PROCEEDINGS OF THE INTERNATIONAL CONFERENCE

OM FIFTH GENERATION COMPUTER SYSTEMS 1988,
edited by ICOT, © ICOT, 1988

819

THE AURORA OR-PARALLEL PROLOG SYSTEM

Ewing Lusk -David H. D. Warren Seif Haridi
Ralph Butler Alan Calderwood Per Brand
Terrence Disz Peter Szeredi! Mats Carlsson
Robert Olson Manchester Andrzej Ciepielewski
Ross Overbeek Bogumil Hausman
Rick Stevens SICS
Argonne”
ABSTRACT ming system coupled with suitable parallel hardware can

Aurora is a prototype or-parallel implementation of
the full Prolog language for shared-memory multipro-
cessors, developed as part of an informal research col-
laboration known as the “Gigalips Project”. It cur-
rently runs on Sequent and Encore machines. It has
been constructed by adapting Siestus Prolog, an exist-
ing, portable, state-of-the-art, sequential Prolog system.
The techniques for constructing a portable multiproces-
sor version follow these pioneered in a predécessor sys-
tem, ANL-WAM. The SRI model was adopted as the
means to extend the Sicstus Prolog engine for or-parallel
operation, We describe the design and main implemen-
tation features of the current Aurora system, and present
some preliminary experimental results. We conclude with
our plane for the continued development of the system
and an outline of future research directions.

1 INTRODUCTION

In the last few years, parallel computers have started
to emnerge commercially, and it seems likely that such ma-
chines will rapidly become the most cost-effective source
of computing power. However, developing parallel algo-
rithms is currently very difficult. This is a major obstacle
to the widespread acceptance of parallel computers.

Logic programming, because of the parallelism implicil
in the evaluation of logical expressions, in principle re-
lieves the programmer of the burden of managing paral-
lelism explicitly. Logic programming therefore offers the
potential to make parallel computers no harder to pro-
gram than sequential ones, and to allow software o be
migrated transparently between sequential and parallel
machines.

It only remains to determine whether a logic program-

*Mathernatics and Computer Science Division, Argonne Na-
tiemal Laboratory, Argonne, IL 60439, T.5.A.

T leave from SZKI, Donati o. 36-45, Budapest, Hungary

fDepartment of Computer Science, University of Manchester,
Manchester M123 0PL, UK. New afr Department of Computer
Seience, University of Bristol, Bristol B38 1TR, UK.

iSwedish Imstitute of Computer Science, Box 1263, 5-164 28
Kista, Sweaden

realise this potential. The Aurora system is a first step
towards this goal. Aurora is a prototype or-parallel
implementation of the full Prolog language for shared-
memory multiprocessors. It currently runs on Sequent
and Encore machines. It has been developed as patt
of an informal research collaboration known as the “Gi-
galips Project”.

The Aurora system has two purposes. Firstly, it is in-
tended to be a research tool for gaining understanding
of what is needed in a parallel logic programming sys-
tem. In particular, it is a vehicle for making concrete,
evaluating, and refining one (or more) parallel execution
models. The intention is to evaluate the models nol just
on the present hardware, but with a view to possible fu-
ture hardware (not necessarily based on shared physical
memoTy ). B

Secondly, Aurcra js intended to be a demonstration
system, that will enable experience to be gained of run-
ning large applications in parallel. For this purpose, it is
vital that the system should perform well on the present
hardware, and that it should be a complete and practical
system to use.

In order to support real applications efficiently and ele-
gantly, it is necessary to implement a logic programming
language that is at least as powerful and practical as Pro-
log. The simplest way to ensure this, and at the same
time to make it easy to port existing Prolog applications
and systems software, is to include full Prolog with its
standard semanties as a true subset of the language. This
we have taken some pains to achieve.

The bottom line for evaluating a parallel system is
whether it is truly competitive with the best sequential
systems. To achieve competitiveness, it is necessary to
make a parallel logic programming system with a single
processor execution speed as close as possible to state-
of-the-art sequential Prolog systems, while allowing mul-
tiple processors to exploit parallelism with the mimmum
of overhead. This has been our goal in Aurora.

To summarise the ehjectives towards which Aurora
iz addreszed, they are to obiain truly competitive per-
formance on real applications by transparently exploit-
ing parallelism in a logic programming language that in-
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cludes Prolog as a true subset.

The main purpose of this paper is to describe the issues
that must be confronted in or-parallel Proleg implemen-
tation and detail the decisions and compromises made
in Aurora. We include benchmark tests that point out
the sirengths and weaknesses of some of these decisions.
We conclude by describing some directions for further
research.

2 BACKGROUND

In this section we describe the setting in which Aurora
was developed and give a short history of the Gigalips
Project.

2.1 Sequential Prolog Implementations

Prolog implementation entered a new era when the
first compiler was introduced, for the DEC-10 [21]. The
speed of this implementation, and the portability and
availability of its descendant, C-Prolog, set a language
standard, now usually referred to as the “Edinburgh Pro-
log”. The DEC-10 compilation techniques led as well io
a standard implementation strategy, usually called the
WAM (Warren Abstract Machine) [22). In a WAM-
based implementation, Prolog source code is compiled
into the machine language of a stacl-based abstract ma-
chine. A portable emulator of this abstract machine
(typically written in C) yields a fast, portable Prolog sys-
tem, and a non-portable implementation of crucial parts
of the emulator can increase speed still further. A paral-

lel implementation of Prolog is achieved by parallelizing

this emulator,

There are now many high-quality commercial and non-
commercial Prolog systems based on the WAM. A par-
allel implementation can obtain considerable leverage by
utilizing an existing high-quality implementation as its
foundation. We use the Sicstus implementation [7], one
of the fastest portable implementations.

