PROCEEDINGS OF THE INTERMNATIONAL CONFERENCE
ON FIFTH GENERATION COMPUTER SYSTEMS 1983,
edited by TCOT. © TCOT, 1988

851

PERFORMANCE OF AND-PARALLEL EXECUTION OF LOGIC PROGRAMS
ON A SHARED-MEMORY MULTIPROCESSOR"

Yow-Jian Lint

and

Vipin Kumar

Artificial Intelligence Laboratory

Department of Computer Sciences

The University of Texas at Austin
Austin, Texas TET12

ABSTRACT

This paper presents the performance results of the
implementation of an AND-paralle] execution model of
logic programs on a shared-memory multiprocessor. The
execution model is meant for logie programs with "don't-
know nondeterminism”, and handles binding conflicts by
dynamically detecting dependencies among literals. The
model also incorporates intelligent backiracking at the
clause level. Our implementation of this model is based
upon the Warren Abstract Machine {WAM); hence it re-
tains most of the efficiency of the WAM for sequential
segments of logic programs. Performance results on Se-
guent Balance 21000 show that on suitable programs,
our parallel implementation can achieve linear speedup
on dogens of processors. We also present an analysis of
different overheads encountered in the implementation of
the execution model.

1 INTRODUCTION

The high-performance requirement of futore com-
puting systems is a major foree behind the interest in par-
allel execution of logic programs. Many different kinds
of parallelism are present in logic programs[8]. AND-
parallelism refers fo executing more than one literal of &
clange at the same lime. Ezpluiﬁng AND-parallelism is
hard due to the pessibilities of binding conflicts and back-
tracking. Many schemes for exploiting AND-parallelism
have abandomed the backtracking feature of logic pro-
gramming, and thus changed the semantics by excluding
“don't-know nondeterminism” (eg., PARLOG [5], Con-
current Prolog [27], GHC |30]). These schemes also re-
quire the programmer to explicilly specify dependencies
between literals {via read-only annotations or mode dec-
larations) to deal with binding conflicts. The scheme
described in this paper is meant for logic programs wiih
“den't-knew nondetierminism”, and handles binding con-

*This wark was supported by Army Research Office grant
DAAG29-84-K-0060 to the Artificial Intelligence Loboratory, smd
Office of Maval Research Grant NO0014-86-K-0782 te the Depart-
ment of Computer Sciences at the University of Texas at Austin.

IHew Address: Bellcore, Morristown, New Jersey 07660-1510

flicts by dynamically detecting the dependencies among
literals,

A number of solutions have been proposed to deter-
mine dependencies among literals of a clause. The sarly
solution proposed by Conery and Kibler [9] uses an order-
ing algorithm to determine dependences at run time, but
incurs substantial overhead. In response, other schemes
were proposed by Chang, et al. [4] and DeGroot |10].
These schemes sacrifice the degree of parallelism to re-
duce the run-time overhead. In [22, 24], we presented an
execution model that uses lokens associated with shared
variables to do the dependency analysis dynamically. In
[22, 24] we also showed that this model exploits roughly
the same degree of parallelism as' Conery's Model, and
provides more parallelism than the schemes of Chang,
&l al. [4] and DaGroot [lﬂ]. Our model also performs
more accurate infelligent backiracking than the ones pre-
semted by Chang, et al. [3] and Hermenegildo, ei al [17].
In [23], we presented a bit-vector implementation of (a
slightly simplified version of) the token-based execution
model. In {his implementation fokens are represented
in terms of bit-vectors, which allows dynamic detection
of dependencies at the cost of a few logical operations
on bit-vectors, Since the information needed for intelli-
gent backiracking is already maintained to perform de-
pendency analysis, no extra overhead is incurred in the
determination of the backtrack literal. '

The goal of any parallel implementation for execut-
ing legic programs is io gain speedup over the best se-
gquential implementation. The Warren Abstract Machine
(WAM) has been recognized as the fastest and the mest
efficient sequential implementation for years [32]. An
implementation which is significantly different from the
WAM can be an order of magnitude slower. As advocated
by Hermenegildo|13, 15], it is important to incorporate
AND-parallelism in the WAM in such a way that most of
its memory management efficiency and performance op-
timizations are retained. We have incorporated our bit-
vecior implementation in the WAM, and tested its per-
formance on Sequent Balance 21000, a shared-memory
multiprocessor. Experimental results show that, for suit-
able programs, our parallel implementation can achieve
linear apecdup on dozens of processors,

852

Hermenegildo[14, 15, 17, 18] proposed a WAM-based
implementation of an extension of the execution model
developed by DeGroot[10]. Borgwardt[l, 2] proposed a
stack-based implementation of the execution model de-
veloped by Chang, et al.[4]. To the best of our knowl-
edge, our immplementation is the first actual WAM-based
implementation of an AND-parallel execution model on a
parallel hardware. Other AND-parallel implementations
are either process-based (e g, PRISM[19]) or for com-
mitted choice languages (e. g., GHC[18], PARLOG/21]
and Flat Concurrent PROLOG(28]).

2 THE EXECUTION MODEL AND ITS
BIT-VECTOR IMPLEMENTATION

Our execution model consists of the following two
algorithms: a forward ezxecufion algorithm which detects
executable literals dynamically; and a backwaerd esecu-
tion algorithm which is executed when some literal fuils.
A detailed description of these two algorithms appears
in {24]. Preliminary versions of forward execution and
backward execution algorithms appear in [22] and [25],
respectively.

Conceptually, our forward execution algorithm can
be viewed as a token passing scheme. A token is created
for each wariable thai appears during the execution of
each clause. Fach newly ereated token (for a new vari-
able ¥} is given to the leftmost {at the clause level) literal
P which has V in its binding environment. A literal P
is selected as the generator of ¥ when it holds the to-
ken for V. A literal becomes executable when it receives
tokens for all the uninstantiated variables in its current
binding environment. Parallelism is exploited antomati-
cally when there are more than one executable literal in
a clanse.

