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ABSTRACT

We have developed a parallel chess program to run on
distributed memory, muhiple instruction stream comput-
ers, The game trec i5 decomposed between processors
using a recursive version of the principal-variation-split-
ting algorithm. Search times for related subtrees vary
widely (up to a factor of 100) so dynamic reconfiguration
of processors is necessary to concentrate on “hot
spots” in the tree. A crucial feature of the program is the
global hashtable; for this data structure we use a dis-
tributed-memory machine in a shared-memory mode.
The speedup of the program is conservatively estimated
to be 170 on a 512-processor NCUBE hypercube.

1 MOTIVATIONS

It is becoming clear that distributed-memory, multiple-
instruction stream (MIMIY) computers are successiul in
performing a large class of scientific computations (Fox
1988 Hey 1988)(Wallace 1988). These -computations
tend to have Tegular, homogeneous data scts and the
algorithms are wsually “crystalline” in nature. The see-
ond generation of problems now being explored tend
towards an amorphous structure and asynchronous exe-
cation. It is less obvious how well hypercubes or trans-
puter arrays are suited to these new problems.

As an amempt to explore a part of this interesting region
in algorithm space, we have developed a chess-playing
program which runs on the NCUBE hypercube and on
transputer arrays. Besides being a fascinating field of
study in its own right, computer chess is an interesting
challenge for distributed-memory parallel computers
becanse:

» It is not clear how much parallelism is actally avail-
able—ithe important method of alpha-beta pn.mjng
conflicts with parallelism;

» Some agpects of the algorithm require a globally shared
data set;

» The parallel algorithm has dynamic load imbalance of an
extreme nature,

Before continuing, let us state that our approach to paral-
lelism in computer chess is not the only cne. Belle, Cray
Blitz, Hitech, and Chiptest have shown that fine-grained

paralielism (pipelining, specialized hardware) leads to
impressive speeds (Frey 1983)(Ebeling 1985). Our
coarse-grained approach to parallelism should be viewed
as a complementary, not conflicting, method. Clearly the
two can be combined.

2 SEQUENTIAL COMPUTER CHESS

In this section we will deseribe some basic aspects of
what constitutes a good chess program on a sequential
computer. Having done this, we will be able to intelli-
gently discuss the parallel algorithm.

2.1 Tree Searching

At present, all competitive chess programs work by
searching a tree of possible moves and countermoves. A
program starts with the current board position and gener-
ates all Jegal moves, all legal responses to these moves,
and so on until a fixed depth is reached. At each leaf
node, an evalpation function is epplied which assigns a
numerical score to that board position. These scores are
then “backed up” by a process called minimaxing, which
is simply the assumption that each side will always
choose the most favorable line of play. If positive scores
favor white, then white picks the move of maximum
score and black picks the move of minimum score. This is
lustrated in Figure 1.

The problem with this brute-force approach is that the
size of the trec explodes exponentially. The *‘branching
factor” or number of legal moves in a typical position is
ghout 35, Fortunately, the branching factor can be
reduced by alpha-beta pruning, which always gives the
same answer as brute-force searching but looks at far
fewer nodes. Intuitively, alpha-beta pruning works by
ignoring subtrees which it knows cannot be reached by
best play (on the part of both sides). This reduces the
effective branching factor from 35 to about &.

The idea of alpha-beta proning is illustrated in Figure 2,
Agsume that all child nodes are searched from fefi to
right in the figure. On the left side of the tree (the first
subtree searched), we have minimaxed and found a
score of +4 at depth 1. Now start to analyze the next
subtree. The children report back scores of 45, -1, .. .
The pruning happens after the score of -1 is retwmed:
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Figure 1: Game playing by tree searching. The top half of the figure illustrates the general idea: develop a
full-width tree to some depth, then score the leaves with the evaluation function, £ The second half shows
minimaxing-—the reasonable supposition that white (black) chooses lines of play which maximizes
(minimizes) the score.

