PROCEEDINGS OF THE INTERNATIONAL CONFEREMCE
ON FIFTH GENERATION COMPUTER SYSTEMS 1988,
edited by 1COT. & ICOT, 1988

A NEW EXTERNAL REFERENCE MANAGEMENT
AND DISTRIBUTED UNIFICATION FOR KL1

Nobuyuki Ichiyoshi, Kazuaki Rokusawa, Katsuto Nakajima and Yu Inamura

Institute for New Generation Computer Technology
4-28, Mita 1-chorme, Minato-kn, Tokyo 108, Japan

ABSTRACT

This paper describes a new external reference man-
agement scheme for KL, & committed choice logic pro-
gramming language based on GHC. The significance of
the new scheme is that it realizes incremental inter-
processor garbage collection. Previous distributed im-
plementations of commitied choice languages had not
seriously address inter-processor garbage collection,

Incremental inter-processor garbage collection is real-
ized by the Weighted Export Counting (WEC). It is a
first attermpt to use the weighted reference counting tech-
nigue in Jogic programming language implementation,
and is also new in that it has introduced export and im-
port tables for making independent local garbage collec-
tion possible and reducing the number of inter-processor
read requests,

The problems with exhaustion of reference counts and
indirect exportation are discussed. Since the binding
order tule adopted in our previous implementation for
avoiding creation of reference loops is insufficient in the
presenee of indirect exportalion, a new binding order
rile is intraduced. We prove that aveidance of reference
loops is guaranteed and also prove that the unification
procedure always terminates for non-cireular stroetures.

1 INTRODUCTION

GHC [Ueda 86), like Concurrent Prolog [Shapiro 83] and
Parlog [Clark 86), is a logic programming language de-
signed to exploit AND-parallelism in logic programs.
The redason why we pursue AND-parallelism in favor of
OR-parallelism or restricted AND-paralielism (RAP) is
that AND-parallelism captures the notion of interacting
processes. Interacting processes arise naturally in the
real world: problem solving by multiple agents, or open
systems that interact with the outside world. KL1 is
based on GHC, but is extended with metaprogramming
and load distribution capabilities, to make it a suitable
language for wriling operating svstems and for conduct-
ing research in load balancing.

We are develeping the Parallel Inference Machine
(PIM) [Goto 87] and the Multi-PSI [Taki #§] to run large

KL1 programs for Al and other applications. The PIM
iz made up of loosely-coupled systems (called elusters)
consisting of multiprocessors sharing local memory. The
Mulii-PSI is made up of up to 64 leosely-coupled pro-
cessors { CPUs of Personal Sequential Inference Machines
(P5l1s)) with separate local memory.

The study of KL1 implementation has led us to rec-
ognize the importance of garbage collection in AND-
parallel language implementations: Garbage collection
can take up & significant processing timie, thus degrad-
ing the overall performance of the system. The ma-
jor reasons are: (1) an AND-parallel language does not
have destructive assignment of variables (as in Fortran),
(2) it does not allow stack-based reclamation of con-
frol frames (as in Lisp), and (3) it does not have auto-
matic garbage reclamation on backtrack {as in Prolog).
We have found out that conventional garbage collection
schemes could slash the effective performance of the sys-
tem by half or more depending on how much memory
cells are active. Some solutions have been proposed of
late (MRB [Chikayama 87], LRC [Goto 88|, Piling GC
[Nakajima 88]) for non-distributed models of implemen-
tation. Previous distributed implementations of AND-
paralle] languages [Taylor 87, Ichiyoshi 87, Foster 88a),
however, did not address garbage collection issues seri-
ously.

This paper describes a new external reference scheme
that has a builtin ncremental nter-processor garbage
collection mechanism, called the Weighfed Export
Counting (WEC). It is a generalization of standard refer-
ence counting. By assigning weighted reference counts to
pointers (references) as well as to referenced data, it has
solved the racing problem in a distributed environment.
Though the technigue has been used in [unctional lan-
guage implementations [Bevan 87, Watson 87] on mul-
tiprocessors, our external reference management scheme
is a first attempt to use the technique for logic program-
ming. It differs from [Bevan 87] and [Watson 87] in that
it has intreduced the export tables for making indepen-
dent local garbage collection possible, and the import
table for reducing the number of inter-processor read re-
quests. The problem of exhaustion of reference counts

is more fully discussed. In particular, the problems with
indirect exportation — exportation of imported refer-
enee — are pointed out.

Distributed unification is a vital feature in a dis-
tributed implementation of logic programming lan-
guages. [t turns out that, under the new external ref
erence management scheme, the binding order rule in
[Ichivoshi 87] can no longer prevent reference loops to
be created, because of the existence of indirect exporta-
tion. We propose a new binding order rule to fix this
problem, and prove that creation of reference loops is in
fact avoided. We also prove that the unification proce-
dure always terminates for non-circular structures.