Our backward execution algorithm performs intelli-
gent backtracking at the clanse level. Let P represent the
i-th literal in a clanse, Each literal F; dynamically main-
tains a list of literals denoted as B-list(P;). B-list(P:)
consists of those literals in the clause which may be able
to cure the failure of P {jf F; fﬂ.ils} by producing new
solutions. The literals P, in each B-lst are sorted aec-
cording to the descending order of k. When a literal P,
starts execution, B-liet(P;) consists of those literals that
have contributed to the bindings of the variables in the
arguments of F;. When F, fails, P; = head(B-list(F,)) is
selected as the backtrack literal. The tail of B-list(P} is
also passed to P; and merged into B-list{ P;} so that if P;
is unable to cure the failure of F;, backtracking may be
done to other literals in B-list(F;),

. A straightforward implementation of tokens in the
WAM would interfere with the efficiency of memory man-
agement in the WAM and impose substantial overhead.
Since our objective is to detect the execuiable literals
dynamically and yet efficiently, we have implemented a

slightly modified version of the token passing scheme us-
ing bat-vectors.

Let F; denote the i-th literal {counting from left to
right] in the clause body. In the bit-vector implementa-
tion, we associate a bil-vector with each shared variable
V of a clause €. The length of the bit-vector is egual to
the number of literals in the clavse body., The i-th bit
(counting from the most significant bit) of each bit-vector
is 1 if F; conld contribute {or have comtributed) to the
current binding of V. A literal F; 5 considered to have
the token for a shared variable V if theye is no unsolved
literal P; (j < i) such that the j-th bit in the bit-vector
of ¥ iz 1. For example, consider the following clause.

PO(X,Y) - p1(X,Y), p2(X), p3(Y).

Suppose after the unification of pl), X and ¥ are non-
ground and independent. Before the execution of the
clause body begins, the bit-vector of X is 110, which
means that pl and p2 can contribute to the binding of X;
whereas the bit-vector of Y iz 101, which means that pl
and pd can contribute to the binding of Y. Conceptually,
pl has tokens for both X and ¥ at this moment.

Clearly, related bit-vectors need to be npdated at the
end of the execution of each literal to reflect the change of
binding conditions. If a variable V is bound to a ground
term after the execution of & literal P, then all the bits
corresponding to P {7 > 1) in the bit-vector of V are set
to 0 (since P; cannot contribute anything to a ground
term). If two variables X and Y become dependent, then
both bit-vectors of X and Y are updated to be the logical
OR of the orginal bit-vector of X and that of Y,

This bit-vector implementation of tokens makes it
possible 1o check the executability of a literal at the ex-
pense of a small number of logical operations. It is also
possible to maintain B-list for each literal as a bit-vector
(if 2 Bit is 1, then the corresponding literal is on the B-
list). This representation makes manipulation of B-lists
very efficient (e.g., merging two B-lists is a simple bit-
wise OR operation on two bit-vectors}. Details of the
bit-vector implementation are given in [23, 26].

Although the implementation of tokens using bit-
vectors is quite efficient, independence and ground check-
mgs of varizbles at the end of the execution of literals
could be expensive (especially if the variables are bound
to large structures). It is easy to incorporate the infor-
mation provided by the user or by compile time analysis
to reduce these checks and hence reduce the overhead.
For example, if a ground binding is always imported Lo a
shared variable X in a clanse during the head unification,
then no checking is necessary for any literal that accesses
X. Also, if two variables are known not to become depen-
dent any time, the independence checking between these
iwo variables can be omitted. We will refer to such an
Yoptimization” as the dependency-check optimiza-

tion. Programmer can also mark those clauses that are
known fo result in sequential execution. We da net have
to create parallel goals for such clanses. See [26] for more
details.

If the dependency-check optimization is not appli-
cable, and if the variables are bound to large structures,
then a simple (bul approximate) method proposed by
DeGroot [10] can be used. In this method all the ground
terms (incloding ground structures and ground lists) ap-
pearing in the oniginal program are tagged as constants
so that checking the type of any such term at run time is
very fast. Type-checking for other structures and lisis is
done conservatively, 1.e., the arguments are checked only
in the first level. Two nonground terms aze considered
dependent if any of them is & list or a structure; or they
are variables with the same address.

2 INTEGRATING THE EXECUTION
MODEL IN WAM

This section discusses how our execution model is
incorporated in the WAM in such a way that most of
WAM's memory management efficiency and performance
optimizations are retained. Many issues discussed in this
section are common to the imcorporation of any AND-
parallel execution model in the WAM, and were previ-
ously discussed by Hermenegildo [14, 16] and Borgwardt
1, 2].

3.1 The Configuration

The execution of logic programs in the WAM iz a se-
quence of steps manipulating data objects in the DATA
space consisting of HEAP /STACK/TRAIL/PDL[3Z]. In
& multiprocessor system the DATA space (stacks) of the
WAM is distributed to all the processors. Figure 1 shows
a possible “multiple-WAM" configuration on a shared
memory multiprocessor (e.g., Sequent Balance 21000).
In this configuration, all the processors share the same
copy of compiled program in the CODE space. The
DATA space ie divided inio m smaller portions, denoted
as DATA,, .. DATA_. Fach DATA; consists of its own
HEAP/STACK /TRAIL/PDL and some additional ar-
eas, including a JOB area for recording the deseription
of every job {an unsolved literal) to be picked up by idle

DATA; DATA,, CODE space
I
I | | |
Figure 1 A Ceonfiguration of Multiple WAM

B33,

processors.! The number of DATA portions (m) should
be greater than or equal to the number of processors (n)
in the system so that at any time each processor can have
exclusive use of a certain portion. Bach processor is firat
assigned a unigue DATA portion to work with, and the
remaining DATA poriions (if m > n) are maintained in.a
spare list. Any time during the execution, there is a one-
to-one mapping between the processors and the DATA
portions which are not in the spare list. On sequential
parts of the program, the execuiion of a processor on any
of the DATA portions is identical to WAM. Any time
when a processor encounters the execution of & parallel
clause, it creates a special “clause frame” on its STACK,
and then adds a “job frame" in the JOB area of its DATA
portion for every literal in the clause body (except the
leftmost literal). It then continues its execution on the
leftmost literal of that clause.

