PROCEEDINGS OF THE INTERNATIONAL CONMFERENCE

ON FIFTH GENERATION COMPUTER SYSTEMS 1938,
edited by ICOT. © ICOT, 1988

1193

AN EXAMINATION FOR APPLICABILITY OF FGHC:
THE EXPERIEMNCE OF DESIGNING QUALITATIVE REASONING SYSTEM

Hayato Ohwada and FPumio Mizoguchi

Dept. of Indusirial Administration
Science Univ. of Tokyo
Noda, Chiba, Japan

ABSTEACT

This paper examines the applicability of a paral-
lel logic programming language FGHC (Flat Guarded
IHorn Clauses) through designing a large-scale Al ap-
plication. Qualitative reasoning which we select as the
application provides a powerful methodology for the
next generation of Al systems. To achieve this goal,
we carry out an experimental study for a step toward
AT application within the framework of FGHC. The
study consists of providing programming techniques
for efficient search and exploring a possibility of par-
allel search. Furthermore, we describe a methodol-
ogy for comstructing a large-scale qualitative reason-
ing system in the parallel execution environment. The
present study proposes a new methodology for em-
ploying parallel programming approach to practical
Al applications in a reasonable way.

1 INTRODUCTION

Horn clause logic has been used for one of knowl-
edge representation languages in Artificial Intelligence.
It is capable of describing problems declaratively and
solving the problems without specifying problem solv-
ing strategies. However, it cannot be applied to large-
scale problems, since it is impossible for a programmer
to specily control for searching complex search space
efficiently. . .

In this paper, we try to apply & parallel logic pro-
gramming language FGHC to designing a large-scale
Al application. FGHC is a kernel language that al-
lows parallel execution on the parallel inference ma-
chine being developed by ICOT. It is possible for users
to describe important concepts for parallel program-
ming; it iz natural for expressing processes, commu-
nication and synchronization by introducing “guard”
into a Hotn clause program (Ueda 1985). Thus, FGHC
allows a programmer to specily control for implement-
ing eflicient parallel search,

For the applicalion, we select a qualitative rea-
soning system which is one of powerful tools for the

next generation of Al systems. Qualitative reason-
ing provides a theory for predicting and explaining
the behavior of & physical systemn (Bobrow 1984). Re-
cent attempts to qualitative reascning are to explore &
framework for application of large-scale physical sys-
tems. The aim of using FGHC is not only increasing
search speed but providing a methodology for devel-
oping large-scale qualitative reasoning systems.

In order to examine the applicability of FGHC, we
carry out an experimental study for a step toward Al
application. This study alse aims to develop a paral-
lel programming méthodology for constructing large-
scale Al systems. In the study, we show the expressive
power of FGHC; FGHC provides control structure for
efficient search, and parallel search in the parallel ex-
ecution environment increases the efficiency of search.
We also show usefulness of FGHC for applying quali-
tative reasoning systems to practical domains,

The next section shows the characteristic of quali-
tative reasoning. Section 3 presents control structure
for efficient search in PGIIC. In this section, two dif-
ferent search strategies are investigated: backtracking
search and forward checking, Section 4 describes us-
ing domain-specific knowledge for improving the effi-
ciency of the search programs. The section alse in-
cludes a computation result of programs. Section &
shows the advantage of parallel search. Section § de-
scribes a methodology for constructing a large qualita-
tive reasoning system. Section 7 describes its related
work. The final section has the conclusions.

2 QUALITATIVE REASONING

Qualitative reasoning provides a theory for pre-
dicting and explaining how a physical system works
and for analyzing what its function is. The prop-
erty of qualitativeness is useful not only for predict-
ing the mechanism’s behavior with incomplete knowl-
edge but for producing plausible explanation about
physical causality. Unlike the previous expert systems
based on a shallow model, qualitative reasoning is ca-
pable of providing knowledge of deep model about the

1194

1nﬂu@h——i
| |

Hauld level Lc

.

e .

= OUlllaw

Figure 1: A model of buffer tank

mechanism.

Predicting the behavior is called qualitative simu-
lation. The precise definition and algorithm of quali-
tative simulation was described in (Kuipers 1985). We
give an intuitive explanation in order to point out the
characteristic of qualitative simulation.

