PROCEEDINGS OF THE INTERNATIONAL CONFERENCE
OM FIFTH GENMERATION COMPUTER SYSTEMS 1983,
edited by ICOT. © ICOT, 1988

A LOAD BALANCING MECHANISM FOR
LARGE SCALE MULTIPROCESSOR SYSTEMS
AND ITS IMPLEMENTATION

Yasutala Takedat

Hiroshi Nakashimaj
Takashi Chikayamal

Kanae Masudaf
Kazuo Taki}

T Mitsubishi Electric Corporation
5-1-1,0funa,amakura 247 Japan

1 ICOT Research Center
1-4-28 Mita,Minate-ku, Tokye 108 Japan

ABSTRACT

In large scale multi-processor systems, the distance be-
tween processors should be taken into account by software
to reduce the netwark traffic and the communication over-
head. A load balancing method based an P? (Processing
Power Plane) model is proposed to enable programmers to
specifly distributing computational load, keeping the local-
ity of the computation. In this method, a process is al-
located to & rectangle on a hypothetical processing power
plane. The size of the rectangle represents the processing
power given to the process, and the distance betwesn rect-
angles represents the communication cost between them.
This plane is divided to processors, and the region of the
processor may be dynamically reshaped to alleviate im-
balance on P?. Mechanism for realization of the method
‘has been implemented on the Mulli-P51{ version 2, which
15 a parallel processing system with 84 processing cle-
ments connected to form a 2-dimensional mesh network. A
packet transmission mechanism of the Mulii-PSI/version 2
is described, which realizes the process distribution along
with the balancing meihod.

1 INTRODUCTION

One of the most important research themes of
the Japanese Fifth Generation Computer project is
to build a parallel computer system PIM {Parallel In-
ference Machine) [Chikayama 1987, Sato et al. 1887]
for high performance knowledge information process-
ing. The concurrent logic programming langnage KL1
{Kernel Language Version 1), based on flat-GHC
[Ueda 1985], should be implemented on the PIM
[Ichiyoshi et al, 1987, Kimura et al. 1987]. The op-
erating system PIMOS (Parallel Inference Machine
Operating System), written in KL1, should be also
developed on it [Chikayama 1967].

In large scale parallel machines, such as PIM, it
is impeossible to connect all the processors in constant
overhead. Otherwise, any two processors must be con-
nected with the cost as high as connecting the most
distant two processors. On such machines, the soft-
ware must be aware of the communication locality o
achieve efficient computation.

On the other hand, load balancing is one of the
most important and difficult problem to efficiently
utilize the full processing power of large scale sys-
tems. In most numerical programs of high regularity,
computational load of each process may be estimated
beforehand and the load distribution may be given
precisely in the program. Howewver, in execution of
more complicated programs with irregularity, such as
knowledge processing systems, computational Ioad is
determined only at run time dep:ndmg en intermedi-
ate results of computation.

Dvamic load balancing can be achieved by redis-
tributing computation uniformly to the whole system.
If this redistribution should not take communication
locality into account, communication cost may in-
crease significantly, and, in some cactses, no dynamic
balancing ever may bring better result.

Ta solve this preblem, a load balancing method
is introduced, which utilizes the locality information
specified by the software. In this method, the soft-
ware specifies locality of computation on a hypothet-
ical plane where computational power is unifermly
distributed (called Processing Power Plane, or P?).
Dynamic load balancing is effected by changing how
this plane is subdivided by physical processors,

The Multi-PSI/version 2, a loosely coupled mul-
tiprocessor system, has been developed as a proto-
type for establishing parallel software research and
development envirenment [Taki 1986). The Multi-
P51/ version 2 is also used as an architectural evalua-
tion model of the PIM. Mechanism for the load bal-
ancing method based on P¥ has been implemented on
the MuluaPSI,Jvers'mn 2.

gaper is organized as follows: Section 2 de-
sr_nba: P® model and the load balancing method; Sec-
tions 3 describes the implementation of the load bal-
ancing method for the Multi-PSI/version 2; Section 4
gives the conclusion and future works.

2 LOAD BALANCING METHOD
2.1 Model of the Processing Hardware

To consider communication locality, some model

of processing hardware with the notion of communica-
tion cost is reguired. It is not desirable, however, that
the saftware should be aware of the physical stucture
of the multi-processor system, such as the number of
processors and inter-processor boundary. Therefore,
an abstract model, which has some notion of coun-
tiguous distance, iz required.