This configuration is similar to the one presented by
Hermenegildo[14]. As discussed in [14], it is imporiant
(for efficiency as well as correctness) that each DATA
portion is associated with a JOB area, and that these
JOB areas are maintained as stacks.

3.2 The Rule for Stealing

In the WAM, backtracking results in discarding of
some computation as well as recovery of memory. In the
multiple-WAM, failure in one processor can require dis-
carding of computation in other processors, as the com-
putation of many processors can be related to each other.
To make sure that the memory-recovery techniques of the
WaAM remain applicable, it may be necessary to disal-
low the execution of certain jobs on certain DATA por-
tions. In other words, a processor may not be allowed
to execute an available job upon a DATA portion if it
may interfere with memory recovery during backtrack-
ing [13, 16, 1, 2. The importance of the steal rule
{which specifies whether a job can be executed upon a
DATA portion) was independently recognized by Borg-
wardt [1, 2] and Hermenegildo [13, 14, 16]. Hermenegildo
also presented a detailed discussion (and possible solu-
tions} of the problems (the irapped goal problem and
the garbage slot problem), that may be encountered if
a proper steal rule is not followed [16]. There is a strong
connection between the steal rule and the chosen strat-
egy for discarding computation during backiracking. In
[26], we have categorized different discarding strategies
and corresponding steal rules, and have presented the
discarding strategy (and the steal role) used in our im-
plementation. All the steal rules use the depth-first left-
to-right ordering among subgoals in the proof tree to de-
termine whether a job can be scheduled upon a DATA
portion,

e -

1 A detailed description of these dats stroctures is presented
in [26}.

B354

A parallel goal'is considered available to a proces-
sor PROC; if it can be executed on the current DATA
portion of PROC, according to the steal rule. Because
of the restriction imposed by the sieal ruls, it is possi-
ble that none of the execntable goals are available o a
process PROC; (i.e., none of them can be executed on the
current DATA portion of PROC). In this case, PROC;
is forced to wait until one of the goals that is available to
it becomes executable. H the number of DATA portions
{m) is larger than the number of processors (n), then
PROC; can also switch its current DATA portion (with
ancther that is not currently assigned to any other pro-
cessor) and see whether an executable goal is available
with respect to the new DATA portion.

3.3 The Labeling Scheme

In a sequential implementation, the depth-first, left-
to-right ordering of geals in the proof tree is implicitly
maintained by the physical address of each goal in the
stacks. This makes the comparison of ordering between
goals very efficient (i. e., just a simple address compan-
soen). In a distributed stack implementation, since goals
can be located in different stacks, physical addresses no
longer reflect the ordering of goals. In order to enforce
the steal rule mentioned in the previous section, we need
an algorithm which always generates a “greater” value
dynamically for a parallel goal appearing later in the
{depth-first lefi-io-right) ordering. One such algorithm is
given in [26]. Hermenegildo presented another algorithm
in [16]. Fither algorithm is applicable to any implemen-
tation which requires dynamic labeling to determine the
ordering between different goals, Note that if a program
iz deterministic, then all the parallel goals can be given
identical labels.” Hence any parallel goal is always avail-
able to any processor. This optimization will be referred
to &8 the labeling optimization.

3.4 Job Scheduling

For a given goal, one processor is selected to start
the execution. Other processors become idle and look
for available goals from the goal list of any DATA por-
tiem in the system, including that of DATA portions in
the spare list. When an idle processor succeeds in steal-
ing some goal, it starts execution. After a processor P
has finished executing some parallel goal, it tries to find
an available goal in the goal list of its own DATA por-
tion. If an available goal is not present in its own DATA
portion, then it starts polling the goal list of other DATA
portions. If the polling 15 suceessful (ie., if an available
goal is found which is also executable), then P starts exe-
cuting the stolen goal. Otherwise, after polling for a cer-

More precisely, if a parallel goal P is deterministic (Le., the
proof tree rooted at this goal has no choice peint), then all the
descendant goals of P can be given the label of P,

tain amount of time, P exchanges its DATA portion with
some portion in the spare list and resumes polling based
upon the status of the new DATA portion. This simple
demand-driven strategy is also used by many other re-
searchers (e.g., [16]), as it relenses the burden of & busy
processor for distributing goals to other processors.

3.5 Handling Failures in Multiple WAMs

When a failure occurs, we have to choose the back-
track biteral and perfurm tollback {i.e.1 |:|.ir.r_'a1:d SOINE CDIm-
putation). In a parallel implementation, if the computa-
tion affected]J}" ihe I:la,l:'ktra.ddug resides crnl]r in one pro-
cegsor, then the rollback can be done just as it is done
in the sequential execution. Howewer, if the computation
affected by backiracking has spread to several proces-
sors, then the rollback of computation would require the
coordination of several processors. To preserve the cor-
rectness of execution, a processor should resume forward
execution only if it knows either that the rollback is com-
pleted or that any information that is created or accessed
by this processor will not be canceled by the rollback of

other processors, unless a new failure oceurs.

One way of implementing the rollback iz to send
messages to the relevant processors to inform them that
certain failure has occurred, and that they may have
to clean up certain data from their DATA portions (see
[26]). Note that many failures can happen at the same
time. Therefore it is possible for one failure to be wiped
out (before being processed completely) due to another
failure. When a processor receives a message due to a
failure, it has to know whether or not the failure (that
caused the origination of the received message) has been
wiped out by some other failure. This requires the use
of time-stamps (discussed in [24]) which can be quite ex-
pensive to implement.

Another possibility is to handle just one failure at a
time, and start processing a new failure only after the pre-
vious one has been fully processed. This requires global
synchronization among all the processors, which can be
expensive if the number of processors is very large. Since
our implementation is meant for a tightly-coupled mul-
tiprocessor with dogens of processors, we have chosen to
implement the second zlternative,

When a failure oceurs in PROGC,, if the failed Lit-
eral is not a parallel literal, then the backtracking is per-
formed locally in PROG; as it is done in the WAM. Oth-
erwise, the backiracking is accomplished in three phases:

Phase I: The recognition phase
PROC; raises a global flag and then waits
until every other processor recognizes the flag.