In qualitative simulation, the structure of a phys-
ical system is described in terms of parameters and
constraints among parameters. This description cor-
responds to qualitative version of differential equa-
tions. Each parameter has landmark values for cap-
turing change qualitatively., Given the structural de-
scription, qualitative simulation is achieved by pre-
dicting possible next states of the parameéters and
checking the constraints. An important point of quali-
tative simulation is the non-determinism in predicting
next states of a parameter. This non-determinism is
due to the locality of prediction in which a next state
of the parameter is determined by the current param-
eter value and direction of parameter change. Sup-
pose the parameter A takes on the interval bebween
the two landmark values al and a2 such that ail<a2,
and the parameter is increasing now. Qualitative sim-
ulation predicts three possibilities: the parameter re-
mains on the interval between al and a2, takes on the
value a2 or takes a new value a= such that al<a%<a?,
These possibilities are pruned by constraints. Con-
straints are used for selecting plausible states of the
system. Thus, qualitative simulation is regarded as a
constraint satisfaction procedure.

The complexity of qualitative sirmulation depends
on the number of parameters and constraints. Sup-
pose there are n parameters and m constraints, we
consider tree search as a typical search strategy. If
no constraint prunes tuples of states, the complexity
is exponential. If constraints work effective and one
state is possible, the complexity is o{m). In any case,
tree search must search alternative paths exhaustively.
The aim of our using a parallel language is to reduce
large search space by searching alternative paths in
parallel.

Figure 1 shows a model of simple buffer tank, This
maodel is used for describing methods for efficient search

simulate(T,F1,F2,D0F,L1,V1) :-
quasi-static(F1,F2,0F,L1,V1), !.
simulate(T,F1,F2,0F,L1,V1)} :-
new_state(T,F1,F1%), ...,
new_state(T,V1,U1%),
add({DF? ,F2°,F1*), ...,
mon-increase{L1? ,V1°},
next _time(T,Hext),
simulate(Next ,F1? ,F2° ,DF° ,L1°,V1°).

Figure 2: Prolog program of qualitative simulation

in FGHC throughout the paper. The model has the
following constraints:

add(DF,F2,F1): The flow rate DF is the differ-
ence between the inflow F1 and the outflow F2.
mul (L1, VW1,F2): The liguid level L1 multiplied
by the relative shaft position of the valve V1 is
approximately the cutflow F2.

deriv{Ll,DF): The flow rate DF is the derivative
of the liquid level Li.

men-increase(Ll,¥1): The relative shaft posi-
tion V1 is proporiional to the liquid level L1

Figure 2 shows a Prolog program implementing
qualitative simulation for the buffer tank model. The
predicate simulate searches a possible behavior by
repeating prediction (performed by new.state predi-
cate) and filtering (performed by the predicates asso-
ciated with constraints). If directions of all changes
are steady, the predicate quasi_static succeeds and
simulation stops.

However, this program obtains only one behavior.
Sinece gualitative simulation must predict all passible
behaviors, exhaustive search is required. We design
FGHC programs that track all possible behaviors ex-
haustively to be described in the next section. These
programs simulates OR-parallelism by using AND-
parallelism in FGHC.

3 QUALITATIVE SIMULATION IIN FGELC

In this section, we explore methods for efficient
search of qualitative simulation in FGHC. The meth-
ods can be viewed as transformation technigques that
compile Horn clause programs to all-golution FGHC
programs, These techniques also play a role of pre-
serving declarative nature of logic programming in
solving constraint satisfaction problems. Although
the proposed techniques are used for solving constraint
satisfaction problems only, developing meneral trans-
formation systems may be interesting and possible.

The important point for implementing qualitative
simulation in FGHC is to compile generators into all-
solution predicates. Since PGHC is a committed-

gimulate(T,F1,F2,IF,L1,V1) :-
new-states(T,F1,F1s,[]), ...,
nev-states(T,V1,V1s,[1),
<distribute DFs, F2s and Fls>,
<inveke add(DF?,F2?,F1%)>,
<distribute Lls and Vs>,
<inveke mul{Ll’ ,V1° ,F2*})>,
<inveke deriv(lLi’,DF*}>,
<invoke mon.increase(Li’,V1%)>,
next-time (T, Hext),
simulate (Hext,F1?,F2? ,DF? L1° V1),

Figure 3: Seheme of backtracking search

choice language, non-deterministic procedures must

be compiled to deterministic ones. For example, the

original goal nev_state(T,F1,F1*) may be compiled
to nev_states(T,F1,Fls,[]}, where the third and
fourth arguments are d-list expressing possible next
states.

