PROCEEDINGS OF THE INTERNATIONAL CONFERENCE
ON FIFTH GENERATION COMPUTER SYSTEMS 1988,
edited by ICOT. © 1COT, 1968

B41

THE PARALLEL ECRC PROLOG SYSTEM PEPSys:
AN OVERVIEW AND EVALUATION RESULTS

Uri Baron, Ja&uﬂ; Chassin da Ker

meaux, Max Hailperin®

ichag] Ratcliffe, Phi Robert**
Harald W

Jean-Clavde Syre,

ald Westphal***

ECRC, Arabellastr. 17, 8000 Muenchen 81, West Germany

E-mail: {uri, chagsin, michael, jclavde]@ecrcvax.uucp

ABRSTRACT

PEPSys (Parallel ECRC Prolog System) is a tesearch project
gimed at the design and evaluation of a multiprocessor system
for large scale parallel logic applications. Following an initial
study period of parallel logic paredigms and Prolog
applications, a paraflel langnage, a computational model and
then an ebstract machine and compiler were defined. The
PEPSys system was implemented on an 8-PE, shared memory
multiprocessor system and a cluster based architecture with up
to 100 PEs was simulated.

This paper discusses the different topics attecked by the
project, from high level language features to the evaluation of
resulte, It compares the initial results with those from other

projects and suggests several possible improvements,
1 INTRODUCTION

I'LPSys is a research project in the Computer Architecture
Grovp of ECRC, aimed at the design and evalvation of a
multiprocesser  system  for large scale parellel logic
applications. Starting with an analysis of Prolog applications
and existing parallel logic models, a team of 6 people defined 2
parallel language and 2 paralle]l computational model, in 1984
and 1985, An abstract machine and compiler were defined in
1986, During 1986 and 1987, the PEPSys system was
implemented in two complementary ways: firsily on a
commercial multiprocessor (MX500 from Siemens, equivalent
to the Sequent Balance 8000), and secondly as a simuiation
mode] for a cluster-based multiprocessing architecture,

There exist two main classes of perallel logic pmg:ra.mnm;
systerms: :

« The first uses the "Committed Chofce” paradigm to select
clauses, and inputfoutput dependencics between goals.
Typical and well known examples of such syslems are
sz:cunmtgsl’mlug éﬁ% C ) idiﬁ:!fﬂggﬂual‘zgym and
Gregory, 1986), an Ia-i i it
"dn-n'tqrcm' Jnnn-d:.mnﬁrfgmn, and }strea.m a‘:ﬂ%—

e S S

P COnE ta. eir initi initic,

these languages abandon the declarative style of lopic

programming while retaining a similar syntax, and their
senﬁus_mliﬁ (=t least eriginally) were known to suffer En:im
ambiguities. Their expressive power 15, m iple,

]imiugd Lo "1:m|r,-sn:rI:ul:]L::rfnei!E sysicms, and gu sﬁch

applications as systems programming and simulation

systerns, Their “flat" versions (lchiyoshi et al, 1987,
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Mierowski et al, 1985, Foster and Taylor, 1987),
developed to have clearer semantics and more efficient
exccution models, have been implemented. The addition
of pure OR-parallelism which is not impossible, is not
quite consistent with their basic principles. .
" Drion axidhi. They crploi chher OR-parallesm or
O ts. £ -parallelism or
AND-parallelism; some allow - both. These
systeme are "all-solutions" systems, and do not have any
of synchronization (at least at the level of the
semantics). They kesp the declarative semantics of
Prolog, and thus are simple and consistent extensions of
this S.Iangmgﬂ. Their lication fields imciude
knowledye base systems decision suppart systems.
Among the tumerous research teams ing these
issueg we the Argonne Labs (Disz et al, 19 the
Swedish Institute of Computer {Cicpiclewski et
al., 1987), the University of Manchester (Wamen, 1987,
Brand, 1983), the Umvemtkuuf Maryland (Giuliano et
ﬂ:i 'l}?é;jéﬂm University of Kobe (Matsuda et al., 1987},

It is our belief at ECRC that most Artificial Intelligence
applications (incomplete criteria search, exhaustive search,
deduetive data bases, decision suppert systems in general)
require both the “all-solutions” end the non-determinism
features of Prolog.

Discussion of the various gpproaches is beyond the scope of
this paper but the interested reader may refer to (Syre and
Westphal, 1985), (Takeuchi and Furukawa, 1936}, for more
details, PEPSys itself has several unique characteristics:

-}irig?iﬁl:r: Iun inte allad ﬁu]pﬁnmiml:EPSys consists g.f]e?
leve B guage, a
computational model, E::'l  ahsiract machusrv:: an
implementation: on a commerciadl multiprocessor and a
gimulater 1o evaluate  cluster-based- multiprocessor
systems. The ﬁnp:htmm‘ mﬂg:m and simﬂatﬂi:::pll_ﬁ
5Up com cnsive g tools, :
analysis fmbﬁlirjns. E;bd application ﬁgﬂms.

e It handles both OR-parallelism and ent AND-
parallelism, under licit user conwel, in an "all
golutions” approach. e pardllelisms can be nested
arbitrarily combined with sequential processing as
required. :

» The isrues of efficlency and practicability have been
constant guidelines at all stages of the project. The
abstract machine was conceived so thet sequential
Brrgcming would exploit  state-of-the-art uential

log technology. the same vein, considerable
importance was attached to the overhead incurred by the
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paralle]l features of the system at mun time, minimizing it
wherever possible.