Phase IT: The reset-cancel phase
PROC; chooses the backtrack literal.

Phase IT: The clean-up phase

Each processor discards that part of the
computation from its current working mem-
ory which i affected by the faillure. If the
number of DATA portions is larger than the
number of processors in the system, then pro-
cessors which finish their own clean-up early
help clean up the DATA portions on the spare
list. All the processors need to synchronize at
the end of this phase hefore resuming the for-

ward execution.

4 PERFORMANCE RESULTS

The APEX { AND-Parallel EXecution) is the imple-
mentation of our scheme on the Sequent Balance 21000
multiprocessor. This implementation, writien in C, exe-

cutes byte-code representation of the APEX instructions®,

Before the execution begins, we specify the number af
processors (p) and the number of DATA portions (s),
& = p, to be used in a particular run. We also specify
the size of memory {m) for each DATA portion. Since
the virtual space on Sequent Balance is only 18 Mbytes,
m % & must be less than 16 Mhbytes.

The implementation has been tested on many pro-
grams. BEach Horn-clause program is first compiled into
a WAM-code program wsing & modified wersion® of the
Berkeley PLM compiler [31). The APEX-code program
is then construeted by adding cur extended instructions
for parallel execution to the WAM-code program®. Both
the WAM-code and the APEX-code programs are then
transformed into the byte-code representations to be ex-
ecuted bjr our implmeaala.ﬁun. The byta-wdg represen-
tation of the WAM-code program is run on one processor
and one DATA pertion to oblain the STIME shown in
Table 1. This figure does not include any overhead due to
parallel execution, and truly reflects the sequential execu-
tion iime of the program. The byte-code representation
of the APEX-code program is run on p processors and s
DATA portions for different values of p and 5. The tim-
ings for different programs are given in Table I, In this
table, PTIME(i) refers to the execution time of running
the AFEX-code program on 1 processors and 1 DATA
portions. To compare the sequential speed with other
implementations, we also list the time needed by Quin-
tus PROLOG and 5BProlog respectively to execute the

3 The APEX instruction set is an extension of the WAM
imstruction set, The details of the extended instructions are given

in [26).
% The main difference is that our version does not include cdr-

coding. As stated in [29], in the absence of hardware support,
cdr-coding does not resall in an efficient implementation.

% Actuslly, a compiler can be developed that could generate
the APEX-code programs for paralle]l sxecution divectly from the
Horn-clause programs.

B55

same Horn-clause logic programs (in compiled mode) on
SUN-3/50. Since SUN-3/50 is roughly three times faster
then Sequent Balance, clearly the sequential execution of
the APEX 15 competitive with SBProlog.

Among the programs tested, HANOI generates so-
lution steps for a 15-disk “Towers of Hanoi' problem;
MATRIX, given in [6], multiplies two 50 x 50 matrices;
QSORT, taken from [12], executes 'quicksort’ to sort a
list of 511 numbers; TAK is a program for computing the

HANOI MATRIX QSORT _ TAK
Quintes* T892 11.60 2.95 2T
5BProlog® 32.86 5782 - 59.34
STIME! 11565 237.84 6.17 111.08
PTIME(1)! 116.93 24241 6.90 112.61
PTIME(2)! 58.56 122.50 2.88 56.79
PTIME(3)! 3s.18 B3.28 3.17 38.02
PTIME(4)! 20.46 62.97 2.54 28.94
PTIME(E)! 23.72(4¢.9) B051({4.7) 2.38{2.6) 23.17(4.8)
PTIME(s)! 19.74 4273 2.28 19.43
PTIME(7)! 17.06 37.15 2.13 16.86
PTIME(8)! 14.89 32.84 1.8 15.03
PTIME(s)! 13.33 26 60 1.93 13.39
PTIME(10} 12.10(8.6) 26.92(8.8) 1.81(3.2) 12.18(9.1)
PTIME(11} 11.01 24.71 1.87 10.98
PTIME(12) 10.19 2201 1.84 10.33
PIIME(13)! 8.43 21.38 B.65
PTIME(14)' 8.81 20.10 8.98
PTIME(15)! 8.51(13.9) 18.91(12.5) 8.26(13.5)
PTIME(16)! 782 17.98 8.03
PTIME{17)t 7.6 17.21
PTIME(18)! 7.5 16.24
PTIME(19)! 558 15,85
PTIME(20)! 6.47(17.9) 14.57(15.9) 7.20(15.4)
___CDESIGN IBTAK
Quintus® 0.85 T.28
8BProlog* 2.2 57.84
STIME! 5.355 109.62
PTIME(1)! 1.60(3.5) 110.66
PTIME(2)! 1.20(4.3) 5546
PTIME(3}! 1.30 28.38
PTIME(4)! 1.31 19,16
PTIME(5)! 1.32 17.88{6.1)
PTIME(6)! 1.38 14.40
PTIME(7}! 1.10 14.06
PTIME(8)! 1.37 1117
PTIME{8)! 1.16 10.68
PTIME({10)t 1.41 10.74(10.2)
PTIME(11)!1.44 10.13
PTIME{12)! 1.42 9.24

* (oo 5UN 3/50 — 1.5 MIPS)
' {om Sequent Balanee — 0.5 MIPS)

Table 1 Execution time ({in seconds) of different
benchmarks on Sequent Balance 21000. Speedup figures

are shown in parentheses for some cases.

B56

function ‘fakeuchi(18,12,6)"%; CDESIGN is the circuit de-
sign program given in [12, 20]. IBTAK is a program (built
using TAK) which could benefit from both AND-parallel
execution and intelligent backiracking. The Lstings of
HANOI, TAK and IBTAK are given in Appendix A, In
each program, parallelism is exploited only on selected
clauses. For the first four programs (HANOI, MATRIX,
QSORT and TAK), we also perform the labeling opti-
mization, 1. e., we make use of the fact that they are
all deterministic programs and hence generate the same
label for all the j;a.ra“l:l gcmls {Scc Section 3.3}.