This notion of disiance must have some correspon-
dence with the physical distance in the hardware sys-
tem. This leads to a quite naive model which almost
directly corresponds to the physical structure of the
systemn —to consider the system to be a cube in an n-
dimensional Euclid space in which computing power
is uniformly distributed. In mmlti-PSI/version 2, this
n is 2 for arbitrarily extensible implementation, and
this 2-dimensional cube (or plane) is ealled the Pro-
cessing Power Plane, or P2, in short.

Any computation is located at some point in P2,
The distance of two computations is modeled by the
distance of two such points. This also is a linear ap-
proximation of the physical communication overhead.

2.2 Keeping Locality

To keep the locality of communication, the seft-
ware must be aware of the distance between two coms-
putations. This might be realized by the following
way.

e Programs should be organized so that processes
requiring more communication fork later. That
is, in the process tree structure, processes with
more communication have their common ances-
tor process in lower levels.

» The initial process is given the whole P2 for its
use.

» Fach process is given some sub-rectangle of the
rectangle given to its parent.

Using the above allocation mechanism, two processes
are always allocated inside the rectangle area allotted
to their latest common ancestor, which gives a certain
lower bound of locality.

Another probably feasible method of keeping lo-
cality is to allocate processes to where the required
data are. When, for example, the generator consists
of many processes scattered all around P?, and ecach
such leaf process generates some substructure of the
generated data, then the generated data (probably
with some tree-like structure, corresponding to the
generator processes’ tree structure) will also be scat-
tered all around P2. In such cases, the consumer pro-
cesses should be allocated using the same strategy as
the generator processes, so that they are allocated at
the same point on P® with the data generated by the
corresponding generator process.

2.3 Load Balancing on P3

For the logical balaneing of the computational

979

load, the programmer and/or the language process-
ing system are responsible. To achieve this, the pre-
grammer andfor the language processor should have
al least vague knowledge of how much computation
(relatively) is needed for 2 certain process.

One notation proposed for Prolog-like languages
is something like:

pi-—(2xq), —r

By the above specification, the subplane given to the
predicate p will be subdivided for ¢ and r as shown
in Figure ib. This specifies that the subgoal g should
be allotted twice as large subplane as the subgoal r.
Arrows before the body goals specifly which way
the subdivision should be when body goals are subdi-
vided again by their reduction in turn, By reductions

‘using clauses such as:

g i-+—(3x s), —t.

and
roi=—u, —,

rectangles for g and » are subdivided again as shown
in Figure lc.

Ii would be sometimes impessible to specify such
load balaticing information statically on the source
code. It might be possible, however, in certain kinds
of programs, fo guess the amount of computation re-
quired at runtime from the given data (sizes of ar-
gument structures, for example). In such cases, the
subdivision parameters can be computed depending
oft arguments.

2.4 Load Balancing on the Physical Level

P? must somehow be covered by the physical pro-
cessors. When the whole computation starts, all the
processors in the system should be responsible {or the
same amount of P? as in Figure 2a. However, as per-
fect load balancing on P? for complicated algorithms
seerns to be impossible, it is quite likely that some
area of P? becomes quite dense in computation and
some area quite sparse (Figure 2b).

This could be improved (at least partially) by
changing the size of the region in P? each processor is
responsible for. Processors responsible for dense area
should narrower their territories and those for sparse
areas should widen them (Figure 2c).

Assume that a process is allocated quite clese to
gome processor boundary and comrounicating
frequently with another process allocated on the op-
posite side of the boundary. Although these two pro-
cegses are almost adjacent on P?, communication cost
with such a process will be much higher than the cost
with other processes, not as close on P? but are allo-
cated incidentally on the same processor. Such pro-
cesses can be the bottleneck of the whole computa-
tien. To avoid such cages, some randomness might be
desired in mapping P? to physical processors.

Locality is reguired aleo in the reallocation. If
some centralized controller should be required for such

080

e = |. =1

t
14 it
: Tu |
=T —]
34 15
v s
e 113 —=

T

&. Initial state

b. After reducing p

c. After reducing ¢ and r

Figure 1: Load Balancing by Subdividing P?

a, Initial allecation

b. Load distribution

¢. Healloeation

Figure 2: Load Balancing by Reallocation of Processors to P

an adjustment, much communication might be re-
guired for exchanging load balancing information.
Thus, reallocation should be decided locally. A sim-
plest way is by relocating the corner point shared by
four adjacent processces, depending on the lsads of
the four processors. This method requires quite local
communication only, Computation will be distributed
to other proeessors in a dilfusion manner.