Using a fast implementation is important for twe rea-
sons. [irstly, the single most important factor determin-
ing the speed of a parallel version is the speed of the
underlying sequential implementation. Secondly, many
research issues related purely to multiprocessing only be-
come apparent in the presence of a fast sequential imple-
mentation. (Speedups are too easy to get when speed is
too low.)

2.2 Multiprocessors

It is only in the last two years that multiprocessors
have emerged from the computer science laboratories
to become viable commercial products marketed world-
wide. Startup companies like Sequent, Encore, and Al
liant have made shared-memory multiprocessers com-
monplace in industry and universities alike. They are
relatively inexpensive and provide a standard system en-

vironment (UNTXT*) thus making them extremely pop-
ular as general-purpose computation servers. A similar
revolution is happening with local-memory multiproces-
sors, sometimes called “multicomputers™, but these are
cutrently more specialized machines, despite their scala-
bility advantages.

What the new breed of machines does not provide is a
unified way of expressing and controlling parallelism. A
variety of compiler directives and libraries are offered hy
the vendors, and while they do allow the programmer to
write parallel programs for each machine, they provide
neither syntactic nor conceptual portability. A number
of researchers are developing tools to address these is-
sues, but at a relatively low level (roughly the same level
as the language they are embedded in, such as C or For-
tran). A goal of the Gigalips Project is to determine
whether it is feasible to propose logic PrOgramming as
the vehicle for exploiting parallelism on these machines.

2.3 ClruParalIelim

As is well known, there are two main kinds of paral-
lelism in logic programs, and-parallelism and or-parallel-
ism. The issues raised in attempting to exploit the two
kinds of parallelism are sufficiently different that most
research efforts are focussing primarily on one or the
other. Much early and current work has been directed to-
wards and-parallelism, particularly within the context of
“committed choice” languages (Parlog, Concurrent Pro-
log, Guarded Horn Clauses) [14, 20]. These languages ex-
ploit dependent and-parallelism, in which there may be
be dependencies between and-parallel goals. Other work

(L1, 18] has been directed towards the important spe-

vial case of independent and-parallelism, where and-
parallel goals can be executed completely independently,

The committed choice languages have been viewed pri-
marily as a means of expressing parallelism explicitly, by
modelling communicating processes. In contrast, one of
our main goals is to exploit parallelism implicitly, in a
way that need have little impact on the programmer.
This viewpoint has led us to take a rather different ap-
preach, and to focus in particular on or-parallelism.

There are several reasons for focussing on or-parallel-
ism as a first step. Briefly, in the short term, or-parallel-
istn seems easier and more productive te exploit trans-
parently than and-paralielism. However, none of these
reasons precludes integraling and-parallelism at a later
stage, and indeed this is our ultimate intention,

* Generality. It is relatively straightforward to ex-
ploit or-parallelismn without restricting the power
of our logic programming language. In particular,
we retain the ability we have in Prolog to generate
all solutions to a goal,

» Simplicity. It is possible to exploit or-parallelism
without requiring any extra programmer annota-
tion or complex compile-time analysis.



s Closeness to Prolog. It iz possible to exploit or-
paralielism with an execution model that is very
close to that of sequential Prolog. This means that
one can take full advantage of existing implemen-
tation technelogy to achieve a high absolute speed
per processor, and alse males it easier to preserve
the same language semantics.

+ Granulavity., Or-parallelism has the potential, at
least for a large class of Prolog programs, of defin-
ing large-grain parallelism. Roughly speaking, the
grain size of a parallel computation refers to the
amount of work that can be performed without in-
teraction with other pieces of work proceeding in
parallel. It is much easier to exploit parallelism
effectively when the granularity is large.

e Applications, Significant or-parallelism ocecurs
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the general avea of artificial intelligence. It mani-

fests itealf in anv kind of search process, whether it

be exercising the rules of an expert system, proving

a theorem, parsing a natural langnage sentence, or
answering a database query,

2.4 Issues in Or-Parallel Prolog Implementation
and Early Work

The main problem with implementing or-parallelism is
how to represent different bindings of the same variable
corresponding to different branches of the search space.
The challenge is to do this in such a way thal the over-
head of binding, unbinding and dereferencing variables
is kept te a minimum compared with fast sequential im-
plementations. Various or-parallel models have been pro-
posed |5!3.| 17, 26, 1, 10|, incorporating different binding
schemes,

An early binding scheme was that of the SRI model,
first suggested informally by Warren in 1983 and sub-
sequently refined [24]. The early form of this model
partly influenced Lusk and Owerbeek in the design of
the pioneering system, ANL-WAM [13], one of the first
or-parallel systems to be implemented. Howewver, they
ended up implementing an alternative, rather more com-
plex, binding schemne.

ANL-WAM was first implemented on the Denelcor
HEP and later ported to other shared-memory machines.
It demonstrated that good speedups could be obtained
on Prolog programs, but suffered from the fact that the
quality of its compiler and emulator were well behind
the state of the art. Also there were considerable over-
heads associated with the binding scheme and treatment
of parallel choicepaints. However, ANL-WAM provided
a concrete demonstration of what could be achieved, and
was a major inspiration behind the formation of the Gi-
galips Project. The experience of ANL-WARM, together
with that from earl:,r wark on ur—para.llcl"lam in Sweden
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{8, 9, 17], has led to the refined version of the SRI model
that has now been implemented in Aurora.