Next, we analyze the performance of the APEX on
each benchmark. For deterministic programs, the APEX
can only speed up the execution by executing indepen-
dent literals in parallel. For nondeterministic programs,
both AND-parallel execution and intelligent backtrack-
ing mechanisms of the APEX can potentially reduce the
execution time, which can evén result in super-linear
speedups.

4.1 Deterministic Programs

‘Towers of Honoi® is a typical divide-and-congquer
problem. It is suitable for AND-parallel execution, as
its execution tree is well balanced. However, the parallel
activities will be too fine-grain if the granularity is not
controlled. To avoid creating activities of small granu-
larity, HANOI is coded in such a way that the execution
becomes sequential when problem size” drops below 7.
The solution steps are accumulated in a tree structure
and are printed at the end of computation. The timing
shown in Table 1 does not include printing time. Clearly,
the APEX is able to achieve almost linear speedup on
BANOI for twenly processors.

Though logic programming is not particularly suited
for oumerical computation, we choose ‘matriz multipli-
cation’ as a benchmark simply because that it has been
used by many other reseaschers (7, 14]. MATRIX con-
tains a long sequential segment in the beginning of the
computation {for constructing a 50 x50 matrix and trans-
posing a copy of it). When the number of processcrs in-
creases, 50 does the influence of the sequential segment
over the overall performance. Although the execution
tree skews to the right, it does not have a large impact
on the speedup. On twenty processors, the APEX can
achieve a speedup of 16,

'Quicksort’ is another divide-and-conguer problem.
It differs from ihe ‘ Towers of Hano:’ problem in the sense
that it needs a long computation {which has On) com-
pll::.l:it}r, where n iz the lr_'nﬁlh of the list to be wrbpd}
to split the problem inte two subproblems. Since ithe

® Takeuchi function is & simple benchmark that Tkuo Takenchi
of Japan used for Lisp.

T The problem size is given by the number of disks to move.

total computation is O(nlogn), the speedup can be no
more than Olegn). Moreover, the splitting may result
in an unbalanced execution tree. For these reasons we do
not expect the APEX [:ucr any other parallel implementa-
tion} to achieve good speedup on this problem. On the
511-element list (which was chosen to aveoid the effect of
unbalanced tree), the APEX is able to get roughly three
times spesdup on eight processors. Im this case, no ef
fort was made to avoid creating small Era.lm.'la.l:il:‘]lI fasks
{which would have resulted in a somewhat better perfor-

The execution iree of 'fakenchi’ benchmark is rather
different from the other three benchmarks we just dis-
cussed. After the “takeuchi’ procedure is called at the
top level, the number of parallel activities grows rapidly,
and then shrinks to gero at one point before the same
procedure is called recumsively with different arguments.
This means that processors could spend more time idling.
Even so, the performance on this benchmark (with gran-
ularity control) is still very good. To avoid creating ac-
tivities of small granularity, TAK iz coded in such a way
that the paralle] clause is ealled recursively only 8 times.
Any “deeper” calis are made to a sequential clause (see
Appendix A.2).

4.2 MNondeterministic Programs

As pointed out by Fagin in [12], the ‘circuit design’
program does not have miuch AND-parallebism, but has
much room for performance improvement due to intelli-
gent backiracking. Our CDESIGN results in Table 1 ver-
ify this. In fact, despite the overheads of parallel execu-
ticn, the APEX achieves more than three times speedup
using just one processor (STIME/PTIME(1)} > 3). This
shows that even without exploiting AND-parallelism, the
mtelligent backtracking scheme of the APEX can improve
the execution performance of nondeterministic programs.
On two processors, the speedup is improved to more than
four times. Beyond that, the speedup saturates. The
saturation is mainly caused by the lack of AND-parallel
activities. '

Note that intelligent backiracking can eliminate even
more redundant computation on many processors than
on one processor. Consider the dependency graph of Fig-
ure 2. On one processor intelligent backtracking, upon
the failure of p3, skips the choice point of p2, and goes
directly to pl (and thus saves the work in re-solving p2).

@ @
OO

Figure 2 A dependency graph

In WAM, backtracking to pl also wipes out the compu-
tation of p2. Hence the first execution of p2 is wasied.
In parallel execution, if pd fails even before p2 has fin-
ished -execution, then p2 is interrupted and reset {thus
avoiding some computation which was going to be wasted
anyway). This phenomenon is llustrated by the IBTAK
program (see Appendix A.3).

IBTAK contains a clause that can potentially ben-
efit from intelligent backtracking. The data dependency
graph of that clause is the same as given in Figure 2. The
first two Lterals in the clause body call the “takenchi’ pro-
cedure with different set of azguments to generate num-
bers, The last two literals test those numbers to see if
they are satisfiable. IBTAK iz essentially a collection of
several ‘takenchi’ calls. A close inspection of this program
would make it clear that the gain from intelligent back-
tracking on 1 processor is minimal. Hence PTIME(1) for
IBTAK is slightly larger than STIME (sce Table 1) be-
cause the small gain from intelligent backtracking could
not overcome the small® overhead of parallel execution.
Hence, in absence of gains due to intelligent backtrack-
1ng, we should expect the speedup performance of IRTAK
to be similar to that of TAK. However, IBTAK cbtains
better spesdup than TAK, or even super-linear speedup
(e g., see PTIME(S)).

4.3 The Analysis of Overheads

The overheads due to parallel execution in the APEX
can be categorized into four groups.

1. The overhead due to the creation of new data ob-
jects such as clause frames, goal frames and job
frames, and due to updating information in these
data objects.

2. The overhead due to manipulating bit-vectors. This

consists of (i) checking bit-vectors to decide if a

_ goal is executable, and (ii) updating bit-vectors to

reflect the change in binding conditions after & goal
has finished execation.

3. The overhead of polling DATA portions to steal
goals,

4. The overhead due to backward execution coordina-
tion. This is due to the time spent in the recogni-
tion phase, the reset-cancel phase and the clean-up
phase.