A strategy for allocating and dividing reference counts
is briefly mentioned. Under the strategy, the exhaustions
of reference counts are expected to be sufficiently rare so
that the extra overhead caused by exhaustions will not
affect the overall performance of the external veference
mechanism. -

2 KL1 LANGUAGE OVERVIEW

In this section, we give a sketch of the KL1 language
specification.

KL1, which stands for Kernel Language version 1, is a
concurrent logic programming language. Tt is.Flat GHC
angmenied with melaprogramming and load distribu-
tion capabilities. 1 Unlike GHC which is a theorstical
langnage, K11 is designed as a practical language to
write an operating system and application programs to
execute on multiprocessors,

A collection of Guarded Horn Clauses makes up a KL1
program. They are of the form:

H:—Gn---,ﬂ'm,lﬁi,..w
guard body

B,,.{m::-(]ru:a-ﬂ]

where H, i, and B; are atomic formulas. H is called -

the head, & the guard goals, B; the body goals. The
vertical bar { |) is called the commitment operator.

The logical reading of the clauses is the same as GHC
[Ueda 86]. KLI is flat in that only the predefined set of
builtin predicates are allowed as guard goals and thus
goals cannot nest in the guards.

The metaprogramming capability of KL1 18 realized
by the sheen (pronounced ‘sho-en’] facility, While goals
executed tail-recursively (processes) define small-grain
thresds of contral, a shoen defines a larger-grain com-
putational unit. It deals with exception handling and

1A ctually, KL1 s = hierarchical family of languages comprising
the abstract machine language K11-B(bass), the concurrent logic
language KL-C{core), the pragma extension KL1-P{pragma), and
& collection of user langnages KL1-Ufnser). Here we are talking
about KL1-C and KL1-P.

2035

resource management. A shoen is created by a call io
the builtin predicate execute/T:

execute{¥in,Max Mask, Code,lirgv,Control ,Report)

Min and Max are minimum and maximum possible pri-
orties allowed in the shoen. Mask is a bit pattern for
determining which exceptions to handle in this shoen.
Code and Argv specify the initial goal (the predicate code
and ils arguments) to execute in the shoen. Centrol and
Report are the confrol and the report ‘streams. Excep-
tions that have occurred in the shoen or are delegated
from one of the child shoens are reported to the report
stream if the logical AND of the exception tag and the
exception mask of the shoen is not zers. The control
stream is to start, stop or abart the shoen from the out-
side.

An exceplion is reported as o message to the report
stream, and the monitoring process is io substitute a new
goal for the goal that has given rise to the exception. An
important thing to note is that there is no failure in a
shoen, Any kind of failure is treated as an exception.

Currently, load distribution is realized by means of
pragmas [Shapiro 84] of the form @processor(Proc),
attached to hody goals as postfives. A body goal
Piprocessor(PE) is thrown to processor PE when the
clause containing the goal is committed to. The seman-
tics of programs with pragmas is the same as that with
the pragmas removed. In the future, we plan to imple-
ment a dynamic load balancing mechanism.

The pricrity of execution is specified by a d.lﬁerent
kind of pragma (@priority(P)).

In our KLl implementation, guard unification be-
tween two unbound variables always suspends, even if
they are identical. The reason is that such unification is
very rarely needed but still needs be taken special care
(a new message must be introduced, etc.). [Foster SEa.]
has a special ns_read protocol for variable-variable uni-
fication.

32 MACHINE ARCHITECTURE AND
DISTRIBUTED IMPLEMENTATION

3.1 Machine architecture

The machine we assume in the paper is a loosely-coupled
multiprocessor. More specifically,

1. The machine consists of a finite mumber of pro-
cessors identified by serial identification numbers
(0,1,...).

2. The constituent processors have local memery sep-
arate from others.

506

3. The processors are interconnected by a network so
thal a processor can commumnicate with any proces-
gor by message passing.

We assume that inter-processor communication is ex-
pensive. A message sending and receiving overhead is
assumed to be roughly 100 times that of simple access to
the local memory. We also assume that inter-processor
cormmunication is rare compared to local memory ac-
eesses. T hese assnmptions justify the rather complicated
external reference scheme we adopted.

The Multi-PS1 is one such multiprocessor. The PIM's
clusters correspond to processors in the above model.
The netwérk of the Multi-PSI version 2 guarantees that
the communication channel between any two processors
is first-in-first-out (FIFQ). The PIM may not support
FIFO communication,

3.2 Distributed implementation

In the distributed implementation of KL1 on a loosely-
coupled multiprocessor, each processing element (PE)
executes the reduction eycle independently. That is,
each PE has its own scheduling queue of goals and, it
picks up 2 goal of the highest priority and tries to reduce
it into body goals. The reduction may fail {and canse
Jailure pxception), suspend, or suceeed. In the last case,
the body goals are put to the scheduling quene or thrown
out to other PEs according to the pragmas.

Throwing of a goal 15 done by means of the throw mes-
sage in which are encoded the code of the predicate of the
goal, the arguments of the goal, the shoen to which the
goal belongs plus other bookkeeping information. The
enceding and decoding of arguments (or any KL1 data)
are respectively called exportation and impertation.