2.5 A Short History of the Gigalips Project

- Al the Third International Conference on Logic Pro-
gramming in London in the summer of 1986, a mecting
of representatives of several groups interested in various
aspects of parallelism in logic programming was held. 1t
was agreed that there would be a core project, open to
participation by anyone, and also that anyone whose re-
search interests could benefit by completion of the core
project was welcome to stay in close contact. Over the
next year the core project came to be the Aurora system
described in this paper, with Argonne National Labora-
tory, the University of Manchester, and the Swedish In-
stitute of Computer Science as the implementors. Begin-
ning in the spring of 1987, gatherings of the key partici-
pants were held approximately every three months to de-
cide an major issues and merge work that had been done
locally. Others who attended these gatherings were rep-
resentatives from ECRC, Imperial College, MCC, Stan-
ford and elsewhere. As a result, the Gigalips Project has
been not only 2 design and implementation effort but
also a medium for pursuing common research interests
concerning parallelism in logic programming,

3 DESIGN

Aurora is based on the SRI model, and most of the
design decizsions are as described in an earlior paper [24],
In this section, we summarize the main features of the
design, emphasising those aspects which are not covered
in the earlier paper.

3.1 The Basic SRI Model

In the SRI model, a group of workers® cooperate to
explore a Prolog search tree, starting at the root (the
topmost point). The tree is defined implicitly by the pro-
gram, and needs to be constructed explicitly {and even-
tually destroyed) during the course of the exploration.
Thus the first worker to enter a branch constructs it,
and the last worker to leave a branch destroys it. The
actions of constructing and destroying branches are con-
sidered to be the real work, and correspond to ordinary
resolution and backtracking in Prolog. When a worker
has finished one continuous piece of work, called a task,
it moves over the tree to take up ancther task. This pro-
cess is called task switching or scheduling, Workers try
to maximise the time they spend working and minimise
the time they spend scheduling. When a worker 1s work-
ing, it adopts a depib-ficst left-to-right search strategy
as in Prolog,

LA worker is an abstract processing agent, We uae this term in
order to leave unspecified the relationships with hardware proces-
sors and operating system proceszes. .
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The search tree is represented by data structures very
similar to those of 2 standard Prolog system such as the
WAM. Workers that have gone down the same branch
ghare data on that branch. As socon as data becomes
potentially shareable through creation of a choicepoint,
it may oot be modified. To circumvent this resbriction,
each worker has a private binding array, in which it
records conditional bindings, ie. hindings to wvari-
ables which have become shareable, The binding array
gives immediate access to the binding of a variable. Con-
ditienal bindings are also recorded chronologically in a
ghareable binding list called the trail (similar to that in
the WAM). Unconditional bindings are implemented as
in the WAM by updating the variable value cell; they do
not need to be vecorded in the trail or binding array.

Using the binding array and trail, the basic Prolog
operations of binding, unbinding, and dereferencing are
performed with very little overhead relative to sequential
execution {and remain fast, constant-time operations),
The binding array introduces a significant overhead only
when a worker switches tasks. The worker then haa to
update its binding array by deinstalling bindings as it
moves up the tree and installing bindings as it moves
down the tree, always keeping its binding array in step
with the trail.

The major advantage of the SR1 model, compared with
other models [23, 13, 17], i= that it imposes minimal over-
head on a worker while it is working.

3.2 Extending the WAM

We will now describe in general terms how the SRI
model has been implemented as an extension to the

WAM. An important design criterion has been to allow

any choicepoint to be a candidate for or-parallel execu-
tion.

The nodes of the search tree correspond to WAM choi-
cepoints, with a number of extra fields to enable workers
to move around the tree and to support scheduling zener-
ally. The extra fields include pointers to the node's par-
ent, first child node and next sibling nodes, and a lock.
Most of these exira fields do not need to be imtialized,
and can be ignored, until the node is made public, j.e
arcessible to other workers. This will be explained in
more detail shortly, Most other WAM data structures
are unchanged. However trail entries contain a value as
well as & variable address, environments acquire an ex-
tra field, and choicepoints acquire a further two fields to
support the binding array.

Each worker maintains a binding array to record its
conditional bindings. A value cell of a variable that is not
unconditionally bound contains an offset that identifies
the corresponding location in the binding array where
the value, if any, is to be found. When a variable is
initialised to unbeound, it is allocated the next free lo-
cation in the binding array. Having unbound variables
initialised to such offsets simplifies the testing of seniority

that is necessary when one variable is bound to another.

In our implementation, there is one worker per oper-
ating system process, and each process has a scparate
address space which may be only partially shared with
other processes. We take advantage of thia by locating
all binding arrays at a fixed address in unshared vir-
tual memory. This means that workers can address their
binding arrays directly rather than via a register, and
that binding array offsets in variable value cells can be
aciual addresses.

The binding array is divided into two parts: the local
binding array and the global binding array, corre-
sponding to variables in, respectively, the WAM (local)
stack and heap (or global stack). Each part of the bind-
ing array behaves as a stack growing and contracting in
unison with the corresponding WAM area. The worker
maintains a register to keep track of the top of the global
binding array. The need to access a similar register for
the local binding array iz avoided by performing most of
the allocation process at compile-time (ses later).

3.3 Memory Management

To support the or-parallel model, the WAM stacks
need to be generalised to “cactus stacks” mirroring the
shiape of the search tree.

To achieve this, each worker is allocated a segment
of virtual memory, divided into four physical stacks:
a node stack, an environment stack, a term stack,
and a trail. The first two correspond to the WAM (local)
stack unravelled into its two parts, and the second two
correspond to the WAM heap and trail respectively.