The paper iz organized as follows: Section 2 introduces the
main features of the high level languege with an example.
Section 3 presents the parallel computational model while
Section 4 briefly describes the execution model (abstract
mechine) derived for this model. Section 5 describes the
implementation of FPEPSys on & Siemens MXS300
multiprocessor system, and Section 6 deals with the simulation
tonls allowing the evaluation of different multiprocessor
architectures, Section 7 is a general discussion of the PEPSys
system and includes comparisons with other similar systems.

2 THE PEPSys LANGUAGE

2.1 Is a language necessary?

A coreful study of non frivial programs written in normal
Prolog, and an investigation of possible parallel applications led
to the following conclusions:

# There ars parts of a program which must be kept
sequential. :

# OR parallelism: many predi
clapses are semantically ch
paralle] form without care and grammers often
uge the sequential control off its operational
senantics. e is information on parallelism which can
be easily expreszed PO at source jevel
(some predicates, | tivially parallel, may just
penerate more overhead than speedup)

« AND parallelism: Auwtomatic methods end algorithms to
detect AND parallel goals in a clause are not
satisfactory, and o lo conservative cases for
static dependency algorithms or a significant overhead at

ed when twmed ino a

run time for dymamic algon
* Moregver, from application ams, end our current
experience, we wfﬁd;ﬂm T.wgm" and “interesting”

parallelisms in & program are often localized to a few
predicates belonging to the higher levels of the search
rees penerated by queries,

These considerations led us to défine an extension of Prolog,
allowing the expression of OR-parallelism and independent
AND-parallelism (goals having either no uninstantizted shared
varishles or which do not instantiate sny shared uninstantiated
variables o different values). It provides all solutions to a query
{the non determinism is a fundamental feature, given the target
epplication areas). It keeps the declarative semantics of Prolog
intact and in particolar, docs not resort to the IO dependencies
gxpressed as modes (Parlog), variable annotations (Concurrent
Frolog), or even implicit data flow (GHC).Finelly, it allows the
programmer to contrel both the nature amd the amount of
parallelism and is flexible enough to be 2 good wehicle for
experiments and further extensions.

2.2 Overview of the language

Modularity: The PEPSys language provides modules, which
iz an easy and clean way to elearly separate the sequential and
paralle]l parts of a program. In a sequential module, the user is
in the familiar Sequential Prolog environment, and uses iis
operational semantics, as well as "dirty" predicaies to optimize
the program, to express imput output operations, and special
control,

AND-Parallelism: An explicit operator ("#" replacing the
“") denotes the independent execution of two goals within a
clauvze. Thus responsibility s given to the programmer is

icates composed of several

justified to keep the parallelism under control; computing two
subproblems in parallel, or recursively computing a list of data
are common and useful types of AND-parallelism. An
interactive compiler including automatic parallelism detection
would also be of great value to discover less conumon cases.

OR-Parallel'sm: In a parallel module, 2ll clauzes of a
predicate must be gathered together and headed by 2 Property
Declaration of the following form:

-properties(| <Sol.prop=, <Clause-prop= <Exec-prop=]).

The property =<Sol-prop> indicates whether the predicate
should deliver all its solutions, or only ene (default is “all"),
The property <Clause-prop> specifies if the ordering of clauses
(i.e. of the solutions delivered by the predicate) is semantically
significant or not (default 15 “ordered™). The property <Exec-
prope refers to the eager or lazy way of obtaining the solutions
a5 the most desirable scheme (default is “lazy™). The first rwo
propertics affect the semantics of the predicates, while the third
15 cnly advice to the ron time system.

2.3 The language in one example

It is difficult o deseribe here all the cepabilities of the
language (see (Racliffe and Syre, 1987) for a full description),
but the example given in Figiire 1 (being, in addition, a very
popular Prolog program!) will show same interesting aspects.
Only the parailel module is shown here; the sequential module
simply calls the gei_solufions predicate within 4 bagof and lists
the solutions.

/* PEPSysn-queens Programme (e} copyright ECRC GmeH %/
I* Paraliel Module ¥/
Peexport( [gel_sciotens2] ). % Export entry point
-properties( [1 )

get_solutlons{Poard_size, Soln) :- solve(Board_size, [[, Saln}

% Accumulate the positions of occupied squares
-properties( [solutioas(all),classes(ordered ) execution(lazy)] )
solve(Bs, [square(Bs, W) L], [sqeare(Bs, Y) 1 L]).
solve(Board_size, Initial, Final) :-

newsquans(Initial, Next, Board_size),

solve(Board_size, [MNext | Initial], Final).

% Generate legal positions for next queerns
-propertles( [solutions(all),clsuses(ordered) execution{lazy)] ).
newsgquare[squanc], T | Rest], squarc(X, YY), BoardSizz) =
I < BoardSize, X 181+ 1, snint(Y, BoardSizz),
not{threatened(I, J, X, Y)) # safe(X, Y, Rest).
newsquare([], square(l, X}, BoardSize) - mmint(X, BoardSize).

% Generate all possible pasitions for the next gueen
-properties) [solutons(all) clavses{unordered) execution(eager)] .
snlnt{ N, NFlusOneOrdore ) &
M iz NFlusOneOrMore - 1, M 2 0, snint{ N, M ).
shlnt{ X, X

T Check if queens on squares (I, T) and (X, Y thresten each other
sproperties] [solutions{one),clanses{unordered) executionlazy)] ).
threatened(T, J, I, Y.

threatened(T, T, X, T).

threatened(T, 7, X, ¥) - UisI-J, Uis X - Y.

threatened(l, 1, X, ¥) - UisT+J, Uis X+ Y.

