“PROCEEDINGS OF THE INTERNATIONAL CONFEREMCE
ON FIFTH GEMERATION COMPUTER SYSTEMS 1938,
edited by ICOT. © ICOT, 1988

831

Cut and Side-Effects in Or-Parallel Prolog

Bogumil Hausman’, Andrzej Ciepielewski'
Alan Calderwood

*Swedish Institute of Computer Science
Box 1263
5-164 28 Kista
Sweden

Abstract

Two contrasting approaches are possible when
Prolog is implemented on a multiprocessor
system. One is to treat the implementation as
porting to yet another machine and say that the
language is still strictly Prolog. Another approach
1s to seek new extralogical features more suitable
for the new execution strategy. We introduce
some new extralogical predicates and compare
them to the corresponding Prolog predicates. We
then discuss some implementation options for
Prolog I/O, database and cut predicates. Finally,
we propose an algorithm for execution of cut
which is a geood compromise between
implementation complexity and amount of
speculative work allowed.

1. Introduction

One of the first results of the Gigalips project, a
collaborative effort between SICS, Manchester
University and ANL in Illinois, is the Aurora or-
parallel Prolog system running on shared-
memory multiprocessors {Lusk et al. 1988). The
system implements a mixture of the depth-first
and the breadth-first search strategies.
Computation can be seen as processing of a search
tree by a team of workers, with each worker
following the depth-first strategy whenever
possible.

One of the initial goals of the project is to
demonstrate that existing Prolog programs can be
run much faster in parallel with no, or minimal,
changes, producing exactly the same results as on
sequential systems. Producing the same results
means giving the same set of results and in the
same order irrespective of the system. Many of the
extralogical predicates of Prolog, like /O
predicates, database predicates and cut, are very
strongly dependent on the depth-first execution
strategy. We had to rethink their meaning and
implement them in the or-parallel setting,

TDepartment of Computer Science
University of Manchester
Manchester M13 9PL
UK.

Another goal of the project is to experiment
with new language features. One of the things we
are looking at are "asynchromous" versions of
built-in predicates, like I/O and database
predicates, not depending on Prolog's particular
execution order. By using the new predicates we
would loose the strong equivalence of results
obtained on different systems. However, it is often
not important in which order the results are
presented, and the programs written without
considering Prolog's execution order might come
closer to the ideal of logic programming. Besides,
introducing predicates more suitable for or-
paralle] execution can win efficiency.

The main contribution of this paper is the
presentation of an implementation of cut and
"ordinary" side-effect predicates. We also make a
small contribution to the discussion about suitable
extensions of Prolog by presenting a set of
examples using the new "asynchronous"
primitives.,

The paper is organized as follows. In Section 2
we introduce the asynchronous predicates, show
how they can be used, and compare them with the
ordinary Prolog predicates. In Sections 3, 4, 5 and
6 we discuss different implementation options of
cut and ordinary side-effect predicates and
describe our choices.

2. Using Prolog on an Or-Parallel System

One of our goals is to be able to run the same
Prolog program on any hardware, parallel or
sequential. On the other hand Prolog is not the
ultimate logic programming language. Moving to
a different type of hardware asks for reevaluation
of the language, maybe mostly of its extra-logical
features like side-effect predicates and control
predicates, We do not claim to have a final answer,
we rather want to show some "natural” extensions
which have been discussed in the Gigalips project
and elsewhere, and which implementation we are
considering. ' .

832

In this section we compare uses and semantics
of the ordinary Prolog predicates and their
"asynchronous” versions, and also indicate some
minimal requirements placed on the
implementation.

In the examples below, the procedures which
can be executed in or-parallel are declared as
parallel.