Each worker always allocates objects in its own physi-
eal stacks, but the objects themselves may be linked (ex-
plicitly or implicitly) back to objects in other workers’
stacks forming a logical stack,

The main difference from the WAM arises when a
worker needs to switch tasks. At a task'switch the worker
may need to preserve data at the base of its stacks for the
benefit of other workers. [n this case, data for the new
task will be allocated on the stacks after the old data. If
any of the old data later becomes unneeded, “holes™ will
appear in the stack. These holes will be tolerated until
reclaimed by an extension of the normal stack mecha-
nism. The holes correspond to ghost nodes, ie. nodes
which have been marked as logically discarded by the
last worker to need them, but which have not yet been
physically removed from memory. A ghost node and the
associated “holes” in the other stacks will be reclaimed
when the worker who created them finds the ghost node
at the top of its node stack. This occurs al task switch-
ing.

The present Aurora implementation does not perform
straightening or promotion of bindings, two possi-
ble memory management optimisalions mentioned in the
earlier paper on the SRI model [24].



3.4 Public and Private MNodes

We have already mentioned the distinction between
public and private nodes, It has the effect that the search
tree is divided. into two parts: an upper, public, part
accessible to all workers, and a lower, private, part each
branch of which is only accessible to the worker that is
creating it. This division has two purposes:

# It enables a worker working in the private part of
the tree to behave very much as a standard sequen-
tial engine, without being concerned about locking
or meintaining the extra data in the tree needed
for scheduling purposes,

# [t provides & mechanigm by which the granularity
of the exploited er-parallelism can be controlled.
By keeping work private, a worker can prevent its
tasks from becoming too fragmented.

We think of the worler as having two personas: a
scheduler and an engine, When the worker enters the
public part of the tree, it becomes a scheduler, responsi-
ble for the complexities of moving around the public part
of the tree and coordinating with other workers, When
the worker enters the private part of the tree, it becomes
an engine, responsible for executing work as fast as pos-
sible, Periodically, the engine pauses to perform various
scheduling functions, the chief one of which is Lo make its
topmost private node public if necessary. The frequency
with which nodes are allowed to be made public provides
the granularity control mentioned.

To maintdin the integrity of the public part of the tree,
it is necessary for a {busy) worker always to have a top-
most private node for the public nede above it to point
to. This private node has a special status, in that it must
have a lock and sibling and parent pointers, amomgst
other things. It is called a sentry node.

In the initial implementation of Aurora, a dummy
node was created when a worker was launched on a new
task to serve as the sentry node. This simplified the
adaptation of the existing engine, but resulted in the
search tree becoming cluttered with superfluous dummy
nodes.  We have now implemented the concept of an
embryonic node as originally described [24]. The em-
bryonic node is “feshed out” by the engine when it needs
to create a choicepoint, The implementation of embry-
onic nodes involved separating the fields of a node into
two parts, the scheduler part and the engine part, with
a pointer from the former to the latter. This separa-
tion was necessary because a WAM choicepoint is not
of a fixed size but varies according to the arity of the
predicate.

3.5 Scheduling

The function of the scheduler is to rapidly match idle
workers with available work. Principal sources of over-
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head that arise and need to be minimised include instal-
lation and deinstailation of bindings, lecking te control
access to shared parts of the search tree, and perform-
ing the bookkeeping necessary to make work publicly ac-
cessible. In addition, one wants the scheduler to prefer
“good” work, for example larger grain size computations
or less speculative ones. (Work is said to be speculative
if it may be pruped, i.e. become unnecessary, due to a
citl or cormmit).

What makes the scheduling problem interesting is that
these goals are not always consistent. For example, large-
grain work may become available far away in the tree,
while smaller-grain or speculative work is available near-
by. It is not clear what to do with idle workers when
there is (temporanly] no work available for them. They
can stay where they are or try to guess where work will
appear nexl and position themselves nearby. Movenent
to work is over unstable terrain, since the tree is con-
stantly being changed by other processes, and so & way
must be found to navigate through it with as little lock-
ing as possible. Scheduling is also complicated by cut,
comumit, and suspension (see below). Finally, a schedul-
ing algorithm that works well on a particular class of
programs is likely to perform poorly on a different class,
so that COMPTOIMIses are inherent.

Because scheduling is such an open research prob-
lem, we have experimented with a nember of alternative
schemes within Aurera. Three quite distinet schemes
have been implemented and will be described in & later
section.

3.6 Cut, Commit, Side Effects and Suspension

Aurora supports cut and cavalier commit, Cut has
a sermantics strictly compatible with sequential Prolog.
It prunes branches to the right of the cutting branch in
such & way that side effects (including other cuts) are
prevented from ocowrring on the pruned branches, Cav-
alier commit is a relaxation of cut thai prunes branches
both to the left and right of the cutting branch, and is not
guaranteed to prevent side effects from occurring on the
pruned branches, Cut selects the first branch through a
prunable region; commit selects any one branch through
a prunable region.

Cut is currently implemented by requiring it to sus-
pend until it is the leftmost branch within the subtree it
affects. This is the simplest but by no means the most
efficient approach. Cavalier commit is more straighifor-
ward to implement in that it doesn’t require any suspen-
sion mechanism.

Aurora also supports standard Prolog built-in predi-
cates including those which produce side effects. Calls to
such predicates are required to suspend until they are on
the leftmost branch of the entire tree. It is also intended
to implement “cavalier” versions of certain predicates,
which will not require any suspension [16].
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3.7 Other Language Issues

The curvent implementation supports some interim
program annotation to control parallelism. If the dee-
laration:

:- sequential <procedura>/<arity>.

is included in a source file, then the or-branches of
<procedure>/<arity> cannot be explored in parallel.
Thus a programmer currently identifies predicates whose
clauses must be executed sequentially. The compiler and
emulator are then able to mark choice points according
to whether or not they can be explored in parallel.

