PROCEEDINGS OF THE INTERNATIONAL CONFERENCE
ON FIFTH GENERATION COMPUTER SYSTEMS 198E,
edited by ICOT. @ ICOT, 1938

PARALLELISM IN THE PESA I MULTIPROCESSOR

Franz Schreiner
Gerhard Zimmermann
Universitit Kaiserslautern, SFB 124
6750 Kaiserslautern, Postfach 3049
Federal Republic of Germany

ABSTRACT

Many multiprocessors work inefficiently, because the
individual processing elements are idle most of the time and
the exploitation of parallelism on high level is restricted by
synchronization mechanisms, while low level parallelism is
not worth a dismibution:. The PESA 1 multiprecessor which is
designed for the execution of produoction systems, avoids
these disadvantages by the projection of a data flow based
graph on a folded pipeline of parallel processors. The pipeline
siages are interconmected by 3 bus system. Several
experiments about details of implementation have been
performed. This paper describes the evaloadon of the
simulation results which are used to enhance the performance
and optimize the confi ion of the PESA-T architecture.
Synchronization s 1o be peformed oaly in s few cases ta

ne zation has to y in a few cases that
occur rarely during execution. Furthermore, the amount of
otilizable parallelism is increased. Thus the number of
processors performing nonredundant computation can be
extended,

1 INTRODUCTION

The PESA-T architecture (Schreiner and Zimmermann 87)

is based on the production system language OPS35 (Forgy 81,
Brownston et al. 85) which is supported by the RETE pattarn
matching algorithm (For, rgy 82). A detailed simulation of the
matching unit of the PESA-I showed the ability to
fasten up the OP35 execution by & large factor. This gain was
reached by parallel computing on processors with a special
instruction set. But we also reco that the RETE
algorithm is not optimal for onr architecture, because it is
tailored for a single processor architecture, We describe the
main changes to the algorithm in order to enable more paraltel
computation. Another impediment of our implementation are
the Mot Nodes. They were executed sequentially and therefore
caused congestions inside the architecture. By changing the
synchronization concept we could solve this problem too.
These i vements are located in the Match Phase of the
OPS5 execution which takes most of the computation, The
two other phas:s could :}m be nmflmamd 'I'l‘h;-’f can be
performed to match, Their inplemention
mnsfm the FgSA 1 from a coprocessor to an independent

2 OP55 AND THE RETE ALGORITHM

nly OPS5 programming primitives are disjunctules,

cal]ad uctions. They consist of the left hand side (LHS), a

condition part and the right hand side (RHS) which is an
unconditioned action part. The facts called Working Mem
Elements (WME) are stored in the Working Memory. E:g
fact iz a database assertion comprising a time tag representing
the order of creation and a number of attributes dependent on
the class of the WME, The LHS is a conjunction of at least one
&mnw.::md zeroor more negated condition elements (CE). A
is also assigned to a class and corresponds to all WMES of
the same class. A CE can contain pairs of anributes and
predicates with constants and variables, A WME satisfies a
CE if its atiributes fulfill all predicates related to constanis.
These kind of tests are called constant tests. If a variable
aecurs in a CE, it is bound to the atiribute of the WME,
Identical variables must have the same values inside the LHS
of the same production, Therefore these variables occuring in
different CEs of the same LHS result in further tests, called

intertests, A uction is satisfed if for every positive CE at
lzast one exists that matches and no WHE matches a
negated CE.

During one execution cycle of the prodvecton system, all
productions with 4 satisfied LHS are instantiated by the time
tags of thematching WME and form the conflict set (CS). This
part is called match phase and needs most of the execution
eycle. The next step is the selection of one entry of the conflict
set by a strategy that uses actuality of time tags and number of
condition elements as selection criterion. In some derived
OPS execution models (Guptaetal, 86, Dshisanwo and Dasie-
wicz B7) more than one entry of the CS can be selected. The
last step of the cycle fires” the selected producdon by
executing its RHS. The actions of the RHS (make, remowve,
modify) will create, delete or change elements of the working
memoary. The executability of rules may have changed.

- Therefore a new match ;;ehaseslms the next execution cycle,

called recognize act It stops when the CS is empty.