2.5 TRequirements for Algorithm Design

Tt is widely understood that algorithms good for
sequential processors may not be as good for parallel
processers. With the above processor model, what
is important is not only the intrinsic parallelism, but
also whether a certain algorithm has good nature in
the following viewpaoints.

Communication Locality: An algerithm is better
when processes require less global communica-
tion. Some measurement resembling the notion
of working set in sequential programming is re-
quired as an efficiency criterion.

Feasibility of Load Balancing: An algorithm is
better when it is easier to predict required

amount of computation for each subproblem.
Some new measurement is required here again. -

3 IMPLEMENTATION FOR
THE Multi-PSI/version 2

This section deseribes an implementation of the
load balancing method based on P? model for the
Multi-PSI/version 2. In the load balancing method,
throwing a goal is sending a packet to the processor
element (PE) responsible for the point on P? where
the goal is allocated. If the goal thrower PE knows
the complete mapping from P2 to PEs, it is quite easy
to send the packet to the destination. This, however,
requires global informatin of the mapping.

Therefore, we have developed the following;

(1) The packet transmission algorithm using only
local information, that is, the region of each PE
which relays the packet.

{2) The hardware mechanism to implement the al-
gorithm using table look-up.

| PEor [—H PE; H PEy
i | PEgy p— PEyy = PEqy
rgp [~ PEoo |+ PEi 4 PEro
LTS S N S, S

— channel
---- maintenance path

Figure 3: Multi-PSTf Version 2

Bresivigs

Cha

7T

kB |

CFPU
(PSI-IT)

CPU Internzl Bus

Figure 4: Connection Hardware

The following subsections describe the architec-
ture of the Multi-PSI/version 2, and the algorithm
and hardware mechanism for the goal throwing.

3.1 Multi-PSI/version 2 System

Figure 3 shows the block diagram of the Multi-
PSI/version 2 systemn. Up to 64 processing elements
(PE) are connected to form a 2-dimensional mesh
inter-processor network. The network carries commu-
nication packets, such as the messages for the inter-
processor unification and goal throwing. Each PE is
a modified PSI-II CPU [7] with 16 M word local main
memory. [ts microprogrammed emulator of the KL1
machine instruction set achieves high performance of
200 KRPS (Reduction per Second).

Figure 4 shows the block diagram of the connec-
tion hardware for one node of the network. It has
four bidirectional channels to connect adjacent four

PEs and two buffers to connect the CP1U. Packet data

081

s1 & = one_of (nearsst-edgas(r,pl);
a2 r = adjacent_region(r,e,R);

s3 whila not(include(p,z))

s4 { E = nearest_edges(r,pl;

&5 if momber(s,E) then:

86 { el = left_edges(e,x);

a¥ if menmbar(al,E):

353 then a=al;

a9 else e=right_sdges(e,r)};
810 else e = cne_of(E);

511 r = adjacent_region(r,e,H}};
812 exit;

Figure 5: Packet Transmission Algorithm

is transferred in 10-bit parallel including a parity bit.
The transmission rate is 5 Mbytes/sec for each direc-
tion. Several such channel pairs can be formed simul-
lanecusly except a transmission channel is required
from multiple receiving channels. Main components
of the connection hardware are as follows:

PT {Path Table) Each receiving. channel has its
own PT to determine the channel to transmit
a packet. Channel controller looks up this ta-
ble using the destination address of the packet,
and connects receiving and transmission chan-
nels according to the PT data. The detail of the
PT is described in section 3.4.

OB 0-3 (Output Buffer 0-3) Each output chan-
nel has a 48-byte FII'O output buffer to reduce
the possibility of network choking.

B (CPU Read Buffer) Connection hardware
stores an arriving packet in this buffer. The in-
terrupt is raised to the CPU to notice the packet

_arrival when the packet data is completely
stored..

WEB (CPU Write Buffer) CPU writes a packet
data into this buffer and the packet will be
transmitted when the packet data is completely
stored.