All the predicates in & file may be declared sequential
by placing a declaration:

i= sequential.

“at the head of the file. Thiz may be overridden for
individnal predicates by declaring them parallel {using
analogous syntax).

Sequential declarations were introduced as an interim
measure before cut and side effects were properly sup-
ported. At that time cut behaved 25 a true cut in se-
guential code but as a conunit in parallel code. Now
cut and side effects are eorrectly supported. Sequential
declarations are still available to the programmer s a
means to restrict the parallelism that is exploited. For
non-speculative work, there appears to be little point in
restricting the parallelism. For speculative work, how-
ever, the present schedulers do not have an adequate
strategy, and there is therefore currently scope for the
programmet to usefully restrict the parallelism [4).

4 IMPLEMENTATION

The implementation of Aurora is based on Sicstus Pro-
log combined with the or-parallel implementation frame-
work developed for ANL-WAM. The system is intended
to previde a framework within which various implemen-
tation ideas could be tried out. These twe factors have
led to a structure for Aurora consisting of a number of
identifiable components, each relatively independent of
the others. The main components are the engine and
scheduler.

A clean interface between the engine and the sched-
uler has been defined and implemented [5]. It defines
the services that the engine must provide to the sched-
uler and those that the scheduler provides to the engine.
This interface allows different engines or schedulers to be
inserted into the system with the minimum of effort. A
scheduler testhed, compatible with the interface, allows
different schedulers 1o be tested on simulated search trees
in isolation from the full system. This is an invaluable
aid to debugging scheduling code,

4.1 Prolog Engine

The foundation of Aurors is Siestus Prolog version 0.3
[7], & relatively complete Prolog system implemented in
C, which has been ported to a wide range of Unix ma-
chines. It comprises a compiler, emulator, and run-time
system. The most basic component is the emmlator or
engine. The Sicstus engine is a C implementation of the
WAM with certain extensions, including the ability to
delay goals (by wait declarations). Choicepoints and en-
vironments are kept in separate stacks, which turns out
to be essential for the SRI model. To produce a parallel
version of the engine supporting the SRI model, & num-
ber of changes had to be made. The total performance
degradation as a result of these changes has been found
to be less than 25% (see later).

4.1.1 Cactus Stack Maintenance

Each worker maintains the boundary between the pub-
lic and private sections of its node stack in a boundary
register which points to the youngest public node. This
governs what part of the node stack has to be kept for the
benefit of other workers. Fields of the youngest public
node define the boundaries for the other stacks and for
the binding arrays. When a task is started, the bound-
ary iz moved back over zero or more ghost nodes, thus
shrinking the publie section. The boundary register is
updated as the engine makes work public (see below). It
iz also used to detect on backiracking when te leave the
Engine,

4.1.2 Handling of Variable Bindings

Adapting the standard WAM for the SRI model bind-
ing scheme implies a number of changes. Unbound or
conditionally bound variables are represented as bind-
ing array references, i.e. as pointers into a binding
array, marked with a special tag. The corresponding
array location is initialised to UNBOUND. Other values in-
dicate that the variable has been bound. When access-
ing a variable or an argument of a structure, one has
Lo caler for the possibility of encountering a binding ar-
ray reference, in which case one has to indirect through
the binding array. Seniority tests (for variable-variable
bindings and for testing whether variable bindings need
to be trailed) are performed by comparing binding array
references, rather than variable addresses.

For the term stack, a new WAM register maintains
the next available binding areay reference, and is incre-
mented for each new variable. The situation is some-
what different for variables in the environment stack, as
explained in the following section. Choicepoints acquire
two new fields to record the tops of the binding arrays.



4.1.3 The Environment Stack

Allocating binding array slots for variables in the en-
vironment stack is performed at compile time, in con-
trast to the mechanism described above for the term
stack, This is done by storing in each environment a base
pointer into the local binding array, denoted CL(E), and
extending two WAM instructions with an extra argu.
menk:

call(P,n,])
Call procedure P with n permanent variables still
to be used, j out of these having been allocated
in the local binding array by put_variable. The
n and j operands are denoted EnvSize(I) and
VarCount (I}, respectively.

put_variable(Yn,4i,j)
Set A; to reference the new unbound variable ¥,
whose binding arvay reference is computed as j +
the base pointer stored in the environment.

The algorithm to compute A, the top of environment
stack, is extended to also compute LV, the top of local
binding array. If the current environment is younger than
the current cheicepoint, then A is E + EnvSize(CP) (as
usual}, and LV is CL(E) + VarCount{CP). Otherwise
LV is the top of local binding array field of B, and A
is the top of environment stack field of Bp. Here Bp is
a new WAM register, denoting the youngest choicepoint
in the worker's own node stack. It i= usnally different
from B {the current choicepoint] only when a task is
started; as soon as a choicepoint is created, B and Bp
get the same value. Whea adjusting B, Bp has to be
recomputed as well. However, this overhead was judged
worthwhile as it speeds up the computation of A which
occurs more frequently than updates of B.

The base pointer field CL{E)} also serves ag an indi-
cator of the age of an environment. This proves useful
when comparing ages of choicepoints and environments,
as address comparisons cannot be used, The compiler
ensures that the chain of base pointers form a strictly
increasing sequence for this comparison to work.