% Cheeks whother squane(X, Y) is threatened by any existing queens
-propertics( [solutions(one) clanses{ordered) executon(lazy} L
safeX, ¥, [1).

safe(X, Y, [squirs(l, 7 I L]) :-



m{mw“dUl Jl xd ﬂ}a m':(xl- Yi L}"

Figure 1: The "N-queens” Program in PEPSys

Consider the moperty declarations defined by the
PrOgTammer:

solvel3: all solutions are obviously required, but making the
predicate paraflel cannot give any speedup.

newsquareld : all solutions are required, but only one of the
clouses may succeed at a time, the other producing an
immediate failure, hence the erdered and lazy attributes,

snini2: this small predicate is the heart of good parallalism
generation since it allows the compulation tree to be split into
large parts, thus providing coarse grain parallelism.

threatened!d : this is a typical case of independent clauses,
where the small gramclarity of the parallel tasks cannot
compensate for the overhead for making them parallel.

.:afg.f.i‘ this expresses a vector operation by means of
recursion, which is, in principle, good for parallelism. The "#"
operator indicates an AND-paralie]l node. However, the user
could have chosen to make it serial, because there is already
some coarse grain parallelism (from the minf predicate), and
the parallelism generatsd by safe is of 2 comparatively finer
granularity.

2.4 Static evaluation of the language

The language was tested at an early stage of the project in
order o eveluate its  capabiliies. An  absiraet
interpreterfevaluator ran programs on an ideal machine under
unrealistic hardware assumptions, but allowing an evalvation of
the usefulness of properties declarations, and how much
parallelism the programs could in principle provide.

Alfiter two years of experience with the language, we can make
the following comments:
¢ A uscr-controlled parallelism is always betler than no

control, Moreover, the pure pm]]ehsm of PEPSys has a
cleer semantics similar to that of conventional Prolog.

« AND and OR parallelisms are bath werthwhile, there is

no reason to sacrifice one of them.

declarations are tied to predicate definitions
ate calls, This is & well kmown problem

llustrated Furln edicate level modes) and

Concurrent Pmlng ucr {call level synchronization). It

is sometimes desirable to be able to call a

predicate with different properties from the origi

#The total lack of dependence between paralle]
computations makes the programs clear and mulaguhle
However same d may be in some
cases {e.g. when one branch gives resulls making all
other branches useless) for efficiency reasons.

The latter two points have been overcome in & second version
of the language, by the introducton of a wuhrpmpmyj
upnrurnr and an asynchronous data bare (Ratcliffe, 1988).
]mmmagbegenﬂmdb}rmtwmhmduﬁﬂb}'m“wn
allowing a loose synchronization and control among several
parallel computations. While not implemented in the current
system, an evaluation by 2 different interpreter showed that
such a feature is valuable, if not shsolutely necessary, for
efficiency reasons.

* The property
mﬁ'mm
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3 THE PEPSys PARALLEL
COMPUTATIONAL MODEL

The PEPSys computational model (Westphal et al.. 1987) was
designed to support efficient implementation of the PEPSys
language. A scheme weas devised [or the parallel execution of
coarse-grained, sequential processes running at speeds close 1o
ordinary sequential Prolog execution. Conirolling the search
space to preduce all (desired) solutions and managing variable
bindings in 2 parallel environment sre the two main issues
addressed in the model, The model’s main features are:

-Sum for OR-parellelism, In AND-
m snd a combination of both, together with
saqumual backtracking.

# Shallow binding with an explicit ime-stamp mechanism,

» The ability to convert a sequential computation to a
parallel one retroactively at a very low cost.

3.1 Management of Variable Bindings

The model distinguishes between  shallow-bindings,
performed in the normal Prolog stacks, snd deep-bindings,
stored in Hash-windows, Any PEPSys process can access the
stacks and Hash-windows of ils ancestor processes, The tme-
stamp Or-Branch-Level (OBL), associated with each binding
permits it to distinguish the relevant bindings from the others in
the ancestor processes’ stecks and Hash-windows, an example
is given in Figure 2. All the bindings performed on "ancestor
variables" of 2 process zre made in the process’s Hash-window
and time-stamped, as any ather binding, with the current OBL.

Figure 3 shows a case with AND-parallelism with full OR-
parallelism. If both sides of an AND-parallel split contain
branch-points there ean be multiple selutions for both branches.
In this case the eross product of the left-hand and right-hend
solution sets has to be formed. A member of this cross product
is a process that has one process of both the left-hand and
right-hand sides a5 ancestors. Access 1o the bindings of these
ancestors is handled by join-cells, an extension to the hash-
window scheme.

Processes can be identified by hash-windows; each process
has exactly one current hash-window. Thus in order o pair two
processes, a join-cell contains two pointers: one to the hash-
window of the lefi-hand process and one to the hash-window of
the right-hand process. A join-cell also contains a third pointer
- the [ast-common-hash-window pointer to the hash-window
that was current at the time of the AND-parallel split. Looking
up & variable binding from a goal after the AND-parallel join
works s [ollows: the linear chain of hash-windows is followed
in the usual way until a join-cell is resched. Now a branch
becomes neceszary. First the right-hand process is searched by
following the join-cell’s right-hand-side hash-window chain
When the last-common-hash-window is encountered control
bounces back o the join-cell and the left-branch is searched.
The scheme also works in the nested case,

3.2 Control

The efficient generation of the complete set of solutions to a
query is the major concem in controlling the search space at
execution time.