2.1 I/O Predicates and Database Predicates

Input/output predicates in Prolog enforce order
in which data is read or written. Program 1(a)
prints all permutations of a list of numbers in the
order decided by the depth first execution of
Prolog. This program uses the ordinary write
predicate. Often it is not important to present the
solutions in any particular order. Program 1(b)
run on cur system would present solutions in some
unknown order. The program uses the
asynchronous write predicate (asynch_write).
Expressed in implementation terms, write can be
executed first when the branch it is in becomes the
leftmost one in the search tree, while asynch_write
can be executed anywhere in the tree.

(a)

all_permutations(Xs) -
permutation{Xs,Zs},
writa(Zs),
fail,

permutation(Xs,[Z|Zs]) -
select(Z,Xs,Ys),
permutation(¥s,Zs).

permutation{f].[]).

= parallel select/3.
select(X,[X|Xs], Xs).
select(X,[Y[Y¥s].[Y]Zs]) - select(X,Ys Zs).

all_permutations{¥s)
parmutation{Xs,Zs}),
asynch_write(Zs),
fail.

Program 1., Two versions of all_permutations
program. We assume that the action of
asynch_write is atomic,

Not only inputfoutput predicates depend on a
particular execution order of Prolog. Database
predicates like assert or retract depend on the
ordering even stronger. An ordinary assert or
retract can be executed first when the branch it is
in becomes the leftmost one in the search tree. We
do not want to go into the complex issues of
modifying or-parallel Prolog programs "on the
fly" in general. There are, though, some uses of
assert and retract which are solely for controlling

searches, For example, in the program for playing
Mastermind presented in (Sterling and Shapiro
1986) asserr ensures that the search space is
traversed from left to right even when executed on
an or-parallel system. This requirement can be
relaxed, because it is not important in what order
the solutions are found. In the version of the
Mastermind program presented in Program 2
asynchronous assert (asynch_assert) is used. There

_are no restrictions on when asynch_assert can be

executed.

The “"parallel” version of the Mastermind
program has been shown to us by Peter Szeredi.

solve{Code):-

length{Code, N},
asynch_abolish{tried/1),
asynch_assert(tried{[])),
guess{MN,Guess),

fock,

tried{Tried_Guesses),

unlock,

test{Tried_Guesses,Guess,N),
ask(Code,Guass,|B.C]),

lock,
-asynch_abolish(tried/1),
asynch_assert(. .

tried{[[B.C,Guess]|Tred_Guesses])),

unlock,

B=M.

guess{0,) =1
guess(N,[Q|Qs]) -
pick{Q],
M1is N-1,
guess(M1,0s).

- parallel picks1.

pick(0).

plek{1}.

pick{2).

pick(3).

pEcle}.

pick(5).

pick{G).

pick(7).

test(T rie'c!_Guasses,Guess,N] -
tests if Guess is-consistent with all of the
answars already mads

ask{Code,Guess,[B,C]) -

asks the user for the number of bulls and
cows in Guess

Program 2. "Parallel” version of the Mastermind
prograrm, '

In Program 2 asynch_assert is used to store the
list of tried gnesses, Notice the problems caused by
the atomicity requirernents, the system predicates
for locking and unlocking guarantee mutually
exclusive access to the crifical section of the
program.

The database predicates can also be used to
collect answers generated in set predicates. In the
find_all program in Program 3(a) we used
ordinary assert and retract which means that even
when executed on or-parallel systemn the answers
are added to the database in the order decided by
the depth first execution. We are interested in a set
of answers, thus it is not important in which order
they are added to the database. In Program 3(b)
asynchronous assert and retract along with a
unigue functor name are used to store the answers
in order they are generated. The only restriction is
that if the Goal invokes procedures containing
cuts, we store only the answers which would have
been returned on a sequential system (Hausman
and Ciepielewski 1988).

(a)
- parallel Goal,
find_all{X,Goal Xs) -
find_all_dI{x,Goal Xs\[]).

find_all_dI(X,Goal Xs) -
asserta{$instance{Smark)),
Goal,
- asserta($instancea(X)),
tail.
find_all_di(X,Goal Xs\Ys) :-
retract{Binstance (X)),
reap(X,Xs\Ys), L

reap(X, Xs\Ys) -
X+ $mark,
retract{$instance (X1}), |,
reap(X1,Xs\[X[Ys]).
reap($mark,Xs\Xs).

