
computationn.

The second problem is that the current
kernel language is too strong in the sense
that the basic mechanism, namely unifica-
tion, is hard to implement efficiently on a
parallel machine. So now we plan to design
a very efficient subset of our kernel lan-

guage to encourage parallel programming.

WARREN: 1 would like to go back to my
original point distinguishing between
“concurrency’” and ‘“‘parallelism’. If we
are looking at applications, in many appli-
cations, concurrency is a relevant issue but
I think in the majority it is not really a
central issue to the problem we are trying to
solve. So from that point of view, what we
have more been discussing today is a rather
small part of overall problem to be solved.

If we are looking at parallelism, trying

to make computations run faster, then I
think that is a small but important area. I
think we should try and keep the
parallelism as low down and as invisible to
the average user as possible,

CHAIRMAN: I think this panel as well as
the conference symbolizes the maturity of
our field of research as well as our ability
at least to interact intelligently people from
other approaches, if not to agree with
them. I think it is a very good sign that we
come to terms and understand each other’s
annotations and concepts to a degree that
we can argue in an intelligent way, and
perhaps even exchange fruitful ideas with
each other.

I would like to thank the panelists for
their participation and the audience for
guestions and participation.

Thank you very much.

— 113 —