For deterministic programs, the difference between
PTIME(1) and STIME is only due to the firat two kinds
of overhend. Note that the overhead in the first group is
roughly proportional to the number of frames created for
paralle]l execution. Sinee we know the number of frames

*The parallel processing overheads are small in this example
because of the gramularily control

857

created for the first three benchmarks shown in Table 1,
we are able to estimate that the creation and manipula-
tion of each frame costs about 0.3ms overhead. Note that
the cost of creating and maripulating a frame is roughly
equal to the cost of a logical inference in our system.
we expect this equivalence to hold even on & different
(faster) hardware. Clearly, no gain from parallel execu-
tion of & clanse would result if the size of parallel activi-
ties is smaller than the cost of creating two frames®. For
good performance, the size of parallel activities should
be much larger than the cost of creating and manipulat-
ing these frames. This is clearly illustrated by the timing
difference of columns I and III of Table 2. If parallel ac-
tavities are created for each parallel clause, the overhead
for creating frames becomes a significant fraction of the
total execution time {e. g., compare PTIME(1) of column
1 in Table 2 with STIME of TAK in Table 1).

T m o m W
Dependency-Check yes no yes no
Optimization
Granularity Comtrol | yes yes no o
PTIME(1) 112.61 114.23 15698 19105
PTIME(2) BG6.TO 5683 TEGE
PTIME(2) 38.02 3824 B2.80D
PTIME{4) 2804 2014 4011
PTIME(S) 2317 2349 3252
PTIME(6) 1943 1949 27.28
PTIME(T} 16.86 1687 23.77
PTIME(£)} 1503 1501 2103
PTIME(D} 13.3% 1383 188D
PTIME({10) 1218 1221 17.70
PTIME{11) 10.86 1125 15.70
PTIME(12) 10.33 1035 15.18
PTIME(13) 9.66 9.61 1419
PTIME({14) B.98 898 1337
PTIME({15) B.24 BET 1237
PTIME(16) £.03 812 1246
PTIME(20) 720 739
Table 2 Execution time of the APEX on TAE with

and without Dependency-Check Optimization and Gran-
ulerity Conirol

The overhead of manipulating bit-vectors depends
upon the number of parallel literals, the number of shared
variables in each paralle] literal, and the run-time binding
conditions of these shared variables. But in many cases it
can be minimized by the dependence-check optimization
{see Section 2). In all the results shown in Table 1, this
overhead is minimal because of such optimization. To
get an estimate of this overhead, we executed TAK with-
out incorporating dependency-check optimization. From

9 Oneclanse frame and at leost one job frame must be created
before parallel execution of a clanse conld take place.

B58

PTIME(1) in ecolumns [II and IV of Table 2 and from
STIME of Table 1 for TAK, it is clear that the average
overhead for dependency analysis per parallel literal is
roughly the same as that of creating a parallel frame. It
is also clear from Table 2 that the granularity contrel is
very effective in reducing the effect of the dependence-
check overthead. TAK is an wnusual program, as each
parallel literal in TAK has six variables. In a parallel goal
with fewer variable, the dependence-check overhead will
be proportionately smaller. Note that the dependence-
check overhead could also be large if the shared variables
are bound to large structures. By adopting the approsd-
mate checking procedure of DeGroot (see Section 2), we
are able to keep this overhead small (at the risk of locsing
some parallelism).

The averhead of polling increases with the number
of processors and the number of DATA portions. The re-
lationship between the backward-execntion-coordination
overhead and the number of processors p is not so clear-
cut. Asymptotically, the duration of the recognition phase
should be proportional to p. But for small p, it iz roughly
equal to the time taken by a couple of logical inferences
(becanse each processor checks the global flag after com-
pleting each logical inference). The duration of the resst-
cance| phase is usually small (and does not change with
p), but it depends upon the specific failure. The dura-
tion of the clean-up phase can be large, but it can even
go down (as p increases) depending on how well ihe work
of clean-up is distributled.

4.4 The Effect of the Labeling Optimization and
Spare DATA portions

Note that all the APEX-code programs of the bench-
marks discussed so far have incorporated the labeling op-
timization and the dependency-check optimization. As
discessed in Section 3.3, all the parallel literals created
during the exection of a deterministic program will have
the same label. Hence parallelism is not restricted by
the steal rule at all (see Section 3.3). To see how the
steal rule can affect the performance, we executed the
same ‘takeuchi’ program without optimizing the com-
piled code. In Table 3, column [gives the execution
time of running 'takeuchi' program with the labeling op-
timization, wheress column II gives the result of run-
ning the same program without such optimisation. It
15 not surprising to see that the performance becomes
worse.'? Also, the performance result in Column II does
not improve linearly with the number of processors, as

W The only exception i PTIME(1). The reason for faster
PTIME(!) in column II is that when the label representation
exceeds the length lmitation, the exseution becomes sequential.
Hence during the execution fower parallel activities are created. In
the program with determinisiic optimization, the creation of paral-
lel activities is not inhibited due to final label length because only
one label is used. MNote that the granulanty control is being used
in both cases to limit parallel activities,

1 i} juig IV v
no

Labeling yes no no no
Optimization

Humber of F podxp ptll p+20
DATA Portions _

“PTIME(1) 114.23113.33 113.33 113.33 11333
PTIME(2) 56.93 67.52 GR49

PTIME{3) 3824 G763 4240

PTIME(4) 20.14 43.76 33.25

PTIME(S) 25.49 41.71 27.77 2510 24.14
PTIME(&) 19.49 34.28

PTIME(7)} 16.87 34.25

PTIME(S) 15.01 20.56

PTIME(%) 13.59 27.60

PTIME(10) 12.21 25.92 17.03 17.08 13.83
PTIME(11) 11.256 24.88

PTIME{12) 1035 22.15

PTIME(13) 9.61 20.83

PTIME{14) B.9E 19.73

PTIME(15) 8.57 18.59

PTIME(156) 812 17.22

PTIME(20) T.39 14.44

Table 3 Execution time of the APEX on TAK with

and without the labeling optimization, and for differ-
ent number of DATA portions. Each execution incor-
porates granularity control, but does not include depen-
dency-check optimization.

the overall performance is dependent upon how often pro-
cessors get stuck due to the steal rule at run time (see
Section 3.2).