The main disadvantage of production system execution is
the expensive match phase caused by the intertests. A single
intertest between two conditon elements of different classes
with 100 WME each would resultin 10000 comparisons to be
performed in esch execution cycle. Because production
systems contain many intertests, a brute force match phase
would prohibit an gcceprable production sysiem
interpretation,

'Ikh]igRE.‘lEpatm Pn;;jmhng algorithm |;m:pl-:ut:n‘.:I'u:- falrétﬂia:
memory in production systems changes very slowly
Multiple tests between the same data in different cycles are
avoided by the introduction of a state which saves the resultof
intermediate tests (figure 1), The sequence of tests inside a
production is fixed. If all constant tests of a CE are satisfied,

the WME is stored in ane-memory node. The firstintertesthas
two a-memory nodes atth:inrm and stores the resultsin a b-
memory node as outpot, The following intertests have one b-
memory node and one a-memory node at the input. The two
input memory nodes associated with the same interiest are
called partner nodes according to that test. The test and the
memory nodes form a discrimination network, called RETE
praph which is compiled from the LHS of all productions and
interpreted by the match phase. The state of the match phase
carresponding to the current working memory is stored, so
that only the few changes to the working memory have o be
considered for updating the state. The output of the RETE
graph are the changes to the CS which has to be stored too. The
results to be stored in & memeory node inside the RETE graph
consist of a concatenation of the matching WMEs. Atributs
not needed for further computation can be stripped off to
reduce memory space. If different CEs have tests in common
these test nodes are shared. If the tests are totally equal, the
following memory node can be shared too. This saves
computation time and memory space. The shared nodes in
figure | are marked.

Ifin figure 1 a token passes the constant test T1 it becomes
activating token of the intertests T3, T7 and T9. It also be-
comes resident token of memory node 51. The intertest T3 is

915

performed between the activating token and all resident tok-
ens of the parmer node 52, 82 may contain several residents,
therefore zero or more positive results may activate T6 and be-
come residents of 35.

I PARALLELISM IN RETE

Although RETE reduces the number of tests during an
execution cycle significantly, the match phase takes a
00% of the run time on & sequential computer. Therefore, we
started introducing parallelism by taking advantage of
detziled performance measorements of large production
systems described by Forgy and Gupia 86. The constant tesis
are harmless, the main problem are the intertests, Generally
there are three sources of parallelizm:

{(P1) Activations of different tesmodes
(P2) Activations of the same testnode by different tokens
. (P3) Comparison of the activating token with the resident
partners.

Several other projects (Guptaetal. 86, Oshisanwo and Da-
siewicz 87, Stolfo 87, Miyazaki et al. 87) concentrate on (P1)
and (P2}, while we try to utilize all sources. The reason is the

local behavior ufegmducu‘m sysiems, A
firing production effects few changes to the

B memory nodes
longest path: 6 tests

Erogram
(p extendmaltglexor

jon (P crstemubtiplenos

-

{removs 1)
(modily 2 Adestin new)

nddfdeleie preduction creatermuliplexor

Figure 1 : RETE graph

larger arcs denote parts of the loagest path

{link: Io_crente Aspurce <h Adestin <rs)

(module *fonction muliplexor Snams <o Sinp <x)
(mzdils Afunction <>multplexor Anames <)

{link Atype datalink Ssouree <= Adeslin <r>)

"~ (modity 1 ype datalink Adustin <x>)
) (modiy 2 4inp (compuis(=> +11))

praducto " .
by n_create “source <hix Adestin <)
sl reoates <o At <11
{link *type datalink *source<n> “dlestin <r>)
Afuncdon A Y
e S e o)
{module #function <> maltpleaer “name <13)

{malke module *forction melbpleror *name pew)

MNOT '
ot -m&;:;wzﬁf ;,::f:ﬁﬁmmm%a

Wi, therefore only a small percentage of
different tests is activated. The parallelism
of (P1)islow. On the other hand the memory
nodes typically contain about 30 residents,
so that a single activation (P3) results in the
comparison of many tokens. This is the
essential part of the inherent parallelism
present in OPSS. In order to utilize it, we
digtribu mﬁ:]m mnmnmﬂfﬂiémmemuﬂh nodes
o p PrOCESS0TS, PrOCEssor
containg all test nodes of the same depth in
the RETE graph and & copy of the input
onl f mmmwﬁm mpr&“fd n
only a part of the entrics. If we e an
cqual distribution of enries tw those
processors, the filling of their local memory
nodes is divided by the nomber m of
processors (m < n). Only (n/m) intertests are
performed sequentally in every processor.