4 EXTERNAL REFERENCES

We assume without loss of generality that the data types
in KL1 are atomic data and vectors (represented by a
tagged pointer to n consecutive cells). A cell can either
hold & concrete value as above, point to another cell
(in case of a REF cell), represent an unbound variable
(UMDEF cell) ?, or be either one of the external reference
cells (EXREF and EXVAL cells) defined below.

4.1 Representation of external references

In the distributed implementation, a reference can be
erternal as well as infernal, An external reference is a
reference to & non-local data and is represented by the
pair < pe, ent >, where pe is the PE number in which the

“There are several types of unbound varables: hook variables,
multiple hook wariables, elc. in the actual KL1 implementation.
The distinetion is mainly for optimizations and iz not essential in
the discussions in this paper.

referenced data resides, and ent is the unique identifica-
tion number of location of the data in that PE. {When
we talk of a data, it means a physical representation of
a logical term.)

We did not choose to take the memory location as
the unique identification number. This is because that
would make local garbage collection (garbage collection
within one PE) very difficult. If the Jocations of data
move as the result of the local garbage collection, it must
be announced to all PEs that may have the reference to
the data. Instead, cach PE maintains an ezport teble
to register all locations that are referenced from cutside.
Each externally referenced cell is pointed to by an entry
in the table, and the entry number is used as the unique
identification number. When the externally referenced
cells are moved as the result of a local garbage collection,
the pointers from the export table entries are updated
to reflect the moves.

A hash table is attached to the export table so that in
case a cell is exported more than once the same export
table enfry may be retrieved from the cell address and
used in the second and later exportation.

Also, cach PE maintains an import table to register
all imported external references. All references in a PE
to the same external reference are represented by inter-
nal references to the same external reference cell The
external reference cell and the import table entry point
to each other. (The reason fur separating the cell and
the entry is explained in Section 4.4.) There is a hash-
ing mechanism for retrieving an import table entry from
an external reference, so that even if a PE imports the
same external reference more than once, only one ester-
nal reference cell is allocated. Export and import tables
are shown in Fig. 1.

The introduction of export and import tables helps
reduce the number of inter-PE read requests. Suppose
FE; exports the same data X twice to PE; as an ar-
gument to goals P and ¢J. Ouoly one export table entry
and one import table entry are allocated by the hashing
mechanism. Even if both P and @ attempt to read X',
only one read request message is sent to P F;by the first
read request. The second read request does not result
in message sending, since the fact that a read message
has already been sent is remembered in the export table
entry. This mechanism also prevents PEs from making
duplicate local copies of the same external data.

An external reference cell is either an EXREF cell or
an EXVAL cell. The data referenced by an EXVAL cell is
known to be a concrete value. In the rest of the paper,
where it does not matter whether the referenced data
is a concrete value or not, we refer to an external ref-
erence cell as an EX cell. For an external reference E,
we denofe the EX cell by from(E), the referenced data
(after internal dereference) by to{ E). Also for any (phys-

ical) data X, the PE in which it resides is denoted by
processor{ X,

4.2 Exportation of data

In general, a data is created in one PE and then exported
to other PEs by messages. The PEs that receive the
messages import the data and, as the result, have the
internal represeptations of ihe same logical term as the
original one.

Exportation of a term iz done by encoding it in an
inter-PE message and sending the message to the target
PE. There are three ways of encoding:

encoding by value (in case of a concrete value) To en-
code the term into & byte sequence representing the
value,

encoding by location (in case of non-atomic term} Tao
encode the term by first registering the location of
the term in the export table to obtain the entry ent
and encoding it as < pe, ent >, where pe is the PE
number of the exporting PE.

encoding by reference {in case of an EX cell with ex-
ternal reference pair < pe, ent >) To encode the cell
a5 < pe, ent >,

A wector can be either encoded by value (by the se-
quence of vector tag, vector length, and the elements
that are encoded recursively, in either one of the three
ways), or encoded by location. Since wveclors can be
nested, the encoding procedure can also nest. It iz de-
girable to predetermine a certain fixed level that the en-
coding process can nest, because the entire structure is
not always needed in the importing PIE and, more impor-
tantly, because there can be circular structures. When
an encoding algorithm stops at level n, it is called a level
n encoding. The substructures at that level are encoded
by location (except for atemie data). Encoding by loca-
tion can be considered to be level (encoding,

An EX cell can be either encoded by reference or by
location. In normal situations, the encoding by refer-
ence js used. The latter iz called an indirect exporta-
tion. It corresponds to the insertion of indirection cells
in [Bevan 87] and [Watson 87). Indirect exportation was
not present in the previous distributed implementations
[Ichiyoshi 87, Foster 88a).

Encoding can also be categorized by purpose as fol-
lows: ’

encoding to pass To encode a term so that the PE
that imports it may have an internal representation
of the same logical term.

encoding to access To encode an external reference to
access it, Le. to read it or to write on it (unify

907

with some term). To encode an external reference
to access, it must be encoded by reference. The
target PE of this encoding is always the PE that
has exported the external reference.

encoding to return value To encode a concrete value
in reply to a read request. Tb encode a term fo
ceturn value, it must be encoded by value.