3.2 Algorithm of Packet Transmission

Figure 5 shows the algorithm fo transmit a packet
to its destination PE in general. In this figure, the
variables represent:

p: The destination point of the packet.

R : The set of the all regions of P?, each of which
corresponds to a PE. They may be arbitrary
polygons, No two regions have common area
and regions in R covers the whole P2,

r : The regions corresponding to the PEs which
relay the packet. Its initial value is the goal

982

thrower, and the final value is the destination
PE.

e : The edge of the region corresponding to the
channel through which the packet is transmit-
ted.

And functions return:

member(e,5) :
True if e is an element of the set 5.

one_of(S) :
Arbitrary element of the set 5.

inclode{p,r) :
True if the point p is included in the region r.

nearest_edges(r,p) :
Set of the edges of the region r, which are near-
est to the point p.

adjacent.raginu{r.a,it) '
The region in the set R, sharing the edge o of
the ragion .

left_ edge(e,r) :
The left neighbor edge of the edge & of the region
r,

right_edgele,r]) :
The right neighbor edge of the edge = of the
region r.

According to the algorithm, the distance between
the region r and the point p should not increase in
the packet transmission, and the packet transmission
path never loops. Therefore, if the number of regions
is finite, the algorithm must terminate, that is, the
packet must reach the destination FE. The proof of
the termination is given in the appendix.

The functions include(r,p) and nearest_sdges
(r.p} can be computed as follows;

{1} include(r,p) :
Let vy, v1,...,v, be the vertices of the region
r, ordered counterclockwise, If the region r is a
mﬁ‘.wex palygon, function include(r,p) is true
when:

0<"i<n, (wa—w)-(u—p) >0

where p - g is the inner product of p and ¢q. If
the region is a concave polygon, it can be parti-
tioned into convex polygons.

(2) nearast_sdges(r,p) :

Let d; be the distance from the edge T to
the point p, d; is calculated as follows;

if {(viga—wi)x(p—vipa))-[(viss —w) x(p=w)] < 0
then di? = min{(p = vig1)%, (p = u)?)
else di® = ((wgs — i) % (p—)"/ (vigs — w)?

Figure 6: Geometric Method

where p % g is the outer product of p and .
The result of nearest_edges{r,p) is oblained
through comparing distances of all the edges of
the region r. The comparisen of d; and d; is
performed by calenlating;

4 (wig1 =) (vj41-0;)" =i (w502 —9)* (vig1 —wi)?

Note that if the coordinates are represented in integer,
these functions can be evaluated using only integer
arithmetics.

3.3 Geometric Method of Packet
Transmission

In the algorithm shown in 3.2, the region of each
PE may be arbitrary polygon. In the actual imple-
mentation, however, the shape of the region is limited
to a convex tetragon to avoid complicated calcula-
tien. Moreover, a geometric method greatly reduces
the complexity to determine the transmission channel.

Figure 6 shows the geometric method to deter-
mine the transmission channel. In the figure, r is the
region of a PE, and its edges eg to e3 corresponds to
the network channels. The outside area of the region
r is subdivided into eight sub-areas ag to az which
share the edges with r, and &g 1 to bap which shares
vertices. The border of the sub-areas a; and b; ;1 is
the line perpendicular to the edge e;, which is drawn
from the vertex of the edge ¢; and e;1;. The packet
transmission rule, shown in Table 1, 1= as follows;

rule 1: If the destination point of the packet is in-
eluded in the region r, the packet has reached
the destination.

rule 2: Otherwise, if the destination peint is included
in the sub-area g, the packet is transmitted to
the channel corresponding to the edge e,

rule 3: Otherwise, if the destination point is included
in the sub-area b; ;4. , and neither of the edges ¢;

983

Table 1: Packet Transmission Rule

channel

recelving . sub-area l‘

(edge) T |dp | a1 | az |as | bax | g | Bos [Bag
&g CPU | x | &1 | &3 ey | eyz | Bys | €3 |
&1 CPU | eg | x | &2 £n £a gafa | Eajo ||

£ CPU Jeg [&g | %

&3 CPi.I ey | €1 | &2

€3
€3
es | egsy | €1 | €3 | eayo
X

fof1 | *if2 £ &g]

nor g;4y corresponds to the received chanunl, the
packet is transmitted to either of the channels
corcesponding to the edges e; or g;4,.

rule 4: Otherwise, the destination point is included
in the sub-areas b i1, and either of the edge
2 OF 31 corresponds to the received channel.
If the edge e; (or ey4q) corresponds to the re-
ceived channel, the packet is transmitted to the
channel corresponding to the edge e;p (or g).