- parallel Goal.

find_all(X,Goal Xs) -
unigque_functar(F), .
find_all_dI{X,Goal,xs\[],F).

find_all_di{x,Goal Xs,F) :
Goal,
T=., [FX],
asynch_assert(T),
fail.

find_all_dI{*,Goal Xs\Y's,F)} :-
reap(Xs\Ys,F), L.

reap(Xs\Ys,F) :-
T=.. [F:¥],
asynch_retract(T), |,
reap|Xs\[X|Y's],F).
reapXs\Xs,_).

unigue_functor(Functor) :-
genarates a new unique functor

Program 3. Two versions of find_all program.

B33

In Section 5 (implementing database predicates)
we shall discuss a safe way of using database
predicates in general,

2.2 Control Predicates

Execution of Prolog programs -can be
conirolled by the cut predicate even in an or-
parallel systemn. Examining eut and ordinary side-
effects from the implementation point of view, we
can see that the rule delaying execution of side-
effects until their branches become leftmost
ensures that only those resulis that would be
produced during sequential execution will be seen,
The shell program shown as Program 4(a) would
produce exactly the same sequence of results in
our system as in a sequential one. Program 4(b) is
a version of the interactive shell in Program 4(a)
with the difference that now we are not interested
in the same sequence of results as in the sequential
system, the asynchronous predicates aré used and
the results appear in order they are found. As in
the second version of the Find_all program the
only restriction is that if the Goal invokes
procedures containing cuts, we present only those
results that would be produced during sequential
execution (the results that would not be cut).

The cut in shell_solve was replaced by another
control predicate, cavalier commit (f), proposed
by Ross Overbeek (Warren 1987, Butler et al.
1988). Cavalier commir, as we understand it,
commits to the first solution irrespective of the
clause order, it does not interact with side-effects,
and does not prohibit other branches in its scope
from producing results if they happen to be faster.

Cavalier commit can increase efficiency of or-
parallel execution when we need only one solution
to the given goal and we do not care which clause
is used. Cut in Program 5(a) commits the
execution of Goal to the first alternative found in
the depth first search while cavalier commit in

Program 5(b) can comnmit the execution to any
alternative,

In the rest of the paper we describe the
implementation of cut and ordinary side-cffects in
the or-parallel setting. We postpone discussion of
an implementation of cavalier commit and other
possible control primitives until their role in the
language is better understood. For further details
see (Hausman and Ciepielewski 1988),

834

- parallal Goal.

shell =
shell_prompt,
read{Goal),
shell{Goal).

shell{exit) =- L

shell{Goal) -
ground({Goal), |,
sheali_sclve_ground(Goall,
shell.

shell{Goal) =-
shell_solve(Goal),
shall.

shell_solve{Goal) -
Goal,
write{Goal}, nl,
write(' Next Solution? '},
read(Answer],
-check{Answar), L
shell_solve(Geoal) -
write{'No (more) solutions’), nl.

shell_solve_ground{Goal} :-
Goal, |,
write("Yes'), nl.
shell_solve_ground{Goeal) :-
write{'No'}, nl.
checkiyes) - fail,
check{no).
shell_prompt :- write('Next Command?).

Program 4(a). "Sequential” version of an
interactive shell.

= parallel Goal.

shell -
shell_prompt,
read(Goal),
shali{Goal).

sheli{exit) - .
shell{Goal) -

- ground{Geal), |,
shell_solve_ground(Goal),
shell.

shall{Goal) -
shell_solve(Goal),
shell.

shell_solve(Goal) -
Goal,
lock,
asynch_write{Goal), nl,
asynch_write{'Next Salution?),
asynch_read(Answer),
unlock,
check{Answer), |.
shell_solve(Goal) -
write('Mo (more) solutions"), nl.