To reduce the influence of the steal rule, our imple-
mentation permits more DATA portions than the number
of processors. Column 111 in Table 3 shows the results of
the APEX running the nonoptimized ‘takenchi’ program
with s = 2 x p. Column IV and V show the timing of
the APEX running the nonoptimized ‘takenchi’ program
with s = p 4 10 and 5 = p + 20, respectively. It is clear
from these results that by adding enough extra stacks,
the restrictive influence of the steal rule is minimiped.
For example, with 2 = 10 and 5 = 30, the execotion
time of the nun.upﬁmiﬁcd version 1s 24.14 munnl;ls1 which
iz very close to the execation time (23.49 seconds) ob-
tained by the optimized version.

§ CONCLUDING REMARKS

This paper presented a brief description of the im-
plementation of an AND-parallel execution model on a
shared-memory architecture, and its performance results
on Sequent Balance 21000, Our experimentzl results
have shown that it is possible to perform dynamic data-
dependency analysis and intelligent backtracking without
incurring excessive run-time overhead. In particular, the

technique of granulanty control (i.e., spawning parallel
activities only if they are large enough) was found to be
very effective in diminishing the effect of the overheads.
Since the implementation is WAM-based, we are able to
retain the execution efficiency of the WAM for sequential
segmente of the execution. Granularity control, & low
overhead execution model and a WAM-based implemen-
tation were &ll crucial to obtaining linear speedup over
the sequential implementation. Our current implemen-
tation is best suited for a shared-memory multiprocessor
with a small number of processors (e.g., Sequent Bal-
ance). By changing some design decisions (1n job sched-
uling and backiracking), our implementation could be
easily moved to a larger shared-memory multiprocessor
{e.g., BBN Butterfly). Although we have only tested our
implementation upto 20 processors, it is clear that on
suitable programs with appropnate granularity control,
the speedup could grow linearly for many more proces-
S0TE.

Although our results are very encouraging, we need
to perform a more thorough evaluation by testing its per-
formance on a variety of programs. In particular, we
would like to find the classes of programs that can benefit
from AND-parallel execution and intelligent backirack-
ing. Our current implementation deals only with pure
Horn-Clause logic programs. Since most practical logic
programs contain non-logical constructs such as CUT,
assert, retract, etc., we need to extend our implementa-
tion to handle such constructs. An approach presented
by DeGroot [11] to handle side-effects in the Restricted
AND-Parallelism scheme appears promising, and could
be incorporated in our execotion model

ACEKENOWLEDGEMENT

The authors are grateful to Manuel Hermenegildo
for many useful discussions. Sequent Computer Corp.
provided access to a 20-processor Sequent Balanee 21000
multiprocessor.

REFERENCES

[1] P. Borgwardt. Parallel prolog using stack segments on
shased-memery multiprocesscrs. In Proceedings of Inter-
national Sympostum on Logic Programming, pages 2-11.
IEEE Computer Society Press, February 1984, Atlantie
City.

[2] P. Borgwardt and I, Rea. Distributed semi-intelligent
backtracking for a stack-based AND-parallel prolog. In
Proceedings of the Third Symposium on Logic Program-
ming, pages 211-222, IEEE Computer Society, Septem-
ber 1986. Salt Lake City, Utah.

[3] J-H. Chang and A. M. Despain. Semi-intelligent back-
tracking of prolog based on a static data dependency
analysis. In Proceedings of IEEE Symposium on Logic
Programming, pages 4370, August 1985,

859

(4] J.-H. Chang, A. M. Despain, and D). Degroot. AND-
parallelism of logic programs based on static data depen-
dency analysis. In Proceedings of the 3th IEEE Com-
puter Society Infernational Conference, pages 218226,
February 1985,

[5] K. L. Clark and 8. Gregory. PARLOG: A parallel logic
programming language. Technical report, Department of
Computing, Imperial Callege of Science and Technology,
London, May 1983,

[6] J. Conery. Parallel Execution of Logic Programs, Kluwer
Academic Publishers, 1887,

[7] 1. S. Conery. The AND/OR Process Model for Parallel
Interpretation of Logic Programs, PRD thesis, University
of California, Irvine, June 1983, Technical Report 204.

[8] 1. 8. Conery and D. F. Kibler. Parallel interpretation
of logic programs, In Proceedings of the Conference on
Punctional Programming Languages and Computer Ar-
chiterture, pages 163-170. ACM, October 1581.

[9] 4. 5. Conery and D. F. Kibler. AND parallelism and non-
determinism in logic programs. New Generation Com-
puling, 3(1):43-T0, 1985,

[10] D DeGroot. Hestricted AND-parallelism. In Proceed-
ings of the International Conference on Fifth Generation
Compuier Sysiems, pages 471-478, Tokyo, 1984,

[11] D. DeGroot. Restricted AND-parallelism and side of
fects. In Proceedings of the Fourth Symposium en Logic
Programmitg, pages $0-80, 1987, San Framciseo, CA.

[12] Barry Steven Fagin. A Parallel Ezecution Model for
Prolog. PhD thesis, University of California, berkeley,
November 1987,

[13] M. V. Hermenegildo. A restricted AND-paralle]l ex-
ecution model and abstract machine for Prolog pro-
grams. Technical Report PP-104-85, Microelectronics
and C er Technology Corperation (MOC), Austin,
TX TBT58, August 1985.