The second pointk is to prepare some predicates
that distribute the elements produced by generators
for constraint checking. Before doing this, every ele-
ment must be instantiated to ground terms in order
not to make different bindings Lo the same variable.
This is due to the operational semantics of FGHC,
We remove the restriction by invoking AND-parallel
processes that have no interaction excepl collecting
solutions in searching alternative path of a tree. In
other words, each process has no uninstantiated vari-
ables except ones used for collecting solutions. To sat-
isfy this condition, we represent all variables in a con-
straint satisfaction problem as ground terms. Apply-
ing this representation to qualitative simulation, qual-
itative states must be represented as ground terms.

Introducing the above remedy, it is straightfor-
ward to implement qualitative simulation in FGHC.
We below describe programs that simulate two types
of search strategies: backtracking search and forward
checking. These stralegies ave typical constraink sat-
isfaction procedures.

3.1 Backtracking search

Backtracking search can be simulated by gener-
ating possible next states and checking whether each
state satisfies all constraints. Since the generator part
consbructs lists of the states, the tester part distribute
elements of the lists until all parameters included in a
constraint are individuals, For example, to check the
constraint add (DF,F2,F1), the element for each three
parameters are distributed. '

However, the distribution process need not con-
tinue until all of the parameters are individuals; oth-
erwise the complexity will be exponential to the num-

1195

simulate(T ,FL1,F2,DF,L1,V1,50,51) = true |
quasi-static(F1,F2,DF,L1,V1 Dlet),
e0(Ret,T,F1,F2,0F,L1,V1,50,51) .

c0{true,-,F1,F2,0F,L1,V1,50,51) :- true |
S0=[(F1,F2,DF,L1,V1)151].

C'D [fa.lse ,T ,Fl ,FZ sDF:Li ,1”. :5‘0 JSI.)
new.states(T,F1,F1s,[1), ...,
new.ssates (T,V1,V1s,[1),
ci1(Fis ,F2s ,IFs,L1s,¥1s,T,50,51).

e1(cy—y[1,=p=p-»50,51) :- true | S0=51.

¢1(F1,F2, [DF|DFs],L1,V1,T,50,52) :- true |
¢2(F1,F2,D0F,L1,V1,T,50,51) ,
c1(F1,F2,DFs,L1,V1,T,51,52).

i— true |

c4(F1,F2,DF,L1,¥1,T,50,51) :- true |
add(DF,F2,F1,Ret), ,
c5(let ,F1,F2,DF,L1,V1,T,50,51).

¢5({true F1 ,F2,DF,L1,Y1,T.50,51) :— tzxue |
CG(FI :FE:DF rLl ,'fi :Tlsu:si) .

ch({false, ,—yopoyos—; 50,51} :— true | 50=51.

ﬂl‘l[Fi .FE.DF.Li,Fl lTssurSI} i= true |.
next-time(T,Next]),
gimlate(Wext ,F1,F2,DF,L1,¥1,50,51).

Figure 4: FGHC pi'ogram of backtracking search

ber of parameters. The important point for simulat-
ing backtracking search efliciently is interleaving con-
straints into distribution processes as soon as all ar-
guments in a constraint become individuals. The re-
gulting scheme is shown in Figure 3. The generator
part consists of the predicate new_states which re-
turns nexk states of a parameter to the third argu-
ment. The constraint part puts forward the distribu-
tion processes associated with constraints.

Figure 4 shows a program that simulates the back-
tracking search. The predicate quasi_static checks
whether all parameters are stable then returns its re-
gult to the =ix argument. If the result is true, one
golution is put into d-list (50, 51) by the predicate
¢0; otherwise simulation proceeds. The predicates ¢l
and ¢2 correspond to the distribution processes for the
constraint add (OF ,F2,F1). The predicate add has an
extra argument which is used for returning the re-
sult of constraint checking. If a possible state satisfies
add constraint, the predicate ¢8 is invoked to examine
whether the state satisfies the remaining constraints
or not, an empty solution is returned. Finally, if the
state satisfies all of the constraints, the predicate c9
iz executed and the predicate simulate is called re-
cursively.