Program 4(b). "Parallel" version of an interactive
shell.

(a)
- parallel Goal.
not(Geal) =
Goal, !,
fail.
not{Goal).

(b)
- parallel Goal.
not{Goeal) -
Goal, |,
fail.
not{Goal).

Program 5. Two versions of "negation as failure”.

3. Prerequisites

Programs are compiled to WAM-like
ingtructions (Carlsson 1987), but the code can still
be modified during execution. The state of the
computation during the execution of a program is
represented by a tree.

A node represents the state of the computation
on the corresponding branch at the time a non-
deterministic predicate has been invoked. Among
other things a node contains explicit information
about still available alternatives. We assume that at
the tip of each branch there is a node containing
the ecurrent state, and shall call such nodes
embryonic. An embryonic node is converted into
an ordinary node when a non-deterministic
predicate is invoked. A node can be removed from
the tip of a branch, which corresponds to
backtracking in sequential Prolog. The execution
tree of a program is represented in such a way that
the parent of a node, its siblings and children can
be reached from each node. Each branch of a tree
is divided into a private and a public parts. The
public part of a branch can be dynamically
extended. We shall call the oldest private node the
sentry node. There is always a sentry node on a
branch, though it might be embryonic. A sample
tree is pictured in Figure 1.

A tree of a program is processed by several
workers (be it processes or processors) and each
node containg explicit information which workers
are active in the subtree rooted at the node. The
workers proceed independently of each other
except when the nodes in the public part of the tree
are accessed. Actions on the public nodes are
considered atomic, Atomicity is obtained by using
a lock associated with each node. A worker active
in its private part of the branch can be viewed as
an instance of sequential WAM,

O noda
@ sentry noda
& embryanic node
- pointars

PUBLIC

/ 7\,
/ &

’/q/)' 'K\ %

o3

SCO@

Figure 1. An abstract representation of a search
tree.

The whoele Aurora system is described in (Lusk
et al, 1988), and the schedulers used in (Butler et
al. 1988) and (Calderwood 1988a),

In the rest of this paper we assume for
simplicity that all predicates are declared as
parallel.

4, /O Predicates

In this section we consider the ordinary I/O
predicates.

In or-parallel systems, in contrast to the
sequential ones, there are usually several branches
being executed simultaneously. Any of the
branches could contain I/O predicates. As stated in
the previous section, an I/O predicate can be
executed only in the leftmost branch. If an [JO
predicate is reached before its branch becomes
leftmost, processing of the branch must be
suspended until all the branches to its left are
completed.

Before executing an IfO predicate a worker
checks if the branch is leftmost by looking for left
sibling nodes starting from the worker's sentry
node. When a left sibling node is found the
worker's branch is suspended and the sibling node
gets a reference to the tip node in the branch.
When the node causing suspension is to be
removed the reference is stored in the next left
sibling node. If there are no more left sibling
nodes the suspended branch is activated. To avoid
the repeated checking of nodes all the way to the
root, the worker which finds that its branch is
leftmost marks all the nodes in the branch as
leftmost. The leftmost test will stop as soon as a

835

node marked as leftmost is found, The root node is
always marked asg lefimost.

The algorithms expressing suspension and
activation are presented in Figure 2. Suspend is
invoked with a reference to the current sentry
node as argument before an I/O predicate is called.
Activate is invoked when a node is about to be
removed from the tree by a worker searching for
work. Leftmost is invoked with two arguments,
the first is the current node and the second the
reference to the suspended branch, when invoked
in suspend both arguments reference the sentry
node.

suspendin) = if not leftmast{n, n) than
suspend this branch.

bool leftmost(n, b) =

if marked_as_leftmost(n) then
returntrua)

else if exists n.leftsibling then
{n.leftsibling suspended_branch = b
return{falsa)}

else if leftmost{n.parent, b) then
{mark_as_leftmost{n)
returnitrua)}.

activata({n) =
if branch to the right is suspended and
leftmost{n, n.suspended_branch) then
activate the suspended branch.