The processors form the stage of a
pipeline which is connected via a bus to the
next stage that containg the following
tesinodes of the RETE graph, Pipelining
effects can be observed when positive
results activate a chain in the graph. The
result of a test may be several tokens. They
are broadeast to the next stage. Each oken is
stored by one processor and the according
tests are performed in all processors. To se-
lect the processor that has to store the data,
an address has to be adjoined. The message
contains also a sign and a starting point (tag)
of the following testnode, This data format
is called token, after storing it in a mem
node address, tag and sign are siripped of.
bus access can be interpreted as a m-fold
procedure call, where m is the number of
processors on the following stage with a no-
nempry partner node,

9216

The expression “pipeling” may be misleading, The
processors store data that nt a state, A single input
token can produce an avalanche of tokens inside the
plpehncnrma}rnm affect anything in this execution cycle.

Therefore an external scheduling like in standard pipelines
is impossible,

4 THE MATCH PIPELINE

Figure 2 shows the PESA-I architecture. Most of the
processing elements (PEs) are assigned to the match
pipeline. The number of stages does not restrict the number
of condition elements because the pipeline is folded back
via bus 0. The depicted configuration is typical but not
definitive. The configuration will be choosen as late as
possible, The FE is micropro, with a special*
instruction set. Functionally, the PE can be divided in three
synchronous automata or agencies that communicate via
comman buffers and flags (figure 3).

The bus read agency (RBA) reads data from the bus and
storesitin thereadbuffer. The dataready flag signals thatthe
bus carries valid data. If the mudhuffer of a SBA is filled, the
(h}l:f;; blocked by the receiverbusy flag. The match agency

performs the storing and testing, It has separate program

and local tokenmemories of 64K words esch. The
tokenmemory contains the memory nodes of the RETE graph.
Afiter a positive test, the result is written into the sendbuffer,

The bns send agency (5BA) sends these data to the next stage if

Tﬁnmnsmrm access the busand if no receiverbusy flagis

e MAs and SBAs of one stage are connected to manage
mhmmzannn (MA) and bus write access (SBA). There are
two ways 2 MA can be blocked in presence of valid datain the
er: In both cases the own writebuffer is filled and the
bcusmn t be accessed because first there is no permission or
second the bus is blocked by a filled readbuffer in the next
stage. The special instruction sets for match, act and conflict

Figiwe 3: The agencles of the PESA-] PE

resolution are different but can be microprogrammed on the
samc PE-type. In Maich and Conflict Resolution the only
arithmetic operation is a comparison, therefore the PE does
not need complex arithmetical . In Act the
arithmetical operations are performed by a commercial
COPTOCESSOT,

The results quoted in the following derive from a two stage
simulator. The first stage simulates the FE, the input
parameters are the delays for basic operations and the time for
the different memory accesses. The output consists of the
runtime for the microinstructions which are used as input of
the stage two simulator. The other input parameters for the
second ool are buffersizes, the configuration of the match
pipeline (number of PEs per pipeline
stage) and the buscycle. The main
cutpuots are statistics about bus accesses
and conflicts, idle times of individual
PEs, fillings of memory nodes and
buffers and number and tme of
instruction usages.

Although the contents of memory nodes
is distributed over the whole stage, the
assignment of iokens to processor-
memories i uwnique and can be
reconstmected. PEs storing results are
selected by a sum of tags and time tags
that cin be reconstructed. This leads to
an equal distribution of tokens to the
memories of 2l stages because the time

WM : Working Memary
A'&'I"PEpurhlmzACTMn

GFP : General

SHBdd=

Ir m = =
IA0 : [0 Proses
Mpou
CSA®*C5* : Spare Processor and Memary
A =

(8 PEs intow [, 8 PEs in row 1, & FEs in row 2, 4 FEa in row 3, 4 FEs in row 4 of pipeline)
Figure 2! PESA-I configuration with an & 8 § 4 4 match pipeline

tags are equally distributed, The fact that
the same token uses the same pathis very
important for fault detection and for

unnece synchronization,
because the same tokens with different
signs cannot pass each other. Using the
unchanged RETE algorithm only one
kind of synchronization would be
needed for the reason of detecting the
end of the computation in the match

phase.