In this program, search of alternative paths is done
by distributing processes for each path. For example,

1194

simul_aha (T.,F1,F2,IF,L1,V1) :-
new_states (T,F1,Fls), ...,
new-states (T,V1,T1s),
<distribute DFs and F2s»,
<invoke add®(DF*,F2*,Fis,Fis’)>,
<invoke deriv?(Lis,DF*,Lis*}>,
<distribute Lis'»,
<inwvoke mul’(L1*,Vis,Vis?)>,
<invoeke mon-inecrease(L1?,¥Vis? ,Vis®?)>,
<distribute Fis’ and Wis?’®>,
next.time (T ,Next),
simnlate (Next ,F1° ,F2% ,DF* ,L1* ,V1*).

Figure 5: Scheme of forward checking

the predicate ¢l searches alternative paths by invek-
ing the goals:

c¢2(F1,F2,DF,L1,V1,T,50,51),
¢1(F1,F2,0Fs,L1,VL,T,51,52)

where the goals connect each other through d-lists (50,
51, 52). This view may be derived from the charac-
teristic of FGHC as a process description language.
A process has a capdidate solution and returns the
solution when no more constraints exdst. This man-
ner contributes to the simplicity of describing search
problems.

In addition to process distribution, process termi-
nation can be described in a simple way. In FGHC,
process termination is expressed by predicates that
have no bedy goals except output unifications. Out-
put unifications are explicit descriptions for returning
a solution or pruning a candidate. In most procedu-
ral languages, handling a solution is implicit and is
needed to use special operations.

3.2 Forward checking

Forward checking is a procedure that can prune
search space by making active use of constraints, while
backtracking search uses constraints in & passive man-
ner. Unlike backtracking, this procedure checks con-
straints without waiting for all variables to be instan-
tiated (Van Hentenryck 1987). In forward checking,
constraints are checked when only one variable is left
uninstantiated, and possible values that fail to meet
the consiraints are eliminated. For example, the con-
straint add(DF,F2,F1) can be evaluated as soon as
two variables are instantiated, and possible values of
the remaining variable are reduced.

Forward checking can be implemented in-a simi-
lar way as the backtracking search. Distribution pro-
cesses are also used. Unlike the backiracking search,
constraints play a role of not determining the satis-
fiability of the constraints, but reducing possible val-

¢2(Fis,F2,0F ,L1,V1,T,50,51) :- true |
¢20(DF,F2,Fis Fis*),
¢3(F1s’ ,F2,DF,L1,V1,T,50,51) .

ﬂ?n(“!‘—i[]is} = true I 5=[]+
ciD(EFIszD:IIFIE] 150) i= true I

add(DF,F2,F1,Ret),

21 (et ,F1,50,81],

¢20(DF,F2,F1s,51).
e21 {true ,F1,50,51) ;- true [S0=[FL]51].
c21{false,_,50,31) :— true | 50=51.
e[, csmrmrms=s50,51) := txme | S0=51.
¢3(F1,F2,DF,L1s,V1,T,50,51) :- Fi\=[] |

ci0(Lis ,DF ,Lis*),

<4(F1,F2,DF,L1s? ,¥1,T,50,51).
¢30¢0],-,58) i~ true | 3=[].
c30([L1IL1s] ,DF,50) = szue |

deriv(Ll ,DF,Res),

31 (et ,L1,50,51),

c30(L1es ,DF,51).
¢31{M¢-L1:5¢:51} i= btrue i E’U-[LIISJ-:E-
¢31(false,_,50,51) :- true | S0=51.

Figure 6: FGHC program of forward checking

ues of parameters. The scheme of forward checking
is shown in Figure 5. After distributing each candi-
date corresponding to the two parameters DF and F2,
the constraint add(DF,F2,F1) tries to reduce possi-
ble states of the parameter F1. We rewrite the con-
straint add(DF,¥2,F1) to add’ (DF? ,F2* ,Fl1s ,Fl1s?),
where the third argument Flg is used for input and
the fourth Fls?® is used for cutput. The constraint
deriv(L1,DF) 15 also checkable without interleaving
distribution processes, because a state of the param-
eter DF is determined.