OR-parallellsm: A process executing an OR-parallel
predicate will ereate a Branch Point, This Branch Point has
two functions: (1) to co-ordinate work teken by idle processors
and (2) 1o erable normal sequential backiracking execution.
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All processors have a list of local branch points with
unprocessed alternative elauses. When a processor becomes
idle it searches these lists for a task and takes the first one it
finds. Almost nothing in the parent branch has to be changed.
With this mechanism it is possible to generate just as many
processes as are needed to sustain the system. Thus the
overhead for parallelism (e.g. process creation, deep binding)
occurs only when useful parallel work is done.

oAl & (8pe ar 4 e 7] |4
OB
} Pic [
acz [vara] 2
] Fl SiiLa 3
Spliz a3 Hashaindss n
L=l [}
Pk
MLREF pi a4
NLAEF p ad2 4
]

Figure 2: OBL and Hash-windows in PEPSys

The variable at address ad! was bound to vall when the OBL
value on i was 3; the split eventually leading to process Pn
occurred later (the OBL value on Pi was 4) and the shallow
binding st address adl is valid for process Pn.  Shallow
binding 'm0 sddress ad? was not bound when the split eccurred
angd iz not valid for Pj, Pk and Pn. However the varnable was
bound to val3 in the Hash-window of Pk when the OBL in Pk
was 2, that is before the creation of Pn which oecurmed when
the OBL on Pk was 3. The deep-binding of ad2 in the
hash-window of Pk is thus valid for process Pn.

Figure 3: Cross product by join-cells

Clanse p consists of the AND-parallel goals 1 and r with two
schutions each. The join-cells =re marked by double
horizontzl bars and their last-common-hash-window,

If a brench fails, it backtracks to the last goal with multiple
clauzes and exscutes e next alternative if one exists. Ifitis a
branch poini and there are no alternatives available, it has o
wait for all sibling processes to terminate before it can
backtrack over the branch point. This is necessary becanse the
spawned processes - although not allowed to write in the
father's data areas - can read them to find shared global
variable bindings. All branches eventually fail and backirack,
thereby ensuring that the entire search tree Is explored.,

- AND-paralielism: AND-parallel  process-creation  is
performed using the seme mechanism as in OR-parallelism.
Right-hand goals =re taken by idle processors on demand,
Upon lermination the AND-paralle] branches are jofmed, If
both sides of an AND-paralle]l split contain branch-poimnts, the
cross-product of the left-hand and right-hand solution sets is
formed incrementally as the solutions arrive: whenever a left-
hand solution arrives, it iz immediately paired with all existing
right-hand solutions and vice versa. For all these pairs OR-
Parallel processes are started if processors are or become
available:

OR-parallelism, AND-parallelism, and sequential
executlon combined: The basic scheme for forming the cross-
product: gathering the left-hand solutions and the right-hand
sciutions in solutipn-lists and eagerly pairing them, relies on the
fact that all solutions to each side are computed incrementally,
and then co-exist at the same time in memory to be paired with
newly amriving solutions to the other side,

If sequential backiracking execution is allowed within the
AND-paralle] branches, sclutions could disappear: backtracking
might delete the bindings of the solution and replace them with
a newly compuied alternative., This problem occcurs only if
AND-parallelism, OR-paralielism, and sequential execution are
combined. To solve this problem, the treatment of the two
AMD-paralle] branches is not symmetric, OR-paralle] solutions
to the left-hand sides are gathered into solution-lists and paired
as soon as possible with the solutions to the right-hand side.
Assume that one solution o the right-hand side is paired with
all existing sclutions to the left-hand side, and that all the
processes for these pairs have fimished (i.e. they have delivered
a solution to the initial query or have failed), this right-hand
branch can only continue by backtracking into the right-hand
side of the AND to compute the next {sequential) right-hand
solution. Before doing this the left-hand solution-list is frozen
in its current state. This means that newly arriving left-hand
solutions (e.g. those produced by still active OR-parallel
branches of the left-hand side) will not be entered into the
left-hand solutions list and will mot be paired with the current
right-hand solutions., Rather they are entered in a different
left-hand solutions list, in which the next gensration of left-
hand soliutions is gathered.

After this freezing of the cwrrent left-hand solutions list,
backtracking proceeds ito the right-hand side of the AND,
thereby deleting one right-hand solution set from memory.
Repeated backiracking will now gradually compute the whele
set of right-hand solutions, which are paired with the frozen
subset of left-lrand solutions (called the current left generation).
When the righi-hand side can produce no more solutions, either
by OR-parallelism or by backtracking, the cirrent left-hand
generation has been peired with all possible Tight-hend
solutions. Morw all processes of the current left-hand generation
may themselves backitrack to continue producing the mext
generation of left-hand solutions. The right-hend side is then
recomputed. When the left-hand side cannot produee any more
generations, the complete cross-product has been formed.



Only when the lefi-hand side finally fails, i.e. backiracking
has produced all generations of solutions to the lefi-hand side,
and each has been combined with all solutions to the right-hand
side, does backtracking continne back to the last choice-point or
branch-point preceding the parallel AND.  Before the
beckiracking proceeds above the parallel AND, the right-hand
sidle should terminate or be killed. After its death, backtracking
proceeds beyond the AND-parallel split.