Figure 2. Basic algorithms for suspension and
activation.

The test "branch to the right is suspended" is
implemented using an explicit reference
(suspended_branch) to the tip node in a suspended
branch. The reference is stored in the node
causing suspension, when the leftmost test fails.
When the node causing suspension is to be
removed, the reference is copied to the next node
which causes the leftmost test to fail,

The suspension and activation processes are
illustrated in Figure 3.

When the worker active below sentry node 7
executes leftmost(7), it suspends and node 6 gets
reference to the suspended branch (reference to
node 7) (A). When another worker removes node
6, the reference to node 7 is copied into the node 2
(B). When node 2 is removed, node 7 becomes
leftmost and the branch is activated. At the same
time nodes 1, 3, 4 and 7 are marked as leftmost.

Our algorithms are neutral to what actually
happens with the worker on the suspended branch.
It can either busy-wait on the suspended branch,
or mark the nodes in the branch as suspended and

236

[A) root

& node

& senlry node
4 rafarence to sibiing noda

wille: rederence 1o suspandad branch

Figure 3. A tree with a suspended branch.

search for work. Activation would then mean
gither reactivating the busy-waiting worker or
marking the nodes in the branch as leading to
work.

5. Database Predicates

To keep the sequential semantics of database
predicates in an or-parallel system we need some
synchronization, because execution of a database
predicate could affect goals in the whole search
tree (Example 1).

Example 1

- parallel q, p.
- dynamic 20.

{1 g:=r0.

@ q-p

{3 q:=-r,z0.

4 p-z0.

{5) p:=-z1, asserta(z0).
(8 p=z3,z20,

When executing on an or-parallel system, the
asserta(z0) in clause (5) could affect the
computation of subgoals 20 in clanses (3), (4) and
(6), whereas only execution m clauses (3) and (6)
should be influenced.

‘We assume that all the procedures which can be
modified by adding or deleting individual clauses
are declared as dynamic (as e.g. in Quintus
Prolog). We shall call the goals modifying. the
dynamic predicates hard side-gffects, and the goals
invoking dynamic predicates unsafe goals.

To keep the right ordering (i.e. sequential
Prolog ordering) between the unsafe and hard
side-effects goals, the execution of such predicate
is not allowed until the branch containing it
becomes leftmost in the tree. To achieve this the

algorithms introduced for I/O predicates can be
used.

- By invoking the suspend procedure as part of
all hard side-effects and unsafe poals we also solve
the problem of the call predicate invoking one of
the mentioned goals. For example the effect of
assert(P) and call{X) where X is bound to
assert{P) will be then the same.

Which predicates are hard side-effecis or
unsafe can be decided on the compile time.

6. Cut

The main difficulty in implementing cut
correctly on an or-parallel system is caused by the
case of several workers executing cuts pruning
ﬂvcrlappmg parts of the execution tree. The
problem is illustrated by the examples in Figures 4
and 5.

¥ in Figure 4 the cut /(%) in nodes G, D or E is
reached before the cut /57 in node F, care must be

taken that the cut /(2) does not prune the third
branch in p, If that happened, the semantics of cut
would be violated, because during the sequential
execution the choose(al) predicate succeeds and
the cut /2) in the second clause of p is not reached
because of the failure of validate(al). Looking at
the execution tree, one can sec that-when the cut
12) i5 reached it is in the scope of the cut /(3), The
cut /2) has a larger scope than the cut ![‘EU, as it
cuts to a higher node in the tree, and their scopes
overlap.

If in Figure 5 the cut 1(2) in node F is reached
before the cut /37 in node E, care must be taken

that the cut /(2 does not prune the third branch in
p and the second branch in w, because during the
sequential execution a choosefal) predicate

succeeds and the cut /(2) in the second clause of P
in node F is not reached.