A FGHC program simulating forward checking is
shown in Figure 6. Predicates not included in the
program are the same as that of the program simulat-
ing backtracking search. In the program, predicates
that invoke the constraints add?® (DF* ,F2°* ,F1s,Fis*)
and derive®(Lis,DF?,L1s*) constraints are only in-
cluded.

The predicates denoted by ¢ (4 is a positive inte-
ger) create a process network in which reduced val-
ues flows from a comstraint to a constraint. This
computation mechanism is provided by the stream-
parallel computation model of FGHC, Based on par-
allel execution, cach constraint reduces possible val-
ues in a pipelining manner. For example, the pro-
cess ¢30(L1z,DF,L1s?) which checks the constraint
deriv(L1,DF) generates possible values to the argu-
ment L1s?, then sends them to processes of the con-

straint mul?{L1°,V1s,V1s?). Since a list of possible
values are incrementally constructed from the head,
constraint ehiecking performs in parallel. This compu-
tation mechanism is useful for not enly reducing com-
putation time but implementing sophisticated search
strategies. In forward checking strategy, cooperative
search among constraints is possible and elfective by
communication via shared variables,

4 USE OF DOMAIN KINOWLED GE

The programs presented in Section 3§ are based
on sequential constraint checking. Their computation
complexities depend on the ordering of constraints.
In gqualitative reasoning, determining the ordering of
constraints is called causal reasoning or causal order-
ing. Causal reasoning provides an intuitive explana-
tion about the behavior of a system. It is an impertant
point for developing computer programs that under-
stand the mechanism.

Although causal reasoning does not intend to pre-
diet behaviors, it contributes to the efficiency of pre-
diction. Since parameter values may be determined
'by causal reasoning, ordering relations among con-
straints improve the efficiency of the constraint satis-
faction procedure. Causal reasoning is also viewed as
constraint propagation which specifies dataflow fom
determined values to undetermined values.

In the buffer tank model, causal reasoning may be
achieved as follows:

The liguid level is the same as the normal
and the inflow to the tank is greater than
nermal.
1l monincreasa(Li, V1)
The shaft position is the same as the
nermal .
l mul{L1,V1,F2)
The outflow is the same as the normal.
l add ({DF ,F2,F1)
The flow rate is greater than the normal.
1 deriv(L1,DF)
The liquid level will increase.

The first statement is an initial condition as in-
put to simulation. Using the constraints, parameter
values are determined qualitatively. This type of de-
termination cannot be seen in quantitative simulation.

Causal reasoning involves non-deterministic behav-
ior, though it was done deterministically in the above.
To determine the ordering of constraints in general,
some assumptions or heuristics must be introduced.
Thiz iz due to the locality of the constraint propa-
gation method, Therefore, the ordering obtained by
constraint propagation is not always the best.

1197

Ll
E Too e EIM
; 600 T ! Paskiracking seacch
LY —— ! Ferwvard checkin
g soo Y *
- X
A Ao <
e Y
ol e
e 00 T T
g ioo =
i,
1 2 E] 4 3 6 —p
COrdering Best

Figure 7: Performance of the two search strategies

Programs that simulate constraint satisfaction pro-
cedure are viewed as a realization of control, while
causal reasoning is. used as logic for improving the
greater efficiency of the programs. We incorporate
domain-specific knowledge as logic into the transfor-
mation systems. This way is regarded as a realization
of the separation between logic and control (Kowalski
079 e

Figure 7 shows the performance data of the two
gearch strategies in different orderings. Six ordering
cases are measured for each program. The left case is
the worst ordering and the right case is the best cne.
The number of consistency tests means total count of
all constraint checking. A horizontal straight line indi-
cates the nurmber of consistency tests in QQSIM which
is & typical qualitative simulation system. QSIM does
not depend on the ordering of constraints, since its
constraint satisfaction is fo generate the set of tuples
of states and filters for each constraint.

As Figure T shows, better ordering achieves search
more efficiently. In backiracking search, the best or-
dering improved the efficiency of the program by al-
most 5 times compared with the worst ordering. For-
ward checking also gained the efficiency by 3 times.
This efficiency was brought by using the technique of
causal reasoning. The difference in search strategies
is ¢learly shown. Forward checking has smaller con-
sistency tests compared with the backtracking search
except for the best ordering. This observation shows
the advantage of forward checking.