Figare 2: Alpha-Beta pruning for the same tree as Figure 1. The tree is generated in lefi-to-right order. As
soon as the score -1 is computed, we immediately have a bound on the level above (<= -1) which is below the.
score of the +4 subtree. A cutoff occurs, in that no more descendents of the (<= -1) node need to be searched.



since we are taking the minimum of the scores +3, -1, ...
we immediately have a bound on the scores of this sob-
tree-—we kmow the score will be no larger than -1, Since
we are taking the maximuom at the next level up (the root
of the tree) and we already have a line of play better
than -1 (namely, the +4 subtree), wé need not explore
this second subtree any fusther, Proning occurs, as
denoted by the dashed branch of the second subiree.
The process continues through the rest of the subtrees.

The effectiveness of the proning depends crucially on
move ordering. If the best line of play is searched first,
then all other branches will prune rapidly.

2.2 TIterative Deepening

Toumament chess is played under a sirict time control,
and a program muost make decisions about how much
time to use for each move. Most chess programs do not
set out to search to a fixed depth, but use a technique
called iterative deepening, This means a program does a
depth 2 search, then a depth 3 search, then a depth 4
search, and so on until the allotted time has ren out
When the time is up, the program retumns the move it
cuerently thinks is best.

Iterative deepening has the additional advantage of facili-
tating move ordering. The program knows which move
was best at the previous level of lterative deepening,

and it searches this principal variation first at each new:

level. The extra time spent searching early levels is
more than repaid by the gain due to accurate move order-

ing.
2.3 The Hashiable

Duting the teee search, the same board position may
occor several times. There are two reasons for this. The
first is transposition, or the fact that the same board
position can be reached by different sequences of moves.
The second reason is iterative deepening—the same
position will be reached in the depth 2 search, the depth
3 search, ete. The hasheable is a way of storing informa-
tion about positions which have already been searched; if
the same position is reached again the search can be
sped up or eliminated entirely by using this information.
As  discussed in  (Ebeling 85), proper use of the
hashtable can effectively give near-perfect move order-
ing and hence, very efficient pruning.

3 PARALLEL COMPUTER CHESS
3.1 The Hardware

Our program is implemented on an NCUBE/1Q system.
This is an MIMD (multiple instruction stream, multiple
data stream) multicomputer, with each node consisting
of a custom VLSI processor manming at 7 MHz, 512
kbytes of memory, and on-chip communication channels.
There is no shared memory—processors communicate
by message-passing. The nodes are connected as a
hypercube but the VERTEX message-passing software

(MCUBE 1987) gives the illusion of full connectivity.

Users communicate with a “host™ or front-end computer
which is similar to an IBM PC/AT. Programs are written
and compiled on the host, then downloaded to the array
at runtime, The array does not communicate directly
with the user but a host program must be written to man-
age this interface,

The NCUBE system at Caltech has 512 processors, but
systems exist with as many as 1024 processors. Our
program is written in C, with a small amount of assembly
code.

Our program also runs on transputer arrays under the
EXPRESS operating environment (ParaSoft 1988). We
do not presently have access to a transputer array with
more than 32 processors. We will soon be able to use a
large transputer system; we will report in the future on
the transputer performance of our program.

3.2 Remote Procedure Call

In addition to simple message-passing wtilities, our pro-
gram requires some support for interrupt-based commu-
nication between processors.  In order to make our pro-
gram portable, we had to base our interrupt-based com-
munication on some simple protocel which we could then
implement on each target machine. We chose & “remote

. procedure call” system,

In this systern, any processor can cause a procedore 1o
be called on some remote processor. The called proce-
dure executes fmmediately on the remote processor,
without the knowledge of any program already running
on the remote processof. A remaote procedure can be
called with argoments.

We will zee below how remote- procedure call can be
used to implement a shared hashtable.