Ny

(CLASS2 A1 <)
(CLASSI AL <)
(CLASS4 A <re>) —> RHS

Figure 4: Cross Product Effects

ML) = MR
¥
add/delets

Thereby the longest path
(figure 1) is important Our
compiler arranges the tests o a
tree which is as balanced as
possible. Forced balancing by
the introduction of new ﬁom
operations is avoided. Figure 5
shows the modified RETE
graph of figure 1. The
balancing changes the sharing
possibilities, we are curmrently
testing the impacts. In this
example the amount of sharing
s reduced our
implementaticn, but it could
also increase.

A third problem is that beside
the store/delete operation there

5 CHANGES TORETE

The fixed sequence of tests causes two effects reported by
Gupta B6. First, early join operatons could evoke data
we:haad[msprudum). Replacing the fixed sequence
of tests by a relative order (figure 4) softens the impacts of join
operations. They are executed aslate as possible. The number
of partners will be redeced by the previous tests,

The second effect is the activation of long chains of tests,

= destin

(L
ADD/DELETE

PRODUCTION
4 constant wsLs
; inter 1eges
mMemory nodes
\@\ longest path: 5 tests
L& |
NOT
source{L{R{L{RY))) = source
destinfL{RL{R))}) = destin
L
ADD/DELETE
Figure 5; baleoced RETE graph FRODUCTION

mame(L) =
source(R(LEN)

is nodifference in the treatment

of tokens with positive and
negative sign, For 2 negative token all intertests and
concatenations have to be performed - resulting in an
unacceptable run tdme. This time can be reduced by a factor
between 2 and 10. In our approach we perform only the
constant tests on negative tokens. As described by Forgy and
Gupta 83, abour 85% of the tokens fail in the constant tests,
because most of them are momally exclosiv, If a constant test
has a positive result, all nodes on the chain following
this test are affected. Tokens within these memory nodes
containing the time tag are deleted, no further testis performed.
Thisoperation is supported by our distribution concept and can
be performed parnﬁel in one stage and neatly parallel in the
whole pipeline, because the token containing the time tag can
be transported to the next stage before the delete operation
starts. The affected production nodes of the CS can be looked
up atthe same time with the exception of productions including
negated CEs. These will be discussed later. In contrast to the
old delete operation, tailored for a sequential machine, the new
solution 1% nearly independent from the resolt of intertests,
therefore the gain factor differs.

The negative changes to the conflict set do not have to be
computed by the pipeline. This is a very important
performance gain, The delete action in the conflict set takes
place in 2 ime when the Conflict Set Resolution would be
inactive in the conventional RETE in tation. Thus the
computations of the phases overlap. urements have
shown that the C5 is not very large. Almost every time the
delete operation is finished before the first positive update
arrives. .

By the introduction of this concept we loose the nonpassing
featire mentioned in the last chapter, The delete token which
contains only the time tag, is ransporied once from stage to
stage, In the criginal RETE algorithm a token is sent from
different PEs of stage n to stage n+1 once per positive result,
We need & synchronization that guarantees that these delete
tokens are not passed by positive tokens. A (positive)
concatenation containing the element to be deleted could be
passed by its delete message, resulting in a fanlty maich state.
Our first amempt was to send a'iimcial synchronization token
after the last delete token that blocked all PEs until all their
sendbuffers were m:nﬁ;y {the communication inside the stage
was done by the syn flag; see figd). The PE was busy waiting
which should be aveoided. So we changed the blocking of the
PE into the blocking of the sendbuffer. The number of arrived

918

synchronization tokens is stored in a counterrcgister, the
sendbuffer can only be accessed If its value is zero. The
counterregister is decremented on the condition that the right
neighbor signals an empty sendbuffer and the own sendbuffer
is empty. decrementing is done during the operation
decoding and incremented by an operation. So the accesses to
this register are exclusive and cannotresultin conflicts. The PE
can now work until the first result of a positive test has to be
written, Measerements show thatmestof the 1ests are negative.
If inside a stape this synchronization is performed twice in
sequence, all sendbuffers are empty at the time at which PE 0
gives the syn flag to PE n. This double synchronization is used
to protect tokens from passing each other. A single
synchronization is used to detect the end of a match phase.
Proprams exist in each stage to activate both kinds of
synchronization in the following stage by sending a special

" The delaying impacts of the synchronization between the
token with - and + sign is restricted by the fact that -WME
changes have just to be found in the working memory while
+WME changes have to be construcied first, so that there is a
natural time gap between these inputs.