The advantage of our pregrams is that the pro-
grams prune possible solutions that fail to meet con-
straints before the remaining constraints are checked,
while the disadvantage is that duplicate computation
exits. If cansal reasoning determines incorrect order-
ing, pathological behavior will be brought. However,
the determination of the ordering is almost good as
shown in Figure 7. Forward checking is efficient than
QSIM even in the worst case.

1198

Qualitative Backiracking reerch | Forward checking |
Model Ai[B_i]. A B
1 7 10 7 a
2 1a 1z g 11
3 z0 zz 17 18
& Z3 17 z3 14
5 46 39 35 27
& 43 62 41 57
] & = Humber of congiztency tertr per conficaint
42 B = Parallelism (s reductiongfeyeles)

Figure 8: Parallelism of the prograns

5 ADVANTAGE OF PARALLEL SEARCH

This section shows the advantage of parallel search
through performance data based on a parallel execu-
tion model, The model is & breadth-first execution
model of programs, where all reducible goals are re-
duced simultaneously. In this model, reductions and
cycles are useful factors for analyzing parallelism of
a program. Reductions stand for the total number
of goals reduced. A cycle means a simultaneous re-
duction of goals. Parallelism is given by the ratio of
reductions to cycles.

Since the backtracking search program has no pro-
cess interaction, parallelism of the program depends
on the number of distributed processes (or alterna-
tive paths of a search tree). In the forward checking
program, processes for checking constrainls commu-
nicate, and therefore, the program involves two types
of parallelism: parallelism of alternative search and
that of cooperative search among constraints. How-
ever, the parallelism of the cooperative search is much
smaller than that of alternative search. Thus paral-
lelism of the two programs is approximately propor-
tional to the number of alternative paths.

We assume that parallelism of the programs is pro-
portional to the number of consistency tests for each
constraint, since parallelism can be regarded as the
average of total reduced goals. This assumption may
be proved to be almost correct from the result shown
in Pigure 8. Figure 8 shows the measurement result
on various qualitative modelst. Parallelism of the pro-
grams corresponds fo the number of consistency tests
per constraint. This observation suggests that paral-
lel search may obtain the greater efficiency for selving
large constraint satisfaction problems. Figure 9 shows

IThese models are obtained from medical domain.
They are Stacling equilibrium, blood pressure regu-
lation, intraccular pressure regulation, etc. The first
two are developed by Kuipers and Kassirer, The third
is developed by us.

------- = Ferward shesklng

—_—

Ssarch Space Browing
Model

Figure 9: Reductions and cycles

reductions and cyecles of the programs for the same
models as those in Figure 8. Figure 9 illustrates the
advantage of parallel search in which parallel execu-
tion makes constraind satisfaction procedure dramat-
ically faster than sequential execution.

6 QUALITATIVE REASONING FOR REAL

This section deseribes a methodology for construct-
ing a large-scale qualitative reasoning system in the
parallel execution environment. For this purpose, we
must consider the following points:

& System decomposition, and
Stepwise refinement.

The first point means that a large-scale system
consists of & number of sub-systems. In order not
to make prediction of behaviors intractable, we must
decompose the whole system. The second one is de-
rived from the fact that it is difficult to build a proper
qualitative model simulating the real-world. We must
construct a number of consistent (not true) models
and refine them into better models.

The system decomposition requires collecting the
qualitative model for each component. Since each
model consists of a set of parameters and constraints
among them, we must collect parameters and con-
straints by identifying some parameters and generat-
ing constraints from component connections. How-
ever, this way cannot be applied straightiorward. As
a model gets large, great many constraints are gener-
ated. This is due to complete instantiation for pre-
dicting behaviors of the whole system. Intuitively, we
are not concerned with the whole system for analyzing
the system’s behavior. We focus on components that
are influenced by a given disturbance cnly, then aggre-
gate to the total behavior that includes various distur-
bances. Thus, we developed an aggregation method
that selects constrainis by propagating a given dis-
turbance. Based on this method, a number of partial

models are generated from disturbances. This means
that the total behavior is predicted by simulating each
model independently, The source of parallelism exits
in this aggregation method.