The results of encoding a term X in 3 message are
denoted by pass(i}, access(X) and value(X), respec-
tively, for the three types of encoding.

4.3 Importation of data

When a PE imports an encoded term, it decodes it info
an internal representation in the following way. (1) H
the term is encoded by value, it is translated into the
suitable concrete term. (2} If the term iz encoded by
location or by reference; there are two cases,

self-importation If the referenced PE is the same as
the current PE (importing PE), the export table
entry is retrieved from the entry number, The data
it points to is the inlernal representation.

nonself-importation If the referenced PE is not the
same as the current PE, the import table is looked
up with < pe,ent > as the key. If there is already
a corresponding entry, the EX cell it points to is the
internal representation. Otherwise, & new entry and
a new EX cell are allocated, and the EX cell becomes
the internal representation.

Self-importation arises when a PE (say, PE;) exports
& data to another PE (say, PE;) using the encoding by
location, and then PE; exports it back to PE; vsing the
encoding by reference.

4.4 Access protocols

In KL, unification in the guard and in the body are
respectively called passive unification and aclive unifica-
tion, The former is a pattern matching without binding
any variables, whereas the latter is a pattern matching
with possible binding of variables as by-product,

In passive unification, the two terms to be unified are
read and compared. To read an EX cell X, a read request
i= made by sending a Fread message (shown below) to
the referenced PE.

Yread{access (X} ,Returniddr)

Returnhddr is an external reference to the EX cell. *

If the referenced cell has a concrete value V, it i3 re-
turned by an Fonswer value message:

*The %read and Fanswer_vole messages correspond to the
Hread_value and Srefurn_selue messages in [Tehiyoshi B7).

908

Impart Table

Export Table PE

exported data

< i

Figure 1: Export Table and Import Table

Yanswer_walua(Returniddr,valua{V})

If the referenced cell is an unbound variable, returning
of value is suspended. If it is an EX cell, a Sread message
is passed on to the PE it references.

When the Banswer velue message arrives, the EX cell
identified by ReturnAddr is overwritten by the value,
and the import table entry coreesponding to the EX cell
can be freed. This is why the cell and the entry are
separate.-

Remote writing is realized by the unify protocol. Writ-
ing a variable that is external to the PE is realized by
sending & Funify message to the referenced PE. Specif-
ically, to unify.an EX cell X with a term ¥,

Yunify(access(X),pass(Y))

iz sent. It is a request to unify the data referenced by
X with a term Y. The PE that receives the above mes-
sage does the active unification after translating the two
terms inte internal representations.

5 INTER-PE GARBAGE COLLECTION BY
WEIGHTED EXPORT COUNTING
(WEC)

In this section, we give a motivation for Weighted Ex-
port Counting (WEC) scheme, state itz principle, and
describe how WEC is maintained at exportation and
importation of data. Lastly, the problem of unsplittable
WEC 15 discussed.

5.1 The WEC principle

Since export table entries cannot be freed by a local
garbage collection, there must be some inter-PE garbage
collection mechanism to free those entries that have be-
come garbage.

One way of realizing inter-PE garbage collection is
by a global garbage colleclion. A serious problem with
global garbage collection is that it is expected to take a
very lomg time.

Another is an incremental inter-PE garbage collection.
One of its merits is that it keeps intact the localily of

date access in the program. But, a naive implementation
of the standard reference counting scheme, however, does
not work correctly in a distributed environment.

Suppose we introduced two messages for incrementing
and decrementing reference counts. When a PE discards
an external reference, it sends a $decrement message to
the referenced export table entry. When a PE duplicates
an external reference to give it to another PE, it sends
an Fincrement message to the entry. The problem here
is that before the Mincrement message arrives at the
entry, the following sequence of events may take place:
The duplicated reference arrives at a PE and 15 discarded
there and the resulting %dwnmn_t message is received
by the entry, causing the entry to be freed. This is a
typical racing situation. Note that the FIFO assumption
on direct communication between two PTOCESE0TE does
not say that indirect communication fakes more time
than direct communication.

Unlike the standard reference counling which as-
signs reference counts only to referenced data, the
Weighted Expeort Counting (WEC) scheme, assigns ref-
erence counts, or weighted export counts (WEC), to ref-
erences (pointers) as well. More precisely, positive values
are assigned to external references (import table entries
and references encoded in messages), and non-negative
values are assigned to export table entries, so that the
following mvariant 15 frue for every export, table entry £

{Fig. 2):

(weight of E) = 3 (weight of)

#: 7 forance fo B

It follows from the above equality that the following
two are equivalent.

1. The \-'r!:'igh_l of E is zero.

2. There i3 no reference to E.

This technique of using weighted reference counts has
been employed in functional langouage implementations
(WRC in [Bevan 87] and [Watson 87]). The problem pe-
culiar to logic programming language is treated in Sec-
tion 6. The differences between WRC and cur WEC are
summarized in Appendix A.