6 THE NOT NODES
The Mot nodes are those intertests that combine a positive
and a negated CE. A production with matching for all

positive CEs s satisfied if there exists no WME that matches
the negated CE. To avoid iterations over the whole working
memory, RETE computes the WME that satisfy the negated
CE. The Not nodes are performed after all intertests betwecn
positive CEs have been finished. If there are more than zero
matches between both inputs, the production failes. A counter,
adjoined to the positive part, represents the number of matches
berween the positive and the negated CE. The negated part is no
longer néeded because there are no data derdved exclusively
from the negated part, also no time tag can be associated with a

negated match.

The actions of the Not node differ depending on the sign and
kind of input. A token from the positive input effects the
calculadon of the counter if its sign is +, else the delete

does not differ very much from the normal case
describedin the last chapter, An activation by the negatedinput
updates the counters assigned to the positive partnersin of
sending results, If a match takes place and the sign of the
negated input was + the counter is incremented else the sign
was - the counter is decremented. By ifying the
counter from -or to- zero, the executability of the production is
altered, The C3 has to be updated ingly.

Our problemis that the distribution of the input representing
the negated CE leads to various counters of same positive part
which have to be added to obtain the correct result. These
tokens are assigned to the same stage and besides the rwo flags
mentioned egrlier there is no instage communication.
Therefore we have two alternatives to realize the Mot nodes:

- no distribution of the negated input
- full distribution of the negated input, counter computation
in the following stage

The first solution abandons the performance gain by the low
level parallelism and leeds to effects within the pipeline that are

gimilar to "hot spots” in interconnection networks, The second
solution is hard to realize because of following deviations from
standard intertests:

- only the first token with the same conients has to be
stored

- the next arriving token with same contents have to update
the counter of only this token

- test actvations by the positive and negated input can take
place at the same time

(because they are performed in different stages)
- tokens for these different activations can pass each other

After initial tests without distribution of the negated input,
we decided to use the second alternative. The p lism that
we utilize is not as high as in normel intertests but the hot spot
effect can be evaded. The influencing features of the match

pipeline have to be exposed:

- The number of positive intertests is very low, therefore the
busis accessed in only 3 to 5% of the time and the filling of the
sendbuffer is very low (0 to 2 tokens)

- All PEs are nearly at the same pointof execution, caused by
the equal distribution of data .

- 'The acdvities arc the highest in. the upper stages and
decrease in lower stages

The Mot nodes are assigned to the last two stages. In the first
of them the WME matching the Constant tests of the negated
CEs are stored. Even if there is more than one negated CE they
cannot be combined, except by joining. The matching WME
fulfill the CE, as if ithad a positive sign. While the negated CEs
are connected by logical AND thess matching are
connected by logical OR, as itcan be shown by the application
of de Morgans rule:

— —— dM —_—
CEl&CE2&CE3 = CEl &(CE2vCE3)

If there is more than oné negated CE an an'l\ril;ipnsiﬁw
partner performs the tests with all of them sequentially during
the same activation. The treatment of the Not node is selected
by one of the four cases mentioned before:

A) Activation by a negated input with sign -

The activating token is sent to the next stage before it is
deleted in the memory node. In the next stage all partners are
tested, if the tests are positive, the counter is decremented. A
counter changing 1o zero evokes the sending of the associated
token to the conflict set with sign +. The production i3 now
satisfied,

B) Activation by a negated input with sign +

The handling is similar to A), the token is stored and the
counter of the tokens in the next row can be
incremented by one. A change from zero to one induces the
sending of the instantiation with sign - to the CS. The
producton is no more satisfied.

C) Activation by a positive input with sign -
This differs from a normal delere action only by the fact that
the tokens are sent with sign - to the CS before deleting.