4.1.4 Cut and Cavalier Commit

After a cut or commit operation which resets the cur- -

rent choicepoint fo an earlier value &V, it becomes manda-
tory to tidy the portion of the trail which is younger than
N. Tidying means to reprocess all bindings which were
recorded earlier as conditional and make them uncondi-
tional where appropriate. If this is net done, there might
be garbage references in the trail to & portion of the en-
vironment stack which is being reused by tail recursion
optimisation. [t is a property of the SRI model that a
treiled item always refers to & variable whose value is
a binding array reference. This property might be vi-
clated if the trail is not tidied, with fatal effects when
attempting to reset non-existent variables,
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The cut/commit operation must also treat cutiing
within the private section and cutting into the public
section as bwo separale cases, and call a scheduler fune-
tion to perform the latter. In the latter case, the sched-
uler may refuse to perform the cut, in which case the
engine suspends as deseribed in the following section. [f
the scheduler does perform the cut it may order other
workers to abori their current fasks. '

To support suspension of cuts, the compiler provides
extra information about what temporary variables need
to be saved until the sispended task is resumed. This
extra information also encodes the distinction between a
cut and & cavalier commit.

4.1.5 A Suspension Mechanism

An ahility was added to suspend work until the current.
branch of the computation tree is the lefi-most one, ei-
ther globally or with respect to some ancestral node. The
global suspension test was added to all built-in side-effect
predicates. The local test is used for cuts (see above).

To suspend work, the engine pushes a node with a sin-
gle alternative denoting the current continuation, makes
the entire private section public, and returns control to
the scheduler. It is up to the scheduler to decide when
the suspended work may be resumed.

4.1.6 - Other Multiprocessing Issues

A mechanism was added to allow the engine to peri-
odically perform certain scheduling functions, notably to
make work public or to abort the current task. At ew-
ery procedure call, & counter controlling the granulavity
is decremented to determine whether to seek to perform
auch action.

Access to certain global data structures (symbaol ta-
bles, predicate databases etc.) had te be synchronised
by using locks. Currently each worker performs 1/ 0. 1/0
is probably best handled by & dedicated Unix process te
avoid mulliple accesses Lo buffers and control blocks,

Special suppert for concurrent executions of setef
has been provided. In the Aurora implementation of
setof (X,P,L), each invocation acquires its own save
area, where instances of X are saved. Each such save
area is iteelf serialised by a lock, to cater for parallelism
within P.

4.2 Schedulers

Scheduling issues are an active area of research within
the project, and the engine/scheduler interface allows
us to experiment with different alternatives. To date
three guite distinct schedulers have been implemented
{an early interim solution and two more recent and more
complete solutions). These are described below. Others

are being developed [3].
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The earhest scheduler was based on a strategy de-
scribed by SICS [17]. The implementation was modeled
loosely on ANL-WAM and featured & global scheduling
mechanism. That is, a single lock protected the data
structures necessary to determine what branch of the tree
an idle process would explore next. It was anticipated
that this global lock would represent a bottleneck as ma-

chines with more processors hecome available. Both of

the later schedulers use a more local scheme for assigning
available work to available workers.

The two current schedulers are very similar in their
level .of completeness, both handling cuf, commit and
sequential side effects predicates correctly. Moreover, al-
though they have rather different ways of implementing
their responsibilities, they do share a number of strategy
decisions. Both schedulers release work only from the
topmest node on a branch. This may be regarded as a
breadth-first strategy and is a simple attempt to max-

imize the size of tasks for their engines. Both schedulers

attemnpt to maintain one, live, shareable node on their
current branch, irrespective of whether any other worker
iz currently idle. If a cut or side effects predicate cannot
be executed due to its not being on the leftmost branch
in the appropriate subtree then both schedulers suspend
that work, fresing the worker to look for another task.
Neither scheduler currently concerns itself with specula-
tive work, rather all work is regarded as being equally
worthwhile,

4.2,1 The Manchester Scheduler

The aim of the Manchester scheduler [6] is to match
workers to available work as well as possible. When there
are workers idle, any new picce of shareable work is given
directly to the one judged Lo be closest in the search tree,
Conversely, when a worker finishes a task it attempts to
claim the nesrest piece of available weork; if none exists,
it becomes idle at its current node in the tres.

The matching mechanism relies upon each worker hav-
ing & unique number and there being a worker map in
each node indicating which workers are at or below the
node. There are, in addition, twe global arrays, both in-
dexed on werker number. One array indicates the work
each worker has available for sharing and its migration
coal, and the other indicates the status of each worler
and its migration cost if it is idle. If a worker is locking
for work, then by examining the bit map in its current
node it knows which work array entries need be exam-
ined and it can choose the one with the lowest migration
cost, If the subtree contains no shareable work then scan-
ning up the branch towards the root allows progressively
larger subirees Lo be considered. The worker status array
allews the use of an analogous procedure when determin-
ing the best idle worker to hand work to.

4.2.2 The Argonne Scheduler

The philosophy of the Argonne scheduler [4] is to allow
watrkers to make local decisions; very little use i3 made
of global date. Any worker that is in the public part of
the tree is posilioned al some particular node. In order
to find werk to do, it makes a decision about whether to
choose an alternative at its current node (if there is one)
or to move along an arc of the tree to a nearby node and
repeat the decision process, This local decision and one-
step-at-a-time movement leads to an easily modifiable
scheduling strategy.