Thiz rule is equivalent to the algorithm shown in Fig-
ure 3, because;

(1) rule-1 is associated with the step 53,

(2) rule-2 is associated with the step 810, becanse
g; is the unique element of the nearest.

edges(r,p), and it should not correspond to
the received channel.

{3) rule-3 is associated with the step s10.

{4) rule-4 is associated with the steps s8 and s2.

3.4 Hardware Support for the Packet

Transmission

In the Multi-PSI/version 2 system, the geometric
method to determine a packet transfer channel has
been implemented using the Path Table (PT} lockup.
The index of the PT is the coordinate of the desti-
nation point, which is represented by a pair of 7-bit
integers, Each entry of the PT contains the channel
number to which packets are transmitted, and is set
up according to the method shown in 3.3 when the re-
gion ia reshaped. Each receiving channel has its own
PT for parallel switching of the packets. It also en-
ables a packet to be transmitted to a different channel
depending on the receiving channel.

The resolution of the coordinate for the software
is not limited by the size of the PT. The hardware
coordinate can be the top seven bits of the soltware
coordinate which is represented by arbitrary precision
integer (for example, a pair of 32-bit integers). A goal
packel is sent to the PE responsible for the destina-
ticn point represented by the hardware coordinate.
‘Then, if the PE is not responsible for the point repre-
sented by the software coordinate, the packet is sent

to the PE responsible for, by evaluating the functions
shown in 3.2. In this case, the packet is not trans-
mitted to the destination PE automatically. Each PE
on the path evaluates the functions shown in 3.2, and
transmits the packet to one of the adjacent PEs, using
physical type packet (see below).

" The reduction of the coordinate resolution, shown
above, can be performed recursively. There are twoe-
level hardware coordinates, called fine and coarse.
The fine coordinate is represented by a pair of 7-bit
integers, and the coarse coordinate is the top somse
bits of the fine. The fine coordinate is used for the
area including the border of the responsible region,.
and the coarse coordinate for other areas. This mech-
anism reduces the time to update the contents of the
PT when regions are reshaped, because the number
of set up operation for the coarse ares is greatly less
than that for the fine area.

Figure 7 shows the mechanism of the PT lookup.
A packet is a sequence of the 9-bit byte data, the top
bit of which indicates the packet head or tail. The
first 2 bytes of the packet represent the destination.
The bit T of the second byte indicates the type of the
destination as follows;

Physical type: If the bit is off, the lowest 7 bits of
the first byte represent the destination PE num-
ber. This type is used for the messages except
those of goal throwing, such as inter-processor
unification messages.

Logical type: If the bit is on, the lowest T bits of
the first and second bytes represent the z and y
coordinates of the P, This type is used for the
goal throwing messages.

The PT address for the physical type packets is gen-
erated by concatenating the PE number and the con-
gtant 127. Thus, the P?® coordinate aystem for the
hardware contains 128 x 127 points.

Table 2 shows the format of the each entry of the
PT. The top bit indicates whether the coordinate is
coarse or fine. The PT is accessed with some lowest
bits of both = and y coordinates masked out. If the
top bit of the result indicates a coarse coordinate, the
packet is transmitted to the channel or stored in the
CPU buffer according to the lowest 2 bits of the re-
sult, If the top bit indicates a fine coordinate, the PT
is accessed again by all bits of # and y coordinates.

D84

Packet
& T @& 1]
1|0 F-coord. cuum:fﬁm
o= y=coord. = [=
a data v . 1 4
mask mask
!
[~
Path Tabls
127 for physical | {reserved)
126)(0,126) [227,126)
1|1] source PE
» 0 physical, 1! logical
S
(0 9 - Jiz. 9
a 83 B4 127

to switching nelwork ——

Figure T: Path Tabls

Goa;mu..,,___‘_ -
Cho
Fiwh{::::,%,7
zn""i:F

L

Cha {j{?