4 THE PEPSys ABSTRACT MACHINE

4.1 Introduction

The PEPSys Abstract Machine was designed such that one
Abstract Machine is mapped onto each processor and execotes
part of the PEPSye program with an efficiency close o the
WAM (Warren, 1983), The PEPSys Abstract Machine (Chassin
et al, 1988) is en extension of the WAM supporting the two
main features  of the PEPSys computational maodel:
managernent of variable bindings in paralle] and combination of
OR- AND- parallel execution with sequential execution and
backiracking in an all-solutions Prolog system. Like the WAM,
the PEPSys Abstract Machine is composed of the three
clessical Prolog stacks (local, plobal and trail), several control
and stack pointer registers, and a large number of argument
registers. The data objects stored in the registers and the stacks
are tagged. The machine executes a set of instructions including
indexing mstructions (usually referred to as switch), compiled
unification instructions (put, gef, unify) and contrel instructions
{call, proceed, iry, retry). Many of these instructions use the
basic dereference and unificafion operations.

4.2 Management of bindings

One of the main features of the PEPSys computational model
is the explicit distinction between loeal and ron-local variables
and the systematic tagging of bindings with an OBL, used to

“check the validity of non-local variables® bindings. The data
objects used in the PEPSys Abstract Machine use two tags: one
tag defining the type of the object, as in the WAM, the other tag
being the OBL wvalue when the binding was performed. In

addition 1o the WAM wugged daa objects, new non-local data

objects were defined. These ere the non-local counterparts of
some of the WAM tagged data objects: non-local free, non-
local reference, non-local list, ron-local structere. The non-
local data objects also contain the explicit identification of their
creator process as well as a split-OBL, used if the variable is
bound, to check the validity of the binding.

The dereferencing algorithm had to be extended in order to
cope with the two sorls of bindings used by the PEPSys model:
shallow bindings in the stacks and deep bindings in hash-
windows, the validity of both depending on their OBL tag when
the binding was performed by an ancestor process. When it
paints to a non-local environment, the environment pointer
register E must be a non-local data object, in order to allow a
comrect dereferencing of the non-local permanent varishles of
the Prolog stack. The unification algorithm was also extended.
The general unification must deal with several more data
objects and uses two different ways of binding variables; Jocal
variables are bound in the stacks while non-local ones are
bound in hash-windows. The WAM instructions used o
compile unification had to be modified to process non-local
variables. In particular, the structure pointer register §, used to
access compound ohjects, may have the non-local reference
type, to allow comect dereferencing of nmon-local sublists or
substructires. )
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4.3 Control

‘The two means of control in Prolog have been extended to
allow inmter-process synchronization. The first ome is the
continuation mechanism, similar to 8 subrouting call, used at
the end of the excoution of a goal to call the next goal of the
clanse. The second iz the backwacking mechanism, without
equivalent in imperative languages whereby & previous state of
the computation is restored.

The continuation mechanism is invoked when an operation
has to be performed after the success of a given goal: at the end
of the execution of one of the branches of an AND-paraliel
conjunction, or after executing 2 eme solution predicate, in
erder to allow only one of the successful processes to proceed,
The backtracking mechanism has been extended to synchronize
processes executing an OR-parallel predicate, 1o mix seqeential
and parallel execution in a cross-product and to synchronize a
terminating process with its father process. These extensions
have been done by extending the WAM with new control
frames snd instroctions.

5 IMPLEMENTATION OF PEPSys

The implementation of PEPSys on a commercial
multiprocessor (Chassin et al, 1988) was considersd an
important milestone in the PEPSys project because it was the
only way Lo test the actual behavior of the computational meodel
and experiment with the problems raised by implementing and
debugging in parallel. Furthermore, an implementation allows
large programs to be executed and actual measures of the
efficiency of the model to be obtained. )

For simplicity, it was decided to implament PEPSys on a
shared memory multiprocessor, although the model does not
require & global address space. The Siemens MXS500 is a
Sequent Balance 8000 built under license, where the number of
processors has been limited to 8, As a compromise between
ease of debugging and efficiency, the implementation was
coded in C, the abstract machine instructions being emulated.
To run a program on & given mumber of processors, less than or
equal to 8, the implementation creates the same number of
UNIX processes. In the following, we will assume that each
UUNIX process executes on a processor and will refer to them as
PIOCESS0TS,

5.1 The PEPSys emulator

The emulator is executed by sach processor and its eode is
shared by the processors. The PEFSys program is stored in two
data arcas, a code array and a dietionary, which are shared by
the processors. The local-global stack area ix also shared: each
processor has private write access on a fixed size portion of the
area while it has read sccess on the whole stack area. The
classical local and global stacks of each processor are
implemented in the portion of the stack area privately allocated
{write access) to the processor. The trail stacks are private to
each processor,

The datz chjects are slored in two 32 bits words, The first
contains the classical tag-value pair of Prolog implementations
while the second contains the binding OBL and, in the case of
non-local objects, the splittOBL and the processor-process
identifications. The data, E and § registers have the same
format as the stack data ohjects.

Hazh-windews are allocated in the global stacks of the
processors. Each Hash-window entry is composed of two data
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objects: the first is the nen-locel reference bound, the second
being the value it is bound o, The entries in the Hash-windows
are notmally trailed.

Local.dereferencing is the same as classical sequential Prolog.
When it returns a non-local reference, a non-local dereferencing
procedure is called which may, if the variable is unbound for
the process, call a recursive hash-window search procedure.

5.2 Process management and work alloca-
tion strategy

In each Abstract Machine, paris of the PEPSys program are
excecuted as several processes. Only one process is active at a
piven time, the others being suspended. When a process cannot
backirack because its steck is being used by other processes, it
suspends and & new process is created. To limit the creation of
"black-holes” in the stacks, work is obtained prefrentially from
the computational subtree of processes using the stack of the
suspended process. If no work is available in this subtres, the
complete computation tree is explored. Memary locking is used
to tzke a piece of work but not whilst simply searching. Each
process is defined by a root-frame and a hask-window, both
placed on the top of the global stack of the processor.