We have built a mode] of intraocular pressure reg-
ulation for glaucoma diagnosis (Ohwada et. al. 1038).
Glaticoma 1s an eye disease characterized by elevated
intraccular pressure. In this model, there are 10 com-
ponents. After 272 constraints were generated for the
whole system, we selected 14 constraints for a distur-
bance. For glaucoma diagnosis; five disturbances are
needed to obtain beliaviors about primary glaucoma?.
Therefore, qualitative simulation can be executed in
parallel where five simulation processes are invoked,
Since the degres of parallelism for each process is
21 (51080,/2419)%, 15 (79077,/5202), 36 (134483/3750)
and 82 (500818/7181), total parallelism becomes the
sum of parallelism for each process.

The stepwise refinement requires management of
multiple models. DBetter models can be. obtained by
analyzing models and observations. If the current
models are inconsistent for a new observation, they
are refined into several models and qualitative simu-
lation is inveked for each model, Although multiple
models are activated and simulation is invoked in par-
allel, raultiple models must be managed for making
model selection tractable. For this purpose, a model
selection procedure is introduced for managing multi-
ple models by communicating with the medels.

Figure 10 shows a program of managing multiple
models. The thiree processes are firstly invoked. The
firat process refines 2 model and invokes multiple mod-
els. The second is a manager for controlling multiple
models. The third is used for getting observations
from a user. In this program, the first and the second
processes are regarded as search process and control
process respectively. A comimunication channel repre-
sented by the variable H5G works as a medium between
a search process and a control process. After sitnula-
tion, the searcl process sends & message to the control
process. This message consists of behaviors and unin-
slantialed variable Contxol which is instantiated by
tlie control process. If no behavior is consistent with
ohservations, the search process stops and this model
is elimilated; otherwise, the search process refines the
current model and distributes new models. The con-
trol process selects the best model among multiple
models and sends a message to the model. This mes-
sage is of a form:

fork(New,Others)
where Hew is a channel for communicating with the
model and Dthers means channels for the others. The

2Primary glaucoma is a category of glaucoma.
#The left number means reductions and the right
indicates cycles.

1195

:= model(Hodel H3G,[]),
manager (H56,00) ,
instream{0n) .
model (Hodel HO,H1} := true |
simnlate(Hodel,Behaviors),
Ho=[{Behaviors,Contrel) |H1],
medal{Control,Hodel) .
model (terminate,.) := true | true.
nodel (fork(H0,H1) ,Hodel) :- true |
refine model(Hodel ,NewHodels) ,)
distributemodels (HewHodels HO,HL) .
manager (Heg,0B0) :- true |
cheose best (Hsg, 000,081 ,Best ,Others) ,
sendmsg(Dest,Others ,0B1) .
send.msg({_,Control) ,Ochers ,0B) := true |
Control=fork(Hew,0thers),
manager (Hew,0D) .

Figure 10: Scheme of multiple models

control process takes initiative in message passing;
it sends a mew channel for communicating with dis-

tributed search processes. Thus, management of mul-

tiple models can be achieved within the program.

T RELATED WORIK

We have developed a control strategy for manag-
ing search processes. In this framework, it is possible
to focus on possible alternatives simultanecusly and
control search processes for efficient search (QOhwada
1887h). The main idea of the method is to separate
a control process frem search processes. The control
process sénds a message with communication channel
to a search process, then the process is executed de-
pendently to the message. This method decreases pai-
allelism of original search programs, but it plays a role
of preventing the search process from extra forking.
This method is directly applicable to our programs.
Since the qualitative reasoning system predicts behawv-
iors of a physical system by using local interpretation
in general, there are a number of similar behaviors.
If & user want to aggregate them at an intermediate
stage, a global checking mechanism is required. The
control process is useful for this purpose.

Although we describe qualitative simulation from
the viewpoint of constraint satisfaction in Section 3,
we have adapted it to a distributed model, A physical
system may be decomposed of several parts, and the
parts are regarded as small physical objects. In this
view, objects interact with each other. We have de-
seribed the interaction of physical objects as a paral-
lel model in which objects change their states through
message passing (Ohwada 1987a).