S’:hl

(-

O0:de Chy O :i0 OPU

Figure 8; Coarse and Fine Coordinates

Table 2: Path Table Entry

[Pz b b
0 x x [rough coordinate ||
1 EEE ﬁnﬂumdmate I
% 0 0 | to OPFU
x 0 1]to
¥ 1 0] toChy,
1 1 | to Chigg I

Thus, the PT has a nested structure as shown in Fig-
ure 8, In this figure, the coarse coordinates are two
bits shorter than thefine coordinates.

4 CONCLUSION AND
FUTURE WORKS

One of the unique features of the Multi-PSI/
version 2 system is the load balancing method using
P?*, The abstract computation power and eommuni-
cation cost enable programmers to specify their strat-
egy of the load distribution, not being aware of the
physical implementation of their system. The imbal-
ance of the load of the physical processors is corrected
dynamically using local information of the load. The
goal throwing mechanism supported by the hardware
makes it possible to transfer messapes automatically
to the destination represented by P® coordinates

without global information.

There are three problems remaining in this load
balancing method. The first problem is concerning to
the network deadlock. Since a packet may turn any
direction at network nodes, it is impossible to em-
ploy deadlock-free routing methods which limit the
turning direction. The deadlock-free network archi-
teeture with a packet buffer pool could have been em-
ployed [8], because the length of the longest path in
the network is finite. In foture, however, more effi-
cient method should be required, because the number
of the nodes will be significantly larger than 64,

The secomd problem is in packet tranamission
while the PT is being updated. The algorithm of the
goal throwing is based on the fact that adjacent two
PEs identically evaluate the relation between the des-
tination point and the shared edge. If a packet is
transmitted while the PT is updated, the evaluation
of the shared edge may be different, This problem can
be solved by stopping all packet transmission during
update, but the solution may degrade the network
performance.

The third problem is the measurement of the load.
What the word “Joad” means is not quite clear. One
possible method might be to give priority value to
cach process and consider the sum of such values of
processes executed in unit fime.

In addition to finding efficient solutions to the
above problems, the following items must be studied.

Static Locality Analysis: Development of algo-

rithms for automatically extracting locality in-
formation from programs where no explicit in-
formation is given. As cache or virtual memory
systems does work with most of the programs
which are written without even considering the
existence of them, this study might be fruitful.

Parallel Algorithms: Development of parallel algo-
rithms, considering communication locality and
load balancing feasibility. This will probably
lead to a set of algorithms quite different from
sequential algorithms widely used currently.
They might also be guite different from alge-
rithms for parallel execution with the equal-
distance assumption.

Acknowledgments
We would like to thank Dr. Shunichi Uchida, chief
of the ICOT fourth laboratory, and the researchers
in his laboratory for their valuable suggestions. The
great efforts of the engineers at Mitsubishi Electric
Corp. and Ooi Electric Co. realized our ideas info an
actual machine.

References

[1] T. Chikeyama. Parallel Inference System Hesearches
in the FGOS Project. In Proceeding of 4th Symposium
on Logic Programming, 1957,

085

[2] M. Sato et al. KL1 Execction Model for PIM Cluster
with Shared Memory. In Proceeding of 4th Inferna-
tional Conference on Logic Programming, 1987,

[3] K. Ueda. Guarded Horn Clauses. TR-103, ICOT,
1985.

[4] H. Ichiyoshi et al. & Distributed Implementation of
Flat GHC on the Multi-PSL In Proceeding of 4th In-
ternational Conference on Logic Programming, 1987,

[5] Y. Kimura et al. An Abstract KL1 Machine and its
Instruction Set. In Procesding of Jth Symposium on
Lagic Programming, 1987,

[6] K. Taki. The parallel software research and devel-
opment tool: Multi-P3I system. In Proceeding of
France-Japan Artificial [nielligence and Computer
Science Symposium 86,

[7] H. Nakashima et al. Hardware Architecture of the
" Sequential Inference Machine: PSI-IL In Proceeding
of 4th Symposium on Logic Programming, 1987,

[8] E. Raubold et al. A Method of Deadlock-Free Re-
source Allocation and Flow Control in Packet Net-
works. In Preceeding of ICCC 1976,

Appendix

A proof of the termination of the algorithm shown in
Figure 5 is given. The principle of the proof is ta shew
that there should net be the same region in the sequence
of the regions ro, 71,72, ..., where

{1} rp is the initial value of the variable r.
(2} r1,72,... are the values of r asigned by the step a11,
That is,
Yis¥iz0, rigr
Lemma 1: Let &, 81, 22,... be the sequence of the edges
determined by the steps 21,28,59 and 210,
Yi>0, dle:,p)=d(r,p),

where d{e;,p) is distance from the edge e; to the
point p, and d{r;, p) is distance from-the region r;
to point p.