5.3 Debugging and Instant Replay

To debug the parallel system two different tools were used:
the DYNIX symbolic debugger pdbx and a custom-built
debugger at the level of the Abstract Machine instructions.
However, a5 real parallel systems are nondeterministic, it is
very difficult to reproduce identical executions. Bugs may
appear rarely and disappesr as soon as an attempt to use the
debugping tools is made. To alleviate this problem; a simple
implementation of the Instant Replay mechanism {Leblanc and
Mellor-Crummey, 1987) was done to make deterministic runs
of programs possible. The basic idea is to record a minimal
amount of information during a parallel execution and to use
this recorded information to make deterministic executions
possible, Replayed exécutions ensure that the synchronization
events are executed in the same order, Debugging using Instant
Replay requires the recording of an execution producing an
intermittent bug, which is usually possible by running a large
number of executions in recerding mode, Then it is possible to
use the other debugging tools during replayed executions,
which is then deterministic with regard to the erronegus indtial
execution. The PEPSys implementation of the Instant Replay is
cfficient, since recording is only 3% slower than normal
execubion.

5.4 Measures

The measures were performed as single user of the MX500,
with the migration and the swapping of the UNIX processes
executing the PEPSys program disabled. Several types of
measures are made wsing the implementation. The first type
gives the "raw” efficiency, the second allows the checking of
some assumpiions basic o the PEPSys model and the last type
estimates the various sources of overhead, In the following, the
mest important results are given for a subset of the programs
used to benchmark the implementation, These programs are:

« hamliton: finds a closed path through a graph such that
all the nodes of the graph are visited once.

» mandel; computes a mandelbrot set of 300 points.
» gueens: computes all solutions to the 8-queens prablem

. sﬂt;_nﬁss;h-md-musmd program described in (Disz et
« tlna: tour generator am. This am was wrillen
at ECRC, using the PEPS sg' lagogs. ©

Raw cfficlency: Figored shnws the efficiency of the PEPSys
implementation compared to commonly used sequential Prolog
implementations: interpreted CProlog, running on the MX500
computer and compiled Quints Prolog, running on a Sun 3/50
(16 MHz) since Quintus is not available on the MX500. The
Siemens MX500 Elementary Processor is an N532032 running
at 10 MHz, giving an equivalent of 0.7 VAX780 MIPS. The
ratio of the efficiency of the NS32032 processor to a 63020
running at 16 MHz is usually estimated to be 3. The ratio of the
efficiency of & WAM emulator written in C (such as PEPSys)
to the efficicncy of an assembly code WAM emulator (such as

(Juintus) can be estimated to be more than 2.

The classical raive-reverse program runs at 3 Klips on a
single PE. Of greater significance for a parallel sysiem is the
efficiency of parallel programs running ¢n the implementation
{naive-reverse is a sequential program in PEPSys) and the
measure of the speedup, the ratio of the sequential exccution
time to the perallel execution time. Using the correction factors
piven above, it appears that the PEPSys implementation
provides effective speedups over efficient sequential
implementations. Figure 5 is a graph of the speedups provided
by parallelism, from the same programs.

Figure 4: Raw efficiency of some benchmark programs

Pregram | CProleg | PEPSys{l) | PEPSys(8) | Quintus
(Sun 3f50)
Hamilton Tils. 281 = 393 s 211
Maende] 162 8. 4153 638 1325
CQueens | 173s €75 | 92s 3.47s.
Saltn 1704, 758 1.65 055
Tinn 319g. 111.05 16,5 1. 951

Mumber of processars
1 1 l I l I I |
1 2 3 4 5 & 7T 8

Figure 5: Speedups of the PEPSys implementation
Use of Hash-windows: One of the main assumptions made



in the definition of the PEPSys computational mode] was that,
becauss of the locality of refercnces in Prolog, the hash-
window use would be infrequent enough to introduce enly a
low overhead in paralle]l executions, Several measores of hash-
window usage have been made: the percentage of dereferencing
operations involving a hash-window search, the longest hash-
window chain explored in 2 dereferencing operation, the
number of hash-window aceessed during a computation and
finally an estimate of the overhead intredvced by the use of
hash-windows. The main results &re summarized in Figure 6
and on Table 7: they confirm that the use of hash-windows
remains infrequent and even if the hash-window chain explored
iz lonig {longest value so far is 20), most of the hash-window
eccesses occur in the local one. The overhesd introduced by
hash-window dereferencing remains always low.

1 2 3 4 5
Length of hash-window chain searched

Figure 6: Use of hash-windows in the PEPSys

implementation

This graph gives the percentage of hash-window scarches
involving the exploration of 1 (focal hash-window) to §
hash-windows during the execution of the benchmarks on 8
PEs.

Figure 7: Hash-window Dereferencing Overhead

This tahle gives the parcentage of the execulion time spent in
hash-window dereferencing for configurations mnging from 2
1o 8 PEs.

0.5%
4%
0.9%
10%
1.3%

Processors actlvitles: The aim of this measure is to find out
the percentage of the computation time spent searching for
waork compared to the processing of the PEPSys program. The
resulis depend a lot on the program, the overhead being
significant in the programs providing finer grained parallelism.