-
PE;
WEC =50 4
MESREE\WEC = 30 WEC = 120
PE,
WEC = 40

Figore 2: WEC Invariant

In retrospect, the problem with the reference counting
GC was that the assumed invariant that the reference
count of the export fable entry wis equal to the number
of references was nof actually an invariant relation, as
was shown in the racing example.

5.2 WEC operations

The operations on WEC at exportation are asz follows:

encoding by location Add a certain positive weight
w to the WEC of the export table entry (if it is
newly created, the WEC is initialized to w), and
assign w to the encoded result.

encoding by reference Subtract a certain positive
weight w from the WEC of the import table entry,
and assign w to the encoded result.

There are three kinds of fransition of the state of ex-
ternal references, caused by exportation and internal op-
eralions of a PE.

duplication The external reference iz duplicated: the
EX cell is encoded by reference and is retained. The
WEC is gplit in two positive weights,

discard The external reference is discarded: the EX
cell and the corresponding import table entry are
freed and the associated WEC is returned back
to the exporl table entry by a Srelease message.
An EX cell can be freed by the MRB mechansm
[Chikayama 87] or by other form of local garbage
collection.

transfer The external reference is transferred to an-
other PE: when the number of internal references
to the EX cell becomes zero after the encoding, the
EX cell and the corresponding import table entry
are freed and the associated WEC is given to the
encoded result. This situation can be detected if
the implementation supports the MRB or other lo-
cal reference counting scheme.

909

Example 1 Here are examples of (1) reference duplicn-
tion, (8) discard and (3) transfer. We assume that when
the goal a(X) is executed on PE 12, X is the lost internal
reference to an EX cell referencing a date DX m PE 34.

A1) afX) :- true | B(X), e(X)@processor(56).
(2) a(X) :- true | true.
{3) alX) :- true | c(X)Oprocesscr(78)}.

In {1}, the reference to DX is duplicated: one refer-
ence is refained in PE 12 and another is ecported (by
reference) to PR 56. In (2), the reference to DX s dis-
carded, A Frelease message &5 sent to PE 8 and the
EX cell logether with the import table entry is freed. [n
(8], the reference to DX is transferred to PE 78. All
WEC is encoded into the throw goal message, The EX
cell together with the import table entry is freed.

When a 'E imporls an external reference with en-
coded WEC of w, the following WEC operation is car-
ried out according to the kind of importation.

self-importation Subtract w from the WEC of the ex-
‘port table entry. If it becomes zero as the result,
the entry is freed.

nonself-importation Add w to the WEC of the im-
port table entry (if it is newly created, the WEC is
initialized to w).

5.8 Unsplittable WEC and indirect exportation

WEC is implemented as integer on real machines be-
cause the invariant must be an exact relation. Since an
imported external reference can be duplicated arbitrar-
ily many times, the situation where the associated WEC
can mo longer be sphit (i.e. WEC becomes 1) may be
reached. There are two ways to cope with this situation.

WEC supply The duplication is suspended and a $re-
quest. WEC messapge 15 sent to the exporting PE.
When the message is received, a Fsupply. WEC
message carrying a WEC to supply is sent back to
the referencing PE. The reference duplication re-
sumes when the Bsupply. WEC' message arrives, !

indirect exportation The EX cell is not encaded by
reference but by lecation. This involves no suspen-
sion of reference duplication, but makes the external
reference chain longer. [Bevan 87] and [Watson 87)
take this approach.

1 Actually, a PE may import. the same extarnal reference (which
always has an assigned WEC) before the Fsepply WEC message,
and that can resume the duplication. '

910

The second method is easier to implement and works
fine in the case of encoding to pass, but it cannot be
used in the case of encoding bo access, since encoding by
reference is the only way to access an exported data. If
the network has 2 FIFO property, this problem can be
solved as [ollows.

zero encoding To encode to access an external refer-
ence with WEC = 1, encode it by reference with
WEC=0. -

We call such encoding and access zero encoding, and
zero access, respectively, Since the #release message
that might follow will not overtakie the zero access mes-
sage (FIFOQ property), the referenced export table entry
is guaranteed to exisl when the zero access message ar-
rives,

One inconvenience with the introduction of zero access
iz that reference transfer cannct be done after sending
& ZeTo access message. This is becanse the transferred
reference can be discarded and the resulting Frelease
message can arrive before the zero access message arrives.

Therefore the fact that a zero access message has been
sent must be remembered to prevent a reference transfer.
The import table entry has a zero flag for this purpose.
When the zero flag ia ON, the external reference must
not be transferred but must be indirectly exported. ®

6 DISTRIBUTED UNIFICATION

6.1 Avoidance of reference loop creation

A reference loop is a closed chain of references (internal
and for external). If there were a reference loop, the
cells on the loop would not have dereferenced results,
and they could net be unified with any concrete value.