3.3 Parallel Alpha-Beta Pruning

Some good chess programs do mn in parallel (Schaefier
1986} Newbom 1985)(Marsland 1984), but before our
work nobody had tred more than about 15 processors.
We are interested in using hundreds or thousands of pro-
cessors. This has forced us to squarely face all the
issnes of parallel chess—algorithms which work for a
few processors do not necessarily scale up to hundreds
of processors. An example of this is the occurrence of
sequential bottlenscks in the control structure of the pro-
gram. We have been very careful to keep the control of
the program decentralized in order to avoid these bottle-
necks.

The parallelism comes from searching different parts of
the chess tree at the same time. Processors are orga-
nized in a hierarchy with one master processor control-
ling several teams, each submaster or “team captain”
controlling several subteams, etc. The basic parallel
operation consists of one master coming to a nede in the
chess tree, and assigning subtress to his slaves in a
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Figore 3: Slaves searching sub-trees in a self-scheduled manner, Suppose one of the searches, in this case
search 2, takes a long time, mmnofmﬂmmummmmhpmmﬂqh;

slave 2, the other slaves will have done all the remaining work.
the dynamic range of the computation times is not too large.

self-scheduled way. Figure 3 shows a timeline of how
this might happen with three subteams. Self-scheduling
by the slaves helps to load-balance the computation, as
can be seen in the figure.

So far, we have defined what happens when a master
processor reaches a node of the chess tree. Clearly, this
process can be repeated recursively. That is, each sub-
team can split into sub-subteams at some lower level in
the tres. This recursive splitting process, illustrated in
Figure 4, allows large numbers of processors to come
into play.

In conflict with this is the inherent sequential model of
the standard alpha-beta algorithm. Pruning depends on
fully searching onc subtree in order to establish bounds
(on the score) for the search of the next subires. If one
adheres to the standard algorithm in ean overly strict
manner, there may be little opportunity for paralielism.
On the other hand, if one is too naive in the design of a
parallel algorithm the sitwation is easily reached where
the parallel program searches an impressive number of
board positions per second, bt still does not search
much more deeply than a single processor mnning the
alpha-beta algorithm. The point is that one should not
simply split or “go paralle]” at every opportunity—as
we will see below it is sometimes better to leave proces-
sors idle for shost periods of time and then do work at
more opportune  points in the chess tree, g

3.4 Analysis of Alpha-Beta Pruning
The standard source on mathematical analysis of the

Tﬁ:vuymn!teuhﬂquwmhaslm;ﬂ

alpha-beta algorithm is the paper by Knuth and Moore
(Kmuth 1975). This paper gives a complete analysis for
perfectly ordered trees, and derives some results about
randomly ordered trees. We will concern ourselves here
with perfectly ordered trees, since real chess programs
achieve almost-perfect move ordering.

In this context, perfect move ordering means that in any
position, we always consider the best move first. Order-
ing of the rest of the moves does not matter. Knuth and
Moore show that in a perfectly ordered teee, the nodes
can be divided into three types, as illustrated by Figure
5. As in previous figures, nodes are assumed to be gen-
erated and searched in left to right order. The typing of
the nodes is as follows. Type 1 nodes are on the
“principal variation” The first child of a type 1 node is
type 1 and the rest of the children are type 2, Children of
type 2 nodes are type 3, and children of type 3 nodes are
type 2.
How much parallelism is available at each node? The
pruning of the perfectly ordered tree of Figore 5 offers a
clue, By thinking through the alpha-beta procedure onc
notices the following pattern:
+ all children of type 1 nodes are searched,
= only the first child of a type 2 node is searched—the
rest are pruned, and,
» all children of type 3 nodes must be searched.
The implications of this for a parallel search are impor-
tant. To efficiently search a perfectly ordered tree in par-
allel, one should perform the following &l gorithm.
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Figure 4: The splitting process of Figure 3 is now repeated, in a recursive fashion, down the chess tree to
allow large numbers of processors to come into play. The top-most master has 4 slaves, which are each in
turn an entire team of processors, and so on. This figure is only approximately accurate, however. As
explained in the text, the splitting into parallel threads of computation is not done at every opportunity but

is tightly controlled by the global bashtable.

* At type 1 nodes, the first child must be searched
sequentially (in order to initialire the alpha-beta
bounds), then the rest can be searched in paralle].