Slze of the processes: This iz the measore of the number of
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inferences executed by each process durng = parallel
computation. Althongh a large number of processes have a very
short life, most of the work is performed by a small number of
processes. There 15 a strong correlation between the gramalarivy
of the parallelism and the speedup, the paralle]l computations
where the average lifelime of the o5 is short (less than
20 inferepces) providing a bad speedup. A better load-
balancing strategy could inerease the average granulasity of the

processes,
6 SIMULATION

The purpose of simulation was twofold: o verify the
feasibility of implementing the PEPSys model on 2 mulii-
processor machine and to experiment with novel schemes for
efficient, cost-effective implementations. A flexible simulation
environment was considered to be of puramount importance
and the results were comelated with those of the
implementation project.

6.1 The Simulated ﬁrchitectur_e

Several successful anempis have been made 1o implement
OR-parallel computational models on limited-resource, shared
memory machines {Chassin et al, 1938, Disz et al.,, 1987). A
natural extension was to view such an architecture as a cluster
in a multi-clusmer machine. Figure § depicts the. abstract view
of this mulii-chuster architecture, By adding more clusters, the
number of PEs (Processing Elements) has been increased and
the notion of non-equidistant commumication paths between
PEs introduced. When PEi of cluster j wishes to access a
variable on PEEk on cluster I, it induces two levels of
communication: intra-cluster and inter-cluster. By executing
several large branches of a program's search-tres on single
clusters with a limited number of PEs and shared-memory, the
locality of computation found in many Prolog programs is
exploited while minimizing costly (remote) communication,

cammunlealian nabwark

ol uabar elusier I ‘ closter '

Figure 8: PEPSys Multi-Cluster Architecture.

The problem of communication between clusters was attacked
on two levels: adding additional hardware and wsing
sophisticated methods to reduce such communication. Each
cluster was angmented with a Cluster Processor (CP) whose
primary funciion is to handle intér-cluster communication, The
novelty of this CP is that it has different levels of “intelligence’
correspending to the requirements of a particular system. At the
lowest level the CP is the hardware interface to the inter-cluster
network with some bulfering capabilities. A more ‘intelligent’
CP is a custom-made hardware unit, with several specialized
concurrent  sub-units, performing  different  fumetions
concurrently, Thezse fmections are:  servicing remots
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dereferencing  requests, menaging local load-balancing,
processing  aborting, servicing PE  requests and  local
bookkeeping. The CPs communicate with each other over a
common bus via message passing.

The block diagram of a cluster processor (CP) is shown in
Figure 9. The CP has four message gueves managed by
hardware as FIFOs. The size of these buffers is small as only a
few messages are expected to be in 4 queve at eny given time.
Buffer overflow is handled by directing excess messages to the
CP's private memory. The CP has a small private memory
used for cluster bookkeeping, a5 a temporary scratchped and for
buffer overflow areas. It has a fairly large set of dedicated
registers in addition 1o a set of peneral purpose registers. The
dedicated registers are used for fast access to CP data tables and
counters.

Imiraeolrster  bus

I Rl

P — intrascloster =i
Corzlamactsg [ | bus irsertace el ) ame

haroutt

i = e e

Intor-aluster
daraiarancing maaszge bulisring
bialiat S o netwoik Ihr

Interiace
| .
[metutter | | fout-nured]

wariable
daralarenciog

uniy
LWAL—I}UIHI’I ——

hash windos Eacha
unil

| S —
Figure 9: A Cluster Processor Block Diagram,

6.2 The Simulation System

Lisp was chosen as the implementation language for the
PEPSys, event-driven simulation system. This provided a
powerful programming environment, debugping facilities and
allowed very fast code development. The complete system
comprises about 1200 function definitions or about 17000 lines
of code,

An event comrespends roughly to the execution of a single
gbstract-machine instruction by & single PE. More complex
operations, &.g. deferéncing, aré broken up into several pseudo
instructions,

The complete system also includes timing options, stepwise
execution, checkpointing exccution end limited run-time
statistics gathering. Further analysis of trace informatdon is
muovided by a comprehensive suite of tools, incleding graphics
[ncilities.

6.3 Simulation Results

A multitede of confipurations with the number of clusters and
PEs ranging between one to ten were simulated. For a single
cluster, architectures up to 30 PEs were simulated. No
optimisations of any kind were included in these architectures,
i.z, the CP was an ordinary processor nmning at the same speed
as a PE, it had no parallel sub-units and management of its
message buffers was done in software. The load-balancing
scheme employed was simple and no resinctions were imposed
on suspended PEs to request work from their (remote) children,
Mene of the important optimisations to PE dereferencing or
local work management were done.

The graph in Fig. 10 shows the speedup abtained for the
Hamiltonian Path program using a maximum of 20 processors
on several configurations. From these results it {5 clear that the
overhead incurred by adding additional clusters while being
telerable, (cf, the speedop for 20 PEs on a single cluster is 13.9
and the speedup on 20 PEs on 2 clusters - 11.5), becomes
considerable as the number of clusters increases. We are
currently waiking on new strategies to reduce this overhead.

0~
Speedup

Figure 10: Performance of Hamilton Path program.

The three factors mentioned below account for the less-than
optimal speedups:
» simple load-balancing
« no optindsations were performed - the CP should execute
faster than PEs and should have special hardware.
# the test-programs must be large enough with res to
the amount of sustainable elism llg.tje.ly exhibit o
Due to- the process-criented nature of the FEPSys
computational model, the inter-cluster bus does not cause a
communication bottleneck, The results of monitoring the inter-
cluster bus for a 100 PEs on 10 clusters shows an average buos
utilisation time of well wnder 20% per time interval. The
distribution of communication (in the form of message passing)
between any two clusters in a configuration is almost unifarm,
excluding the cluster initating the computatien which always
has a heavier load. By dividing the work at the highest poszible
lewel in the search tree, this extra overhead can be eliminated.