Data to support this strategy is local. A bit in each
node indicates whether or not an unexplored alternative
exists at this node or below. These bits attract workers
from above, Warkers are “eager™ in the sense that as
soon as they become available they begin an active search
for work. Only when they believe they are optimally
positioned to take advantage of new work that might
appear do they become inactive. '

4.3 The Underlying Multiproceszing Techniques

Aurora iz based on the concept of a multiprocessor
machine with & shared wirtual address space. Although
a number of venders provide such machines, there is no
portable standard by which process creation and syn-
chronization of access to shared data structures are car-
ried out. Portability of the system is achieved by using
the approach described in [2] for writing portable paral-
lel programs in C. A macro package, with definitions of a
few basic operations customized for each multiprocessor,
establishes a uniferm syatax for creation of processes,
management of shared memory, and accessing locks. The
most commenly used technique for aveiding deadlock is a
standard allocation pattern for the locks in the nodes of
the tree, in which any process needing to lock two nodes
{during traversal, for example) must obtain the lock for
the upper node first.

4.4 Other Tools

Aurcra also encompasses a set of tools for understand-
ing the behavior of the system. They include a mecha-
nism for recording events in the scheduler, and & graph-
ical tracing package for replaying those events on a Sun
workstation to show pictorially how the workers explore
the search tree [12], Thie tool has been extremely nseful
for investigating the behavior of the different schedulers.
The Aurora system has also been instrumented Lo gather
and analyse various salient statistics (see below).

5 EXPERIMENTAL RESULTS

In Table 1, we present some performance data for Au-
rore. The benchmarks considered are B-queen=2, a naive
{generate and test) version of the 8 Queens problem from
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[TIMES amd SPEED COMPARISOKS for Aurora on Encore Multimax |

| | TIME(sac) | SPEEDUP/RELATIVE SPEED f
| | Aurora with N workers on Encore Quintue Sicstus Siestus |
‘|Example |1 | 2 4 8 16 Sun3/50 Sun3/50 Encore |
| mm e | [ e e e e |
18-quasns? -(A)| B3.77 | 1.98 3.89 7.53 12.4  4.85 1.99 1.28 |
lzalt-muet2 {A)| 2.26 | 2.i6 4.11 B8.02 14.2 4,25 2.01 1.20 |
|tina C4)] 40.84 | 1.37 3.B4¢ T.22 11.3 4. 28 1.88 1.26 I
ldbs *10 (M} T.24 | 1.88 3.38 5.82 6£.35 4.44 1.98 1.14 |
|paraes (M)l 11.35 | 1.87 3.42 5.28 ©5.83 4.89 2.29 1.26 |
Table 2:

[STATISTICS for Aurera with 8 workers on Sequent Symmetry, Manchester scheduler|

S

| | TOTAL |FER TASK I
| | Time I Back- W&¥ Public Hoves Move |
{Exempla |[({gac) Calls Tasks | Calls Nodes tracks binds nodes down binds|
i o] B e ] |
|2-quesns? | 6.46 1687207 377 | 443 331 488 202 1.2 5.1 0.9 |
|zalt-must2 | .28 13874 107 | 127 &0 44 28 0.7 i.9 o8 |
[tina | 5.00 181385 1328 | 121 46 5 | 79 1.6 2.6 0.8 |
|dbE *10 | 1.16 55450 1121 | 448 10 22 7 0.8 1.T 0.5 |
|paraab | 1.8 38085 1141 | 34 14 15 33 0.8 8.3 32 |

ECRC; salt-must2, a version of the Salt and Mustard
puzzle from Argonne (adapted to remeve meta-calls);
tina, & holiday planning program from ECRC; db5, the
database query part of & Chat-80 query®; parseb, the
natursl language parsing part of the same Chat-80 query.
We show times and speedups for Aurora running on an
Encore Multimax {the new Multimax 320 with APC)
with different numbers of workers, and, for comparison,
the relative speed of Quintus Prolog (on a Sun 3/50) and
Sicatus Prolog {on & Sun 3/50 and Encore Multimax).
Examples marked (A) were run with the Argonne sched-
uler and those marked (M) with the Manchester sched-
uler, the selection being determined by which scheduler
currently gives the betier speadup.

In Table 2 we present sample statistical data obtained
from running the same benchmarks on a profiling version
of Aurora with 8 workers on 2 Sequent Symmetry, The
data gathered is: the number of procedure calls {includ-
ing built-ing); the number of tasks {engine inmcatiuna};

#hich Europsan countries that contain a eity the popula-
tien of which is mere than | million and that border a counkry
in Asia contaiming e city the population of which 15 more than 3
million barder a country in Western Europe containing & city the
population of which 5 more than 1 millicn™

the number of choicepoints (nodes); the number of back-
tracks; the number of (conditicnal) bindings made by the
engine; the number of nodes made public; the number of
moves down {node by node) made by the scheduler; the
number of bindings installed during moves down. For
most items, we show the number of occurrences per task.
Nete that the number of procedure calls, nodes and back-
tracks is independent of the number of workers, bul the
other items {including bindings made by the engine) will
Vary.

The preliminary performance results that these ta-
bles illustrate are encouraging. On one processor, Au-
rora is only about 25% elower than Sicstus, the sequen-
tial svstem from which it is derived. Sicstus is itself
only two times slower than Quintus Prolog, one of the
fastest commercial systems. On 16 processors, the Au-
rora speedup (relative to its speed on ome processor)
is up to 14 on small pregrams with almost ideal or-
parallelism, and substantial speedups are also obtained
em larger pieces of code taken from real applications in
natural language parsing and database query precessing,
It should be emphasised that these results are prelimi-
nary. The apparently slighlly superlinear speedups on
salt-must2 are probably due simply te variability in
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the timing measurernents,

These results demaonstrate that the overhead intro-
duced by adapting a high performance Prolog engine for
the SILI model are bow, and that significant speedups can
be obtained on real examples. Both the timing data, and
statistics on the number of bindings installed on fask
switching versus the number of ordinary bindings made,
suggest that the overheads of updating binding arrays
on task switching are quite tolerable in practice. Lock-
ing and other overheads associated with moving arcund
the public part tree may be more of a problem, but this
issue needs further investigation. Hemarkably similar
speedups on these same examples have been obtained for
ECRC’s PEPSys model [19]. The fact that two quite dil-
ferent models should produce similar speedups suggests
that the speedups are limited mainly by the intrinsic
parallelism in the examples.