In a sequential implementation, ereation of reference
loops ean be awvoided by fully dereferencing both ref-
erence chaine before upifying them. In a distributed
implementation, however, two chains cannot always be
fully dereferenced at once because the dereferenced re-
aults may be two unbound variables in separate PEs,
An unrestricted unification algorithm can create refer-
ence loops as i the following example.

Example 2 FE; fias an EEREF cell Y thal meferences
an unbound cell ¥ in PE;, and PE; has an EXREF cell
X' that references an unbound cell X in PE;. If aclive
unification between X and ¥Y' in- PE; couses X o be
bound to ¥, and active wnification between ¥V and X'
i Pl canses ¥ o be bound fo X', a reference loop is
created. (Fig. 3)

SThis is when the WEC iz still 1. When the PE imperts the
same external reference, the WEC increases, and it can be split in
two. When a non-zero access message s sent, the zero flag of the
import table entry can be raset.

Figure 3: Reference Loop

In [Ichiyoshi 87] and [Foster 88aj, the problem is
solved by imposing the binding order rule: a binding
of an unbound variable to an EXREF cell by active unifi-
cation is permitted only when the current PE number is
smaller than the referenced PE number. But the intro-
duction of indirect exportation has made this binding
order tule no longer sufficient, as shown in the follow-
ing example. Suppose { < j. FPE; exports its unbound
variable X to PE; (resulting in an EXREF cell X') and
PE; indirectly X' back to PE; (resulting in an EXREF
cell X¥). Since i < j, PE, is allowed to bind the variable
X to X*, creating a reference loop.

We have introduced the notion of safe and wnsafe ex-
ternal references and modified the binding order mle to
fix this problem.

Definition 1 An externel reference E is unsafe, §ff

(1) processor(from{E)) < processor{to(E)) 8, or

(2] to(E) is an unsafe external reference.

An erternal reference B is safe if it is not an unsafe
reference.

Since the second disjunct of unsafeness definition can-
not be checked locally, an unsafeness flag is introduced,
so that the criteria of unsafeness is as follows: An exter-
nal reference F is unsafe iff (1) processor(from(E)) <
processor(to(E)), or {2) the unsafeness flag of E is ON.

When a term is encoded by location, the unsafeness
flag in the encoded form is set to ON if the term is an
unsafe EXREF cell, OFF otherwise. When an EXREF cell
is encoded by reference, the state of the unsafeness flag
18 inherited.

The binding order rule An exported unbound vari-
able 7 cannot be bound to an unsafe EXREF cell. *

“The order is the reverse of that in [Ichiyoshi 87] and
[Foster 88a). The reason is to make the argument valid for & ma-
chine consisting of infinitely many processors.

"Such & varisble has a tag EUNDEFin our implementation, sep-
arate from the UNDEF tag for non-exported variables,

1L does not apply to EIVAL cells, since they tan never take
part in reference loops.

T prove the reference loop aveidanes, we add a couple
of assumptions: (1) There is no reference loops at start-
up time, and (2} It is guaranteed that reference loops
made up of only internal references are net created.

We shiow below that reference loops will never be cre-
ated by reductio ad absvrdum.

Let [be & reference loop, By dereferencing internal
references, we can safely assume that it consists of ex-
ternal references alone. There can be three cases:

case 1 L is made np of safe references alone.
case 2 L is made up of unsafe references alone,

case 3 [is made up of both safe and unsafe references.

Case | is impossible because every safe reference is
from a PE with a larger number to one with a smaller
number, Since exporting of cells alone does not make
a reference lﬁup, there must have been a biudjng of a
variable to an external reference. Fll.r the hir.lding order
ritle, case 2 is ruled out. If case 3 holds, there must exist
& safe reference whose referenced data s an upsafe EX
cell — a contradiction to the definition of a safe external
reference and the binding order rule,

As a corollary, we show that dereferencing process —
internal dereferencing by tracking REF chain and exter-
nal dereferencing by passing Funify messages — always
terminates. Suppose some dereferencing never termi-
nates, it must be that the derelerenced result which is
an unbound variable becomes bound to a reference (in-
ternal or external) to another unbound variable which in
ture becomes bound, and so on, during dereferencing, so
that the final dereferenced result will never be reached.
Let xy, 73,... be such a “descending sequence” of cells,
that 1s, every ; i originally an unbound variable which
is then bound to the reference to 24, The sequence
of PE numbers of the PEs in which these cells reside
constitute & non-increasing sequence by the binding or-
der rule. Any such sequence of natural numbers has a
minimum element. After that minimum PE is reached,
no external references appear. The problem is thus re-
duced to termination of internal dereferencing. This can
always be guaranteed for a uniprocessor model (such as
Multi-PSI), or can be guarantesd by introducing a local
binding order rule for a shared memory multi-processor
model (such as PIM).

6.2 Termination of unification

As long as the binding order rule is observed, we are
free to choose any strategy as to when and to which PE
unify messages are to be sent, Our strategy is (1) fo do
local unification whenever possible, {2) to shorten the
BT Dr L]'.IE]ET.IEL]'.I.B- 0' E.h_ﬁ‘ cxiﬂnal [E{mm d‘taﬁna {EE.
If the WEC of one of the teferences is 1, make it the
first argument of the unify message. If it was made the

911

second argument, indirect exportation would make the
reference chain longer.), and (3) to send a unify message
to the PE in which unification is likely to terminate (e.g.
Send the unify message to PE with a larger PE number.).
We omit the details in the papér.