Comments: Several straightforward optimisations which
must be meade to the model have becoms apparent (process
ereqtion, derefencing) and our ideas of special hardware (CP,
derefencing unit) are more lucid. OF prime importance is the
intra- end inter- cluster load-balancing between PEs.
Experiments with different scheduling strategies has already
resulted in a notable mcrease in performance, More details on
load-balancing can be found in (Barom et al., 1938),

7 DISCUSSION AND RELATED WORK

Efforts to hamess logic programming for paralle]l processing
are prolific, Several models similar to PEFSys have been
defined: ANLWAM (Disz et al, 1987, Disz et al, 1987), the
BAP-WAM (Hermenegildo and Masr, 1986), the SRI model



(Warren, 1987), the Versions Vectors model (Ciepielewskd et
al., 1987) and the BOPLOG model {Tinker and Lindstrom,
1987) ‘and implemented on multi-processor, shared memery
machines, All these models except (Hermenegildo and MNasr,
1986) provide for OR-paralle] execution and some of them
(Brand, 1988) are currently being extended to allow AND-
parallel exseution end a combination of AND and OR
parallelism. The initial design of the PEPSys model permits the
deliberate combination of both OR-parallelism and Independent
AND-parallelism with sequential backtracking, Thus in PEPSys
more parallelism can be exploited in the execution of a broader
class of Prolog programs. The price paid in providing such
mechanisms in PEPSys is the complexity of the model. Special
cases have to be taken into account for efficiency (e.g. the laft
and right hand side of an AND-parallel node executing on the
same PE) making lmplemmunn difficult and d:huggmg
tedious. Furthermore, there is much room for optimisation in
the original model: when an AND—para.]]el goal is deterministic
or sequential (see (Chassin et al, 1988)), the general
combination mechanisms mneed not be invoked and the
implementation of such ecases is reduced to almost the same
level of difficulty as handling ‘pure” OR or AND parallel goals,

Another factor contributing to the model’s complexity is the
management of variable bindings where deep bindings, done in
hash-windows, are distinguished from shallow ones made in the
normal stacks. Access to varable bindings in the dereferencing
operations may be a complex operatiom, involving a search
through a potentially unbounded chain of hash-windows., On
the other hand, variable management in the SRI model is far
simipler, where variable access, binding and unbinding are fast,
constant-time operations.  One of the SRI model’s main
altractions is its simplicity, beth in control and varizble binding
management, but it and some of the other models mentionsd
above support OR-parallel execution. only, which naturally
simplifies matters somewhal. Moreover, task creation in the
SRI modsl demands an expensive binding installation and
untraifing operation, non-existent in FEPSys.

The scheduling of work amongst processors is crucial for
efficiency. Results from both the simulation and
implementation reinforce the need for = sophisticated
scheduling policy mfommg locality while maintaining the
desired process grain-size. However, the importance of a good
scheduling policy is less in PEPSys than in the SRI model,
where the overhead of task creation is not fixed, but depends on
the “proximity” of the task in the computational e,

While the ANLWAM, SRI and BOPLOG models are
specialised for shared memory, multi-processor architechires
and their implementations exploit this fact (these models use a
global addressing scheme; they do not need to tag bindings with
the owner process identity, as the physical address of & variable
is used instead.), the PEPSys model does not rely on any
particular memory system,-and in this sense is more general, It
iz not clear how the above-mentioned models can be sceled up
to execute on & many-processor, distributed architecture,

One of the explicit design goals of the SRI model was to
make derelerencing a constant time operation. In PEPSys, hash-
window chains can be of arbitrary length and therefore a cause
for concem, While such concemn is justifieble, the results from
both tmplementation and simulation on shared-memory and
nun-shared memory architectures, show that the eceurrence of
long hash-window chains is infrequent end furthermore the
overhead of hash-window dereferencing is minimal.
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8 CONCLUSION AND FUTURE WORK

In this overview, the different aspects and results of the
Parallel ECRC Prolog System have been presented, The initial
abjectives were o study all facets, and to provide an efficient
and user friendly system at all possible levels, The first
objective has been achieved by studying Prolog applications,
defining a high level Prolog-like language ncorporating
mechanisms o express  parallelism,  and defining  a
computational model whose implementation rvetains the
optimized WAM bazsed execution. The actual implementation
of PEPSys on the MX500 system has brought an invaluable
experience in developing real scale épplications, tools for
debugging aml evaluation. The simulation tools extended this
experience to less conventional architectures, These programs
were supported by other secondary tools such as a compiler,
tracing and low level debugging facilities, and numercus wols
to extract and exploit the results of experiments.

The second objective, has been 2 major concemn during all
design and development phases of PEPSys. The PEPSys
language offers some desirable faciliics while preserving the
Prolog programming methodelogy where appropriate. That user
controlled OR-parallelism and independent AND-parallelism fit
very important application areas was confirmed by application
evaluations, Having both OR and AND parallelism made the
model more complex, and perhaps more difficult to implement
efficiently than other more restricted approaches. Current
results indicate that a mom-optimal implementation provides
effective speedups over the most efficient sequential Prolog
implementations when executing large size problems.

Current work includes completing the corrent MXS00
imp]r.mm:,aﬁm and simulator as well as performing nmomerous
experiments in order to evaluate and refine all the components
of the PEPSys project. Future work will join the PEPSys
praject  with its  companion  project i the Computer
Architecture Group, the KCM Project, implementing a high
speed Prolog/Lisp co-proeessor, in order to provide a high
performance Multiprocessor Logic system.
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