Asg regards the ultimate goal of obtaining truly com-
petitive bottom-line performance, Aurora is getting close
but cannot vet.be said to be an outright winner, We
take as & point of comparison Quintus Proleg on a Sun
3/50. This is a fast commercial Prolog system, running
on what is now only a moderately fast processor. On one
Sequent Symmetry processor, Aurora is about 4 times
slower, and on one processor of the {new) Encore ul-
timax, it is about 4.5 times slower. On 4 processors of
either machine, Aurora performance nearly equals Cuin-
tus on most examples with sufficient parallelism. On the
best examples with almost ideal or-parallelism, Aurora
iz about 2 to 3 times faster than Quintus, running on
a 16-processor Encore. Of course, most examples don’t
have ideal parallelisrn, and it is possible to obtain higher

“sequential Prolog perfermance on machines faster than
a Sun 3/50.

The main factor preventing Aurora from being truly
competitive is that the infant technology of multiproces-
sor machines is finding it hard to keep pace with the
dramatic yeerly increase in sequential processor speeds.
One processor on the latest Sequent or Encore machine
is still 1.5 to 2 times slower than a Sun 3/50, which has
now been surpassed by faster processors. The other fac-
tor is that the Aurora engine is about 2.75 times slower
than the Quintus engine, due primarily to its being a
portable implementation written in C, but reflecting also
the overheads of the SRI maodel.

However, one can expect multiprocessors to become n-
creasingly competitive both in abseclute processor speed
and price/performance. Then, with some tuning of the
Aurora engine, it shoubd certainly be pessible to achieve
iruly competitive performance.

6 CONCLUSION

Aurora is a prototype or-parallel implementation of
the full Prolog language for shared-memory multiproces-
sors. It currently runs on Sequent and Encore machines.

Tt has been constructed by adapting Sicstus Prolog, an
existing, portable, state-of-the-art, sequential Prolog sys-
tem developed at the Swedish Institute of Computer Sci-
ence. The technigues for constructing a portable multi-
processor version follow those pioneered by Argonne Na-
tional Laboratory in a predecessor system, ANL-WAM.
The SRI model, as developed and refined at Manchester
University, was adopted as the means fo generalise the
Sicstus Prolog engine for or-parallel operation.

Aurora has demonstrated the basic feasibility of the
SHI medel. A high absolute speed per processor is
aitainable, and significant speedups can be obiained
through parallelism on real examples. The overheads
of updating binding arrays on task switching seem quite
tolerable in practice,

The experience of implementing Aurora has demon-
strated that it is relatively easy to adapt a stale-of-the
art Prolog implementation, preserving the complete Pro-
log semantics. The main novel component is the sched-
uler code, which is responsible for.coordinating the activ-
ities of multiple processors locking for work in a Prolog
search tree. A clear and simple interface has been de-
fined between the scheduler and the rest of the system.
This makes it easy to experiment with alternative sched-
ulers (three quite different schedulers currently exist),
and should make it easier to apply the same paralleliza-
tion techniques to other existing Prolog systems.

Aurora supports the full Prolog language and is able
to run large Prolog applications and systems. Examples
include the Chat-80 natural language question answering
system, and also the Sicstus Prolog compiler and envi-
ronment (written in Prolog) which in fact forms part aof
Aurora system itself. The interesting question that iz
now open for exploration is to what extent real appli-
cations have enough exploitable parallelism pverall for
useful speedups to be oblainable®.

T FUTURE DIRECTIONS

Aurcra is a profotype system, and there are many
izgues that need further exploration, In particular,
more experimentation is needed with different scheduling
strategies and mechanisms,

A proposed new data structure, the “wavefront™ [3],
promises to make scheduling more efficient and more flex-
ible. The wavefront links all the active public nodes. The
basic difference from other schemes is that all the dy-
namically changing scheduling information is to be found
only in the wave-front, so that the rest of the public area
becomes essentially read-only.

The current schedulers are able to handle cut, commit
and side effects correctly. However, they require major
enhancement to handle speculative work efficiently. The

e should bear in mind the welkknown Amdahl effect that
the spesdup can be no better than N if aa litile as 1 part in N of
the computation is sequential,



present schedulers treat all work as being equally worth-
while, and make no allowance for how speculative a piece
of work may be. A more intelligent scheduling strategy
should be prepared to suspend work that has become
highly speculative if there is work available that is likely
to be more profitable. Thus there is a need for “velun-
tary” suspension in addition to the present "compulsery™
sUspEnsion.

The existing Aurora system allows researchers to ex-
periment with or-parallel logic programs. 'We intend to
make the system available to other research groups. We
expect to continue to add to its capabilities and speed,
as the measurement tools needed for tuning are added,
and to port the system Lo new shared-memory multipra-
cessors as they beeame available. )

The work done so far has inspired many directions
for future research. One major extension that we are
pursuing is the incorperation of and-paralleliam [15, 27].
The work has also inspired ideas for novel architectures
supporting shared virtual memory [23]. It is hoped that
Aurora can contribute to the general study of parallelism
in logic programming. langnages.
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