We prove here that distributed unification between
two non-circular ferms terminates. Actually, we only
show that every active unification is eventually reduced
to local unification. That is, it does not keep on just
passing Sfunify messages between PEs forever.

Suppose active unification between two terms X and
¥ is tried. Each of the dereferenced results of X and
Y, namely DX and DY, iz either an unbound variable
or a concrete value, I we assume for simplicity that
no binding occurs on DX or DY during the unification
process, it can be shown by induction on the sum of the
lengths of the external reference chains starting from X
and Y that every unification iz eventually reduced to
local unification. Indirect exportation has to be taken
special care because it makes the external reference chain
longer. By making an external reference with WEC=1
the first argument in unify message whenever possible,
this problemn can be worked ont. In general, the unbound
variable DX (DY) which is the dereferenced result of X
{Y) may become bound to some value during unification.
But the number of such bindings can be only finite, as
is shown in the argument for dereferencing termination.
After the last binding is made, vnification termination
is guaranteed as in the simple case. '

7 WEC ALLOCATION STRATEGY

Az far as the WEC maintenance operations observe the
WEC invariant, they are free to choose any values for
WEC. But, if exhaustions of WEC at reference duplica-
tion happen very often becanse of 2 bad WEC allocation
strategy, the performanee is degraded. We give the sim-
ple strategy we employ in the KL1 implementation on
the Multi-PS1.

The WEC of an export table entry is represented by
a 64 bit unsigned integer, and the WEC of any external
reference (import table entry and encoded reference) s
reprezented by a 32 bit unsigned integer. We do not have
to worry about overflow of the WEC of an export table
entry, because it is impossible hardware-wise that there
exist more than 2* references to a single export table
entry in the system {PIM or Multi-PSI) simultaneously.
When the WEC of an import table entry overflows, 2% is
left and the excess is returned to the export table entry
by & %release message.

The WEC to assign in encoding by location is always
2% At reference duplication, the WEC of the import
table is divided in half. It follows that an external ref-
srence which is encoded by location can be duplicated
at least 24 times until the WEC becomes 1. Sinee rela-

912

tively few data are exported and then duplicated more
than 24 times, the rate of WEC exhaustion in all refer-
ence duplications is expected to be very low.

The WEC to assign in encoding to access iz 1 when
the WEC of the export table entry is greater than 1, and
0 ctherwise (sero encoding), unless it is known by the
MRB mechanism that the lasi reference to the EXcell is
being consumed, in which case all WEC is attached,

& RELATED WORKS AND DISCUSSION

The distributed unification in the parallel implementa-
tion of Flat Coneurrent Prolog (FCP) [Taylor 87] invalv-
ing variable migration is a very complicated procedure.
This is because the unification in FCP at commitment
has to be an atomic operation. Since unification is done
locally, reference loop avoidance and termination of uni-
fication is easier to assure.

[Fester 88a) (or, [Foster 88b), & shorter version) gives a
distributed unification algorithm similar to ours, though
garbage collection is nol addressed. The same bind-
ing order mule as in [Ichiyoshi 87] is used to avoid
creation of reference loops. Whereas the symmetric
protocol (sunify) is used for termination detection in
[Foster 88a], we devised a termination detection mech-
anism [Rokusawa 28] that does not require message ac-
knowledgments. '

Independently from us, Foster recently employed
weighted reference counting garbage collection in his
distributed implementation of the Strand language
|[Foster 88c]. Though his implementation dees not have
incremental local garbage collection mechanism, the
single-assignment property of Strand allows release of
weights at 4dssign message sending. Unlike our export
and import tables, duplicate entries are allowed in the
Incoming Reference Table (IRT) and the Outgoing Ref-
erence Table (ORT). In the KL1 implementation on the
Multi-PSI, we try to minimize the overheads associated
with the full WEC mechanism by restricting its uze to
those data which may have more than one reference to
them: when exporting a data that is known by the MRB
mechianism to have only one refersnce to it, we use a
much simpler scheme, '

. In Foster's unification procedure, after one of the ar-
guments has been fully dereferenced by unifyl messages,
the other argument is dereferenced by unify messages.
Since this guarantees that an unbound variable is never
bound to an indirectly exported variable, there is no
nesd of introducing the safeness flag. However, unlike
our unification procedure, a unily message must always
be sent when unifying an unbound variable with an ex-
ternal reference, because the reference might be unsafe
in our sense. ?