D) Activation by a positive input with sign +
In the upper row the counters are computed after a double

synchronization. The PE matching the address of the incoming
token sends it with the count to the next row afterwards it
invokes another double synchonization. The other PEs invoke
two double synchronizations before sending only their count if
it is not zero, All these tokens get the same address, computed
only from the unique old address. By this synchronization
order, the whole token arrives on the next row before the other
counts, It gets stored by the PE matching the address. If the
countvalue is zero the token is send to the CS. A countertoken
results in adding the value to the counter of the first token in the
PE matching the address. If the old countvalue was zero the
whole token is sent with sign - to the CS.

As it can be seen only the case D) is expensive. 1t 5 only
activated, if the whole positive part of the production becomes
true. The other cases depend on just one WME change with the
positive constant test for the affected production. They could
also activate more than one test because the possibility of
shared negated CEs is high. In diffence to productions without
negated CEs both the + and - changes to the CS have to be send.
The concurrent C8 updateis notsufficient becanse by case Ada
positive change to the CS could be produced by a negative
negated token, This positive change could be deleted
afterwards by the deletion of 2 WME in the positive part. By a
concurrent te in the CS the second delete action could be
finished before the positive token to be deleted arrives,
therefore C) differs fromotherdelete actions. Thisis the reason
why the concurrent update is only performed for productions
without negated CEs.

Because the not nndwuflmdum tokens of different signs
their passing has to be avoided. In case A) and B) the same path
is used, C) and D) is handeled by the normal synchronization,
A) and DY) by the special synchronization which also provides
that results of B) and DY) pass each other, C) may pass or be
passed by every token execpt D).

Only by thiz implementation we can distribute the lower
stage too. This effects that in case A), B) and C) we reach the

same gain than in intertests. The gainof D) depends on four fac-
tors:

the number of activations of case D)

the number of negated entries

the number of other tokens passing the upper stage
the number of PEs in the upper stage

If we have many PEs on the upper stage (e.g. 16), one negat-
ed eniry and there is only one activation of D) or no other tok-
ens, the runtime of the distributed solution is even minimally
higher. The result token may be send rwice to the CS and there
is ransportation and synchronisation everhead. In the old solu-
tion the hot spot would not appear or did not effect anything,
Thisis one of the reasons why we adjoin fewer PEs to the upper
Not-Stage. In the case of many negated entries, meny actva-
tions of 1) or many other tokens the gain rises to that of inter-
tests on stages with fewer PEs.

7 DISTRIBUTED COMPUTATION OF THE THREE
PHASES

The main probler in reducing the execotion time of the
match phase could be solved. The next aim i the reduction of
the execution time for the two other phases by utilizing
perallelism, The entire recognize act cycle may be accelerated

919

Fl, P2, F3, P4, P5: different productions

(the unsorted instantiations and the pointers from sons to fathers
are not shown in this figure)

Situation before (a) and afier (b) the creation of the instantiation
of production P5 with the time tags (12 11 4)

Figure 6; Conflict Set Administration -

by an overlapped computation of the phases. Chances are

because the only necessarily synchronous action is the delivery
of the dominant instantation from the C8 to ACT. Atthe end of
the match phase the conflict resolution has to compute only this

instantiation. A complete order of all instantiations has not to
be provided. In our implementation we distinguish between
conflict resolution and admiristration of the conflict set.

7.1 Administration of the conflict set

The data structure of the conflict setas shown in figure 6is a
heap of ordered lists. The lists contain the instantiations of one
production, The instantiations have to be stored sorted for
comparisons with other incarnations and unsorted in order to
assign the time tag 1o the comect action in the RHS, A positive
confliet set change has to be included in this list. In most cases
thisinclusion is performed at the top part of the list, because the
CS change is the result of WME change that contains a time tag
with a high value. Therefore, the effort for npdating the listis
low. The only exceptions are the CS changes gencrated after
application of case A) of the previous chapter, they may
contain only lower time tags. If the top of the list aliers, the top
element has to be compared with thatof the "father” in the heap.
If the new element dominates, the heap is updated without
changing its balanced structure. The comparison continues
upward until the "father” dominates or the top of heap is
reached. In both occurences the update is finished, in the
second the last change is the new dominant instantiation. The
changes with sign - actualizes the list and if the top of list is
deleted, the h&p i updated in the downward direction. The
filling of the CS is typically between 2 and 500 elements. By
subdividing them to productions and by the logarithmic