[14] M. V. Hermenegilde, An Abstract Machine Based Eze-
cution Model for Computer Architecture Design and Ef-
ficient fmplementation of Logic Programe in Parallel
PhD thesis, The University of Texas at Austin, August
1886,

{15] M. V. Hermenegildo. An abstract machine for restricted
AND-paralle]l execation of logle programs. In Procesd-
ings of the Third International Conference on Logic Pro-
gramming, pages 2640, Springer- Verlag, 1986,

(18] M. V. Hermenegilde. Relating goal-scheduling, prece-
dence, and memory management in AND-parallel exe-
cution of logic programs. In Procesdings of the Fourth
International Conference on Logic Programming, pages
556576, The MIT Press, 1987,

[17] M. V. Hermenegildo and R. I. Nasr. Efficient irmple-
mentation of backtracking ine AND-parallelism. In Pro-
ceedings of the Third International Conference on Logic
Frogramming, pages 40-55. Springer-Verlag, 1986,

[18] M. Ichiyoshi, T. Miyazaki, and K. Taki. A distributed
implementation of flat GHC on the roulti-PSI. In Pro-

860

ceedings of the Fourth International Conference on Logic
Programming, volume 1, pages 267-275. The MIT Press,
May 1987. Malbourne, Australia.

(18] 5. Kasif, M. Kohli, and J. Minker, PRISM: A parallel
inference system for problem solving. Technical report,
Computer Science Department, University of Maryland,
February 1983.

[20] V. Kumar and Y.-J, Lin. A data-dependency based in-

telligent backtracking schemea for prolog. The Jouwrnal of
Lagic Programming, E_{ﬂ }, June 1988,

[21) Melissa Lam and Steve Gregory, FPARLOG and AL-
“ICE: a marriage of convenience. In Proceedings of the
Fourth International Conference on Logic Programming,
volume 1, pages 294-310. The MIT Press, May 1987,
Melbourne, Australia.

[22] ¥.-J. Lin and V. Kumar, A parallel exéeution scheme for
exploiting AND-parallelism of logic programs.. In Pro-
ceadings of the 1988 Iniernational Conference on Paral-
lel Processing, pages 372-875, August 1986, 5t. Charles,
Tlinais:

[23] Y-J. Lin and V. Kumar. AND-parallel execution of
logic programs on & shared memory multiprocessor: A
surpmery of results. In Logic Programméng: Procesdings
of the Fifth Internotional Conference and Symposium,

pages 11231141, The MIT Press, August 1938, Seattls,

Washington. -

[24] Y.-J.Lin and V. Kumar. An execution model for exploit-
mg AND-parallelism in logic programs, New Generation
Computing, 5(4):393-425, 1088

[25] ¥ .-J. Lin, V. Kumar, and C. Leung. An intelligent back-
tracking algorithm for parallel execution of logic pro-
grams. In Proceedings of the Third International Con-
ference on Logic Programming, pages 56-68, June 1986,
London, England.

[26] Yow-Jian Lin: A Parallel Implementation of Logic Pro-
grams, PhD thesis, Department of Computer Sciences,
The University of Texas at Austin, May 1888, Austin,
Texns.

[27] EY. Shapiro. A subset of concurrent prolog and its
interpreter. Technical Report TR-003, 1COT, Tokyo,
Japan, January 1983.

§. Taylor, 5. Safra, and E. Shapiro. A parallel imple-
mentation of flat concurrent prolog. Technical report,
Department of Computer Science, The Welzmann Insti-
tute of Science, Rehovot, 1986,

{29] Hervé Touati and Alvin Despain. An empirical study
of the Warren ahstract machine. In Proceedings of the

Fourth Symposium on Logic Progremming, pages 114-
124, 1987. San Francisco, CA.

(28]

[30] K. Ueda. Quarded Horn Clauses. PhD thesis, University
of Tokyo, March 1986,

[31] P. van Roy. A prolog compiler for the PLM. Technical

Repart UCB/CSD 84203, Computer Science Division
(EECS), University of Berkeley, 1984,

[32] D. H. D. Warren. An abstract prolog instruction set,
Technical Note 309, Artificial Intelligence Center, SHI
Internatiomal, Cetober 1983,

APPENDIX
A THE LISTINGS OF BENCHMARKS

Al HANOT
% Solve 16-disk “towers of hanoi” problem

goal - hanci{ 15,R).write(R). _
hanci(N R) - move(N left center right R).

% for parallel computation
move(N,A,B,CR) - N < 7, !, movel{N,A B,CR/[]).
% the paralle] clanse
move(N A B,C [R1movedisk{A,B),R2]) -
M is N-1, move{M,A,CB R1), move(M,C.B A R2).

% for sequential computation

movel(O, ., BR) L

movel (N A B.CRO RI) -
M is N-1, movel(M,C,B,A RT RI),
movel{],A,C.B RO [movedisk(A,B)|RT]).

A2 TAK
% Compute the funetion takenchi{18,12,6)

goal - atak(18,12.6 X 8) write(X).
atak{X, ¥, 2,W0) - |, stak(X, Y ZW).
atak(X,Y,Z,WN) = K is N - 1, ptak(X,Y,2,W K}.

% for sequential computation
stak(XY, Z W) X > ¥, !, WX is X-1, stak{WX,Y %.X1),
: WY i Y-1, stak(WY, 2, X, Y1),
W2 is -1, stak{WZ,XY Z1),
stak(¥1,Y1,71,W).
stak(., ,Z,Z).

% for parallel computation

ptak(X,Y,2,W N} - X > Y, |, tak2(X,¥,8,X1,Y1,21,N),

) atak(X1,¥1,E1,W,N).

ptak(.,. 2.2,).)

% the parallel clause

tak2(X,Y,2.X1,Y1,21N) - WX is X-1, atak(WX,Y,Z,X1,N),
WY is ¥V-1, atak(WY,2,5,Y1,N),
W2 is 2-1, atak{WZ,X¥Y 21,N).

A3 IBTAK

W The test program for both AND-parallel execution and
intelligent backtracking

goal = p[E,lD,lE,W}, ‘!ritetwj'

% The main clause for intelligent backtracking.
PIX.Y,Z,W) = p1(X,YZK), F_1{31Y!xlw}l p2(K), p3(K,W).

PLLY.Z,W) - atak(X,Y,2,W.8).
PLUX.Y.ZW) - atak(Y X, Z,W 8).
pL{X,Y Z,W) - atak(Z,Y.X,W 8].
PI[:{‘ '!-1':{]'

p2(2). pR(E) PHEY) - X =< Y.

PE(E).