» At type 2 nodes there is no parallelism since only one
child will be searched (time spent searching other
children will be wasted).

T'}rch}nudr:smful]yPara]lelandallthanhﬁdrmcm
be searched independently and simultanecusly.

The key for perfectly ordered chess trees, then, is to stay
scquential at type 2 nodes, and go parallel at type 3
nodes. In the non-perfectly ordered case, the clean dis-
tinction between node types breaks down, but is still
approximately correct. In our program, the hashtable

plays a role in deciding upon the node type. The follow-
ing strategy is used by a master processor when reach-
ing a node of the chess tree:

+ Make an inquiry to the hashtable regarding this posi-
tion. If the hashtable suggests a mowve, search it
first, sequentially. In this context, “sequentially”
means that the master takes her slaves with her
down this Hne of play. This is to allow possible par-
allelism lower in the tree. If no move is suggested
or the suggested move fails to canse an alpha-beta
cutoff, search the remaining moves in parallel. That
is, farm the work ont to the slaves in a self-sched-
uled manner.



1006

"..
e
-3

-lll"-' -

-
|-=

1A
-3

-
i__-ﬂ'

)

&

| sl o

e ] e

¥

Figure 5: Praning of a perfectly ordered tree. The tree of Figures | and 2 bas been extended another ply, and
also the move ordering has been re-arranged so that the best move is always searched first. By classifying the
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searched, while only the first child of a type 2 node is searched.

This paralle]l algorithm is intuitively reasonable and also
reduces to the correct strategy in the perfectly ordered
case, In actual searches, we have observed the sharp
classification of nodes into type 2 and type 3 at alternate
levels of the chess tree.

3.5 Glohal Hashthable

The main value of the hashtable is as a refutation table
near the root of the tree. This means that the hashrable
carries Information about suggested moves in various
positions from one level of iterative deepening to the
next. The central role of the hashtable in providing refu-
tations and telling the program when to go parallel
makes §t clear that the hashtable must be shared
berween all processors. Local hashtables would not
work since the complex, dynamically-changing organiza-
tion of processors makes it very unlikely that a proces-
sor will search the same region of the tree in rwo succes-
sive levels of iterative deepening. A shared table is
expensive on a distributed-memory machine, but in this
case it is worthwhile.

Each processor contributes an equal amount of memory
to the shared hashtable. The global hashfunction maps

cach chess position to a global slot nomber consisting of
a processor 1D and a local slot number. Remote memory
is accessed by the remote procedure call mechanism,
When a processor wams to access a remote entry, it
does 50 by causing a remote procedure to be called; the
remote procedure sentls back a message containing the
desired data. The processor which made the request
waits until the answer comes back before proceeding.

Remote writing is also accomplished by remote proce-
dure call. In this case, the remote procedure examines
the newly generated hashtable entry and the entry previ-
ously occupying the desired slot, then decides which of
the two entries is more likely to be useful. If the new
entry is more useful it replaces the old.

Experiments show that the overhead associated with
the global hashtable is only a few percent, which is a
small price to pay for accurate move ondering,

3.6 Coordination of Processors

Ag indicated above, our program organizes processors in
& multilevel hierarchy. A hierarchy with branching factor
betwesn 6 and 15 seems to work well in the mid-
dlegame; in the endgame a decper, narrower hierarchy is
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Figure 6: The speed-up of the parallel chess program as a function of machine size and search depth. The
results are averaged over a representative test set of 24 chess positions. The speed-up increases dramatically
with search depth, corresponding to the fact that there is more parallelism available in larger searches. The
uppermost curve comesponds to tourmament play—the program runs more than 100 times faster on 256 nodes
as on a single NCUBE node when playing at toumament speed. Preliminary results indicate-a speedup of at

least 170 on a 512-processor machine,

appropriate.  Control is decentralized; each processor
knows only the identities of its slaves. A control pro-
gram running on the host takes care of time allocation
and communication with the user so that the amay
serves only as a “search engine.”