The general rule is that, if a cut is in a scope of
another cut, the cut with the larger scope must not
prune branches that would not be pruned anyway
by the cut with the smaller scope. Those branches
can be pruned when the branch leading to the cut
with the smaller scope fails.

p - ver(sluwi, !“}.

p g, 119),
p - speculativel,

q = choose(X), 113, validate(x).

q - speculative2

q - speculatived.

choose(al).

choosga(a2).

validate{a2).

nodes in a scope of:

S 1D innoded

& 19 innode F

@ overlapping scopes

2

Blg i Y speculativet.

verysiowt, "/

P speculatives, 19

chWSE{K]. o [0 Epﬂculaﬂm. !‘Ez]

F G

choose{a1}, i

choosa(a2), ¥
validate(a1),1'®

validate(a2),!

Figure 4. Cuts with different overlapping scopes.
The clauses with cuts belong to predicates with
many matching clauses. Active tasks are
associated with the tip nodes.

If correctness were the only consideration, then
the cut's semantics could be implemented simply
by suspending its execution until the branch it is in
becomes leftmost. Another consideration is
speculative work., Work in any branch which can
be cut away is speculative. The simple solution
proposed above lets computations in all branches
in the scope of the suspended cut go on until the
branch containing the suspended cut becomes
leftmost. The restarted cut then prunes away
branches in its scope.

A more ambitious plan (Calderwood 1988b)
with corresponding implementation {Carlsson
1988) would be to prune all the branches in the
scope of the cut in the subtree in which the branch
with the cut is leftmost, and the branches rooted at
the right siblings of the root of the subtree, and
then suspend execution of the cut until the branch
becomes leftmost in the subtree belonging to the
predicate containing the cut. Note that in this and

837

p = veryslowl, I“}.
P - W, !{2}.

p - speculativet.
WG

w = speculativeZ,

g - choose(X), I{E'}. validata(X).

choose(at).

choose{a2).

validate(ad).

nodes in a scopea of:

& '@ innodeF

@ 158 innode E

1] overapping scopes

choose{a2), rf;'a]

ﬁhmse al .I":a:'
(ai) valldate(a2), 1@

validate(a1},)®®

Figure 5. Cuts with different overlapping scr.::pcs.l

The clause with cut /(3] is the only matching

clause of predicate g. Active tasks are associated
‘with the tip nodes. '

in the previous solution, execution of a cut might
be suspended even if it is not in a scope of any
other cut, which is clearly sub-optimal.

A better solution, with respect to the amount of
speculative work performed, would be to prune at
once all branches which would be pruned anyway
by cuts with- smaller scopes. The difference
between this and the previous alternative is that the
execution of the cut will be suspended only if it is
in the scope of a cut with a smaller scope, and first
when the scope boundary of the "smaller” cut is
crossed.

A fourth solution (Ali 1987) would be to delay
execution of any branch until it can no lenger be
affected by cuts. The solution prevents all
speculative work, but at the same time limits the
amount of parallelism severely.

838
The four schemes are illustrated in Figure 6.

P - veryslow, i

p-4q, I{E].
p - speculativel.

q - slow,][31_ fail.
q-r
q :- speculative2.
r - slow.
r - fast.
r:- spaculative3.

nodes in a scopa ol:

D P innode E

root & 1% innode C

@ overlapping scopes

speculative.

. spm:ulaﬂl.r_az. I.w]I

(@ speculatives, 11

fast,
Figure 6. Speculative work in the four schemes
for implementing cut. When the cut in node E is
executed then: solution 1 - speculative? and
speculative3 continue; solution 2 - speculative3
is cut, speculative? continues; solution 3 -
_ speculative? and speculative3 are cut. In
solution 4 we do not start execution of the
second and third branches of p until veryslow in

p fails,

Before describing our implementation of the
third scheme we have to explain the way cut is
usually implemented, and define scope more
precisely. On the WAM instruction level the cut
predicate has an argument which is a reference to
the last node created before the predicate
containing the cut is invoked. We shall call the
child of the argument node the cut level. The scope
of a cut consists of nodes in the subtrees to the
right of the path between the place on the branch
where the cut is-invoked and its cur level.
Execution of a cut prunes all nodes in its scope.