1200

The recent direction of qualitative reasoning re-
search is to set up large-scale systems. Falkenhainer
and Forbus (1988) focused on a modeling process in
which multi-grain, multi-slice model of a Navy propul-
sion plant was used. Kuipers and Barleant (1988)
presented a method for incrementally exploiting in-
complete quantitative knowledge by using it to refine
behaviors. Our approach to designing large-scale sys-
tems takes the sane direction as these methods. We
focus on the control structure of parallel qualitative
reasoning to improve the efficiency of the system. We
are not concerned with qualitative reasoning methods
for reducing search spaces,

B CONCLUSIONS

In this paper, we have examined the applicabil-
ity of a parallel logic programming language FGHC
through the experience of designing alarge-scale qual-
itative reasoning system. This examination consists of
providing programming techniques for efficient search,
exploring a possibility of parallel search, and devel-
oping a methodology for constructing large-scale sys-
tems. The examination has been performed by apply-
ing to practical domains such as medieal domain.

The significance of the present paper is summa-
rized as follows;

¢ I'GIC provides expressive power for implement-
ing efficient search strategies such as backtracking
search and forward checking. This feature is useful
for solving general search problems,

+ Domain-specific knowledge can be naturally incor-
porated inlo search programs, since FGHC provides
two aspects of logic programming: logic and con-
trol. Design of transformation systems contributes
to the separation between logic and control.

Parallel search in the parallel execution environ-
ment dramatically inereases search speed. The ad-
vantage of parallel search provides orders of magni-
tude computational power of parallel machine.

¢ System decomposition and stepwise refinement in-
volve a large degree of parallclism. Parallel pro-
gramming approach is useful as a methodology for
constructing large-scale qualitative reasoning sys-
tema.

Constructing parallel systems is an important re-
search for applying to a practical domain in which a
large amount of computation is required. Our target
of Al application, qualitative reasoning, is such a case.
We asseri that parallel programming methodologies
are constructed by attacking large-scale problems, not

by dealing with toy-problems. The present study pro-
poses a new methodology for employing parallel pro-
gramming approach to practical Al applications in a
reasonable way, The experience given in the paper
presents a starting point for the future direction.

ACKNOWLED GEMENTS

We wish to express our thanks to aguhiro Fuchi
and Shun-ichi Uchida for providing us with the op-
portunity to use FGHC systems. Special thanks are
due to Koichi Furukawa and other members of ICOT
Working Group FAL

REFERENCES

[1] Bobrow, D. G., Qualitative Reasoning, Artificial
Intelligence, Vol. 24, Special Tssue, 1084,

[2] Falkenhainer, B. and Forbus, K. D., Setting up

Large-Scale Qualitative Models, Proc A4AALSS,
PPq 3”1-306: 1938;

[3] Kowalski, R., Algorithm = Logic 4+ Conirol,
Comm, ACM, Vol. 22, pp. 424-436, 1979.

[4] Kuipers, B., The limits of qualitative simulation,
Proc, Ninth International Conference of Artificial
Intelligence, pp. 128-136, 1985,

[5] Kuipers, B. and Berleant, D., Using Incomplete
CJuantitative Knowledge in Qualitative Reason-
ing, Proc AAAI-88, pp. 324-329, 1088,

(6] Obwada, H. and Mizoguchi, F., Qualitative Sim-
ulation in Parallel Logic Programming, Froc.
Fourth Symposium en Logic Programming, pp.
480-480, 1987.

[7] Ohwada, H. and Mizoguchi, F., Managing Search
in Parallel Logic Programming, Proc. Logic
Frogramming’87, K. Furukawa, H. Tanaka and
T. Fujisaki (eds.), Lecture Notes in Computer
Science, 315, Springer-Verlag, pp.148-177, 1588,

[8] Ohwada, H., Mizoguchi, F. and Kitazawa, Y., A
Method for Developing Diagnastic Systems based
on Qualitative Simulation, Journal of Japa.ne:e
Seciety for Artificial Intelligence, Vol. 3, No. 5,
pp. B17-626, 1988,

(9] Ueda, K., Guarded Horn Clauses, Proc. Logic
Frogramming'85, E. Wada (Ed.), Lecture Notes
in Computer Science, 221, Springer-Verlag, pp.
1G8-179, 1986.

[10] Van Hentenryck, P. and Dincbas, M., Forward
Checking in Logic Programming, Fourth Inier-
national Conference on Logic Programming, pp.
220-256, 1987.