Eroof

(1) Hi=0,itis clear that

d(eo, p) = d(ro,),
because eg is the nearest edge of the region ro.
(2) Suppose d(ex, p) = d{re, p),
(a) If diex, p) # d(resr,p),
d(ees1,p) = d(ras1,0),

because the edge ex4+, is the nearest edge
of the region riy determined by the step
s10.

086

(b} If diex,p) = d{rys1.p), the edge e in-
cludes the nearest point p. in region ri4i
to the point p. If p, iz not the vertex on
£y, shared by the region ri and reyy, a
line | from p, to p passes through ry or re-
gion fipq. If the line | passes ry (or reqy),
i (OF rig1) must have a edge nearer than
&, Therefore, the nearest point of ryg,
to the point p is one of the vertices of ey,
and one of the adjacent edges of & shares
the nearest point. It is clear the adjacent
edge sharing the nearest point is the near-
est edge of re, and the edge iz the value
assigned to e by the steps 88 or a9, Thus,

dieet1,p) = d{rpeq, p)-

Lemma 2:
Yiz0, diri,p) = d{rita,).
Proof: Simce the edge ¢; is shared by r; and riy;,
d(ei,p) = d{riss, p)
Therefore, by Lemma 1,
diri, p) = d{ei, p) = d{risa, p).

Lemma 3: If
YisYiz0, d(ri,p) =d(rin,p) = ... = d(r;,p),

the sequence of the regions ri, ris1,. .., ryj shares the
vertex v, and

d{v,p) = d{ri, p).
Proaf :

ri{l!i, P] = d[ﬂi?] ="ﬁ.fJ'-P}l

and by (2}B} of the proof of
Lemma 1, r; and r; shares the vertex v of
e, and

div, p) = dies, 7} = d{re, p).
(2) Hj=142, by Lemma 1,
d(ri,p) = d{ei, p) = d(ris1,p)
= d(giz1,p) = dirigs,p).
Therefore, &; is a member of the set nearest.

edgea(ri,1,7). By (2)(b) of the proof of
emma 1, e; and e;p; shares the vertex v,

and
d(e, p) = d(e;, p) = d{ri, p).

(3) Suppose the lemma holds when 7 < i+ &, but
it does not when j =14 k4 1. In this case,
Tiyk—2, Titk—1 and ripe shares the vertex »,
Figh=1, Tigh and rippsr shares the vertex o,
and v # v'. This causes the inconsistency
that v and o' are different vertices of the edge
Ciphe—y, AN

dl:l:ﬂ- =1y P] = d{"r P:l = d{"":l F]‘

Lemma 4: If .
0" d <74, ri=ryg,
Tiy Tidkly=0a,Tj shates the vertex v, and » is included
in {and not on the boarder of) the region R;;, where
Ry is the union of vy, rigy, ..., 7.
Proof: By Lemma 2, ’

d(ri,p) 2 drigs,) 2 d(ripa,p) 2 ... 2 dirj,p),

and r; = rj. Thus,

d(ri,p) = d(rig1,p) = dlriga, p) = ... = d{rj, p),
and ri,Tit1,...,7j shares the vertex » (Lemma 3).
Suppose the vertex v is on the border of £i;. Let a
be the edge of Ri; including », and rx be the region
including e. Since ¢ is a edge of the region Rij,
€ # ¢x—1 and ¢ # e;. By Lemma 3, e4—; and
ex shares the vertex v, and by the steps 25 to al0,
k-1 7 k. This causes the inconsistency that three
edges of the region vy share the vertex v,

Lemma 5:
isYizn, nidn
Proof: Suppose that there are i and j which satisfy
0<i<y, ri=rj

By Lemma 4, the vertex v, shared by 7i, fig1,..., 74,
is incleded in the region Ri;. And by Lemma 3,

d{ll'.P:l = d{ri, p) = dlrig1,p) =...

If pis not included in Rij, the line from p to v passes
a region vy, and d{v,p) > d{ry,p). This canses the
incoststency that v is not the nearest point of rx to
the point p. And p is never included in Ri;, by the
step a3,

= d(r;, p)-