All cuts in a predicate with many clauses, have
the cut level corresponding to the node created
when the predicate is invoked. The cut level of all

cuts in a predicate with a one clause is the next
node to be created after invoking the predicate. In
general, the determinacy property of a predicate
{one or more matching clauses} is dynamic due to
indexing, and the rules deciding which node is the
cut level must be applied appropriately.

The key to the implementation of the chosen
scheme is the scope information. :

6.1 Scope Information

There is one piece of scope information per
node, the cut level flag which indicates whether
the corresponding node is at the cut level of some
cut. When a predicate with many matching clauses
containing cut is invoked the cut level flag is set in
the node created for the predicate. When a
predicate. with one matching clause containing cut
is invoked the cut level flag is set in the embryonic
node of the corresponding branch. Finally the flag
is not set at all if the matching clauses do not
contain any cuts.

The search trees from Figures 4 and 5 with the
scope information of predicate g are shown in
Figure 7.

(B} ract

cut level

Figure 7. The search trees from Figure 4 (A) and
Figure 5 (B) with the scope information of cut

13) in predicate g. (Remember that the
predicate ¢ in Figure 4 is different from the one
in Figure 5)

A worker executing cut is expected to prune all
nodes in the scope of cut starting from the sentry
node up to the cut level, traversing the path node
by node. The worker can always prune all nodes
up fo & cut level of a "smaller" cut, because if the
"smaller” cut were executed the pruned nodes
would be pruned anyway. Then the worker can cut
higher if all left branches leading to the "smaller"
cut have failed. '

In terms of the scope information the worker
can cut higher if it is leftmost in the subtree rooted
at the cut level node of the “smaller” cut (the node
iz marked with the cut level flag).

The scope information is used in the cut_public
procedure which is invoked when a cut to a node
in the public part of the tree is executed. Its
arguments are references to the parent of the cut
level node and to the sentry node. We describe
only actions taken in the public part of the branch,
because actions taken in the private part are the
same as duoring pure depth first execution. In
order to simplify the description, the algorithms
do not contain calls to the mutual exclusion
primitives (lock and unlock).

cut_public{e, b) =
it not b.parent = ¢ then
{b.alternatives_available = false
it exists b.right_sibling than
prune_trees(b.right_sibling)
if in_scope_of_cut{e, b) then
b.parent.alternatives_available = false
alse
cut_publicic, b.parent)}
alse
b.alternatives_available = false.

beool in_scope_of_cut(e, b) =
if b.parent.parent = ¢ than
return{false)
else if b.parent.cut_level and
not leftmost below b.parent then
{suspend unfil leftmost below b.parent
raturn{true)}
alsa
returniialse).
prune_{trees(n) =
prune_trea(n)
if exists n.right_sibling then
pruna_trees(n.right_sibling).

Figure 8. Algorithms for cut.

The invocation of prune_tree(n) in prune trees
interrupts all the workers active in a subtree
rooted at n, the subtree is removed and the
workers look for new tasks outside the pruned
part of the tree. A worker executing the test
leftmost below node invokes the leftmost
procedure from Figure 2 with the difference that
now the worker checks for left sibling nodes only
up to the node and does not mark nodes as
leftmost.

The scheme for cut can be further optimized. If
there is no available work to take, the worker
executing a cut to be suspended can proceed with
the rest of its branch, and the pruning is completed

839

by a scheduler at the time the suspended cut would
have been activated. Another possible
optimization is that the worker which ought to
suspend proceeds if there are no nodes to be
pruned.