920

runtime features of the actions adjusting

the (Bentey 85), the time spent in storing compare with change dominates
the mistration of the CS is currenily arriving positive and is stored, no
considered 1o be low. The is dominant cschanges tation from
assigned to CSA-PE of figure 2. The =/ C8admin needed

second CSA-PE is only used if the CS is
to large for one memory, additionally it
is wsed as reserve if one of the ACT and

assumption for simplicity: (ACT : 3 PEs, each maich siage 2 PEs, CS-Admin 1 PE}

Eaid

WA S

ACT & Conflict

C35A PEs should fail. The sorting of
different instantiations is distributed to
the ACT and CS PEs, Itis supported by a

R

Nﬁ\\

“=Resolution &
ot Tests

]

special microinstruction, only positve N

AN

changes have to be sonted,

OPS prevents firing of a producton

with the same time tags more than once,
The top element of the heap has 1o be

removed, leading to further

) Y
NN

administration steps. These steps are

b

alsoperformed in paralle] 1o ACT.

w”

L4 &
e | Y |

NNNARNNANN

7.2 Conflict resolution
The fact that only the dominant
instantiation is needed for ACT can be

¥ Ml N

utilized further. After the update of the

S b Y

C5 by the tokens with negative sign the
currently dominant instandation is sent
to the ACT PEs. Each of them stores and
compares it to the incoming changes of
the conflict set. If the change dominates
itreplaces the old instantiation. After the
termination of the match phase, the ACT
PEs contain the dominant instantation.

dedete of .
fired §
production Production

No time consuming delivery takes place, delers action {» Fiese todoen with shen -
becanse the ACT PEs can start the =] R
execution of the RHS, while the B heap updae + synchronisation
administration of the conflict set may be .) i L
still busy. The phases overlap. This csr aclion % firsticken with sign +
mechanism does not work, if the actual R -

dominant instantiation is deleted. Then Ofhexs 7 positive CS changs

the conflict resolution is

by

Figure 7: Overlap of the Phases and the Pipeline Stages

the PE administrating the C5.

T3ACT

The act phase comprises the generation of new WME and
the administration of the working memery including deletion
and storing. Because of the 16bit address space of our PE we
have 1o allocate at least four of them to ensure a sufficient
working memory size. In conseguence we have to divide the
working memory and have to show how the PEs can be used in
parallel. The solution of both problems is the same. The
working memory is divided by assignment of different classes
todifferent PEs. The WMEs of one class are stored, dependent
on their time tag, in one of several memory nodes that belong
to their class. This kind of hashing is unique and alleviats the
searching. The number of nodes is decided by the number of
classes, To suglply parallel make and remove actions, classes
that oceur on the same RHS have to be assigned to different
PEs. This is not always possible. We use an algorithm based
on repulsiv forces, kmown from the design automation area,
for the assignment.

The parallelism in the RHS is not very high, the ACT FEs
wonld be idle most times, Therefore, we transfered the con-
stant tests and the sorting of positive C8 changes to the ACT

PEs. After the first result that ACT performs, the match
pipeline can start. In almost every production, this is a delete
action. Thus the ACT PEs have just to search for the element by
its time tag and then perform the constant test, After the first
satisfied constant test, match and the conflict resolution can
start updating their memory nodes. Figure 7 shows the
overlapped computation. -

BRESULTS

The changes of the previous chapters impact both, code and
instructions. The program of anintertestis very simple, itmain-
Iy consists of one loop with several exit points. Only in the case
of shared nodes, several loops may exist, but they are not nest-
ed. Parameters like loop entry points or token lengths can be
held in registers that are addressed implicitly resulting in few
operands per instucton. Additionally several sequential in-
structions could be combined. Together with the complex in-
stroctions for storing, deleting and transport of tokens, this
leads to a very dense code and few accesses to the program
memory. A typical intertest contains 15 to 20 words and exists
for each of its two entries. Our 64K word memory provides

enough space for 1500 -2000 intertests per stage.