When a processor's slaves are searching it does not join
them but stays where it is, monitoring their progress and
passing them relevant information as it becomes avail-
able. For instance, if one slave finishes its search and
ems a value to the master, this may narrow the alpha-
beta boonds of the master and consequently also namow
the bounds of the slaves. The master notifies the
slaves whenever new information narrows their alpha-
beta bounds. The master also tells the slaves to abort
their searches if an alpha-beta cutoff occurs. Aborts and
updates of alpha-beta bounds are implmented as remote
procedure calls to ensure rapid propagation down
through the hierarchy.

3.7 Load Balancing
As we explained in an earlier section, slaves get work

from their masters in a self-scheduled way in order to
achieve a simple type of load balancing. This tums ot
not to be enough, however, since the time to search two
different sub-rees of the same depth can vary quite
dramatically. A factor of 100 vatiation in search times is
not unreasonable.  Self-scheduling is helpless in such a
situation. In these cases a single slave would have to
grind out the long search, while the other slaves (and
conceivably, the entire rest of the machine) would merely
sit idle. Mot only do the search times vary by a large fac-
tor, bot this all happens at millisecond time scales. Any
load balancing procedure will therefore need to be quite
fast and simple.

For these reasons, our program has been taught to han-
dle these “chess hot spots” intelligently. The master
processors, besides just waiting for search amswers,
npdating alpha-beta bounds, and so forth, also monitor
what is going on with the slaves in terms of load bal-
ance. In pasicolar, if some minimum number of slaves
are idle and if thers has been a search proceeding for
some minimum amount of time, the master halts the
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search in the slave containing the hot spot, reorganizes
all his idle slaves into a large team, and restarts the
search in this new team. This process is entirely local to
this miaster and his slaves and happens recursively, at
all Tevels of the processor tree.

The payoff of dynamic load balancing has been quite
large—the program is approximately three times faster
than it was without load balancing. We are convinced
that the program is well load balanced and we are opti-
mistic about the prospects for scaling to larger speed-
ups on larger machines.

4 SPEEDUP MEASURMENTS

Speedup is defined as the ratio of sequential rnning
time to parallel running time. We measure the speedup
of our program by timing it directly with different num-
bers of processors on a standard suite of test searches.
These searches are done from the even-numbered
Bratko-Kopec positions (Bratko 1982}, a well-known
set of positions for testing chess programs. For each
position we chose a depth of search which caused each
gearch to take about the same amount of time on 2356
processors. Our benchmark consists of doing two suc-
cessive searches from each position and adding up the
total scarch time for all twenty-four searches, By vary-
ing the depth of search we can control the average
gearch time of each benchmark.

The speedups we measured are shown in Figore 6.
Each curve coresponds to a different average search
time. We find that speedup is a strong function of the
time of the search (or equivalently, its depth). This
result is a reflection of -the fact that deeper search trees
have more potential parallelism. Our main result is that
at tournament speed (the uppermost curve of the figure),
our program achieves a speedop of 101 out of a possible
256. Mot shown in this figure is our latest result: a
speedup conservatively estimated to be 170 on a 312
node machine. We believe these numbers can be
improved somewhat through further tuning of the code
and we are presenty pursning this,

The “double hump” shape of the curves is also under-
stood: the location of the first dip, at 16 processors, is
the location at which the chess tree would like the pro-
cessor hicrarchy to be a one-level hisrarchy sometimes,
a two-level hierarchy ar other times. We always use a
one-level hierarchy for 16 processors. Perhaps this is an
indication that a more flexible processor allocation
scheme could do better.

5 PRESENT STATUS

We currently have a robust program which has played in
several tournaments against both people and comput-
ers. 'The program searches 50,000 positions per second
and we estimate that it plays at a USCF rating strength
of at least 2000. A version about ten times slower than
the corment program finished with a 2-2 record at the

1987 ACM North American Computer Chess Champi-
onship. In the next few months we will play the program
in several human toumaments to gaoge its strength
against more varied competiticn.
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