The presented implementation of cut is optimal
for procedures where all clauses contain cuts
(except possibly the last), and is still correct, but
not optimal, for more general case when the
procedures contain more than one clause without
cut. For example consider Figure 4. The
procedure g contains two clauses without cut (the
second and the third), and if the first clause of ¢

fails before reaching the cut #3) (it cannot happen
in this -example but let us assume it does) the

worker executing the cut 12) in node E does not
have to wait for speculative? to fail before

pruning speculativel

There is also another inefficiency, when there
are no more branches with pending cuts, then
either the branches have failed or the cuts have
already been executed, and the corresponding
generated scope information is out of date and
should be ignored. For further details and the
optimized version of our implementation of cut
see (Hausman 1988).

7. Conclusions

The proposed implementation of ordinary side-
effects predicates and cut guarantees the same set
of results and in the same order, whether a
program is executed sequentially or in or-parallel.

The proposed algorithm for implementing cut
is a good compromise between implementation
complexity and the amount of speculative work
performed. We expect that its advantages, as
compared to the other schemes mentioned, will be
especially clear for large programs with deep and
bushy trees,

The overhead introduced by the algorithms
consists of the compile time overhead which
occurs only once for each program, and the run
time overhead which occurs only when side-effect
and cut predicates are executed,

The asynchronous versions of side-effect
predicates introduced here are useful as a
programming tool and can increase the efficiency
of or-parallel execution. It must be further
investigated what control primitives should be
added to the language (cavalier commit is one of
the alternatives), and how they will interact with
cut and all types of side-effects.

Bap

Acknowledgements

We wish to thank all colleagues within the
Gigalips Project and SICS for useful remarks and
discussions and thanks are due in particular to Per
Brand, Peter Szeredi and David H. D. Warren.

References

Khayri AM. Ali. A Method for Implementing
Cut in Parallel Execution of Prolog. In
Proceedings of the 1987 Symposium on Logic
Programming, pages 449-456, 1987

Ralph Butler, Terry Disz, Ewing Lusk, Robert
Olson, Ross Overbeek and Rick Stevens.
Scheduling Or-Parallelism: an Argonne
Perspective. To appear in Proceedings of the Fifth
International Logic Programming Conference
and Fifth Symposium on Logic Programming
1988, February 1988

Alan Calderwood. Aurora - the Manchester
Scheduler. May 1988. Internal Report, Gigalips
Project

Alan Calderwood. Cut, Commit and Side Effects

in Or-Parallel Prolog. Internal Report, Gigalips
Project/personal communication, 1988

Mats Carlsson. Implementation of Cut in Or-

Paraliel Prolog. Personal communication, April
1988

Mats Carlsson. Internals of Sicstus Prolog Version
0.6. November 1987. Internal Report, Gigalips
Project

Bogumil Hausman, Cut and Speculative Work in
Or-Parallel Prolog. SICS Research Report,
Swedish Institute of Computer Science, July 1988

Bogumil Hausman and Andrzej Ciepielewski.
Control Primitives and Side-Effects in Or-
FParallel Prolog. SICS Research Report, Swedish
Institute of Computer Science, 1988

Ewing Lusk, David H. D. Warren, Seif Haridi,
Ralph Butler, Alan Calderwood, Terrence Disz,
Robert Olson, Ross Overbeek, Rick Stevens, Peter
Szeredi, Per Brand, Mats Carlsson, Andrzej
Ciepielewski and Bogumil Hausman, The Aurora
Or-Parallel Frolog System. To appear in
Proceedings of International Conference on Fifth
Generation Computer Systems 1988, April 1988

Leon Sterling and Ehud Shapiro. The Art of
Prolog. pages 336-337, MIT Press, 1986

David H. D, Warren. The SRI Model for Or-
Parallel Execution of Prolog - Abstract Design
and Implementation Issue. In Proceedings of the
1987 Symposium on Logic Programming, pages
92-102, 1987