The resuolts that we published 27 could be increased from
35000 v 42000 working memory changes per second. Figure §
showsthe difference of the old inruction setand Not-Node im-
plementation to the new one. For a given configuration the gain
can be higher, By assigning the NOT nodes 1o the lower stages,
the optimal configuration for a fixed number of PEs also
changes. The new concept of parallelism and distribution is
adapted more to the common situations that appear during
production system interpretation. Currently our simuolator can
only handle unfolded pipelines. Therefore we assume that the
folding results in additiong]l performance gain, becapse the
communication overhead cannot be neglected.,

921

ize act cycle 1:1 to processors. The ACT processors of
the EESA I perform processes of every cycle. The original
conflict resolution process is divided and dismibuted. This
resulis in a better balancing of work 1o processors and avoids
unnecessary bottlenecks,

Qur next step is the intodoction of fault tolerance
mechanisms, Therefore we have to include some switches to
the PEs. An interresting idea is to compute the optimal
configuration for a given production system (maybe rule
based) and vse the switches to arrange this configuration
before starting the execution, Another point of interest is the
design of OPS derivatons and environments that can be
mapped onto the same hardware, The pattern matching has not
to be changed by introdocing new selection mechanisms (2. g
selection by possibilties) and undoing of performed ac-

4 Working Memory
Seag

000 - new solution

old solution

1
§ 10 15 W 2% %0

Figure 8: Performance of PESA I

tions which 15 needed in the area of non monotonis
reasoning.

REFERENCES

[ScZ87)] Schreiner, F.; Zimmermann, G.: "PESAL A
Parallel Architecture For Expert Systems®, 16th
International Cenference On Parallel Processing,
1987, p 166-169.

[ForB1] , C.: "OP35 Users Manual", Technical
Report U-CS-81-135, Camegic-Mellon
University, 1981.

[BFK&5] Brownston, L.; Farrel, B, Kant, E.; Martin,
MN.: "Programming Expent Systems in OPS5: An
Introduction o Rule Based Programming”, Addison
Wesley 1085,

[For82] Forgy, C.: "RETE: A Fast Algorithm for the
Many Pattern/ Many Object PatternMatch Problem”,
Am.g' cial Intelligence 19 (September 82), p 17-37.

Our results are the highest for all cumently published OPS
machines, although our number of PEs is ﬁwer. This is
influenced by the special instruction set and the local memories
instead of shared memory solutions. A lttle bit higher results
could be reached by adding more PEs, bui the relation between
effort and result is not worth a discussion. Another possible
improvement is the extension of OFS by parallel rule firing.
Oshisanwo and Dasiewicz use it (19000 working memory ele-
ment chan er second with 236 PEs) as well as Forgy et
al. (9400 /s, 32 PEs). As long a5 we reach improve-
ments with single rule firing we will concentrate on it. Parallel
firing of rules concerns only the conflict resolution and can be
introduced by a few changes,

CONCLUSION

It has been shown that by utilizing very detailed
performance results, the major part of parailelism inherent in
production systemns can be observed. The simulation, although
expensive, has to preceed a prototype. In our special case, we
improved the treatment of the delete actons and the
implementation of the NOT nodes. This results in a higher
performance for a given configuration,

We added the concept of distributed computing to our
parallel pipeline and avoided assigning the processes of the

[GFMNE86] Gupta, A, Forgy, C.; Newell, A.; Wedig, R.:
"Parallel Algorithms and Architectures for Ruole-Based
Systems" 13th Intern, Symp, on Computer Architecture,
Tokyo 1986, p 28-37.

[0sD&7] Oshisanwo, A.; Dasiewicz, P.: "A Parallel Model
and Architecture for Production Systems"”, 16th International
Conference On Parallel Processing, 1987,p 147-153.

[Sie87] Swolfo, S. "Inidal Performance of the DADO2
Prototype", Computer, Jamary 1987,

[FoG83] Forgy, C.; Gupta, A.: “"Measurements on
Production girstms", Technical Report CMU-CS-83-167
Camegie-Mellon University, 1983, .

[Gup86] Gupta, A.: "Parallelism in Production Systems”,
Technical Rtgm CMU-C5-86-122, Carnegie-Mellon
University, 198

[Beng3] Bentley, 1.: "Thanks, Heaps", Communications of
the ACM Vol 28 Number 3, March 1985, p 245-250.

[MAAST] Miyazaki, J.; Amano, FL; Aiso, H.: "Manji: An
Architecture for Production Systems” 20th International
Hawaii Conference on Systems Sciences 1987, p 236-245.