 Actually, Strand semantics states that an attempt to bind a

-One problem with the WEC scheme is that circu-
lar structures extending over PEs cannot be reclaimed.
This is true with any reference counting garbage collec-
tion. Circular structures arise in AND-parallel languages
when (1) the program explicitly creates circular data
or, {2) two or more processes communicate with each
other through shared variables (the goal records and the
shared variables constitute the circular structure). A cir-
cular structure of the second kind gets untangled when
the constituent processes terminate successfully, but re-
mains as garbage if the processes are aborted or go into
a deadlock state. We do not know yet how serious this
problem of non-reclaimable garbage is. Eventually, we
might need to implement global garbage collection.

The new external reference mechanism and the uni-
fication algorithm are adopted in the KL1 implementa-
tion on the Multi-PSI version 2 (instead of the old PSI
(PUs used in the Multi-PSI version 1, it uses the CPUs
of PSI-I] machines [Nakashima 87]). The implementa-
bion is near cormpletion and we will soon slarl running
benchmarks for evaluation.

ACKNOWLEDGMENTS

We would like to thank the members of the KL1 imple-
mentation group in ICOT for stimulating discussions.
We are also indebted (o Dr. 5. Uchida, the director of
the 4th Research Laboratory, and Dr. K. Fuchi, the di-
rector of ICOT, for giving us the opportunity of ressarch
in this area.

REFERENCES

[Bevan 87 D. L Bevan. Distributed garbage collection
using reference counting. In Proceedings of Par-
allel Architectures and Languages Europe, pages
176-187, June 1987,

[Chikayama 87] T. Chikayama and Y. Kimura. Multiple
reference management in Flat GHC. In Proceed-
ings of the Fourth International Conference on
Logic Programming, pages 276-293, 1987,

[Clark 86] K.L. Clark and 5. Gregory. PARLOG: paral-
lel programming in logic, ACM Transactions on
Programming Languages and Systems, 8{1):1-49,
1986.

[Foster B8a] I Foster. Parlog as a System Programming
Language. PhD thesis, Imperial College of Sci-
ence and Technology, March 19538, To be pub-
lished by Prentice Hall.

variable to a term containing that variable is an error. How this
is to be enforced, however, is another question.

[Foster 88b] I Foster. Parallel implementation of par-
log. In Proceedings of the 1988 International Con-
ference on Parallel Processing, Vol IT Software,
pages 9-16, 1988,

[Foster 88c] 1. Foster. An asynchronous parallel garbage
collector for a single-assignment langnage. To ap-
pear as Imperial College Technical Report, 1988,

[Goto B7] A. Gotoe. Parallel inference machine research
in FGCS project. In Procesdings of US-Japan AT
Symposizm 87, pages 21-36, 1987,

[Goto 88] A. Goto, Y. Kimura, T. Nakagawa, and
T. Chikayama. Lazy reference eounting — an
incremental garbage collection method for par-
allel inference machines, In Proceedings of the
Fifth International Conference and Symposium
on Logic Programming, pages 1241-1256, 1988,

[Tchiyoshi 87] N. Ichiyoshi, T. Miyazaki, and K. Taki. A
distributed implementation of Flat GHC on the
Muit-i-PS[. In Proceedings of the Fourth Interna-
tional Conference on Logie Programming, pages
257-275, 1987,

[Makajima 88] K. Nakajima. Piling GC — Efficient
Garbage Collection for Al Languages. Technical
Report TR-354, ICOT, 1988, Also to appear in
Proceeding of the IFIP WG 10.3 Working Con-
ference on Parallel Processing, 1988.

[Nakashima 87] H. Nakashima and K. Nakajima, Hard-
ware architecture of the sequential inference ma-
chine ; PSI-IL. In Proceedings of 1987 Symposium

on Logic Programming, pages 104-113, Septem-
ber 1987,

|Rolcusawa 88] K. Rokusaws, N. Ichiyoshi, T. Chika-
yama, and H. MNakashima. An efficient termi-
nation detection and abortion algorithm for dis-
tributed processing systems. In Proceedings of the
1988 International Conference on Parallel Pro-
cessing, Vel [Archilecture, pages 18-22, 1088,

[Shapire #4] E. Shapiro. Systolic programming: A
paradigm of parallel programming. In Proceed-
ings of The International Conference on New
Generation Computer Systems 1984, pages 458
470, 1984,

[Shapire 83] E. Shapire. A Subset of Concurrent Prolog
and Its Interpreter. Technical Report TR-003,
ICOT, January 1983,

[Taki 86] K. Taki. The parallel soffware research and
development tool: Multi-PSI system. In Procesd-
ings of France-Japan Artificial Inlelligence end
Computer Science Symposium 1986, pages 365-
381, 1986.

o913

[Taylor 87] 5. Taylor, S. Safra, and E. Shapiro. A par-
allel implementation of Flat Concurrent Prolog,
Iniernational Journal of Paralle! Programming,
15(3):245-275, 1987,

[Ueda 86] K. Ueda. Guarded Horn Clauses: A Parallel
Logic Programming Language with the Concept
of a Guard. Technical Report TR-208, ICOT,
1986.

[Watson 87] P. Watson and 1. Watson. An efficient
garbage collection scheme for parallel computer
architectures. In Proceedings of Parallel Archi-
tectures and Longuages Europe, pages 432-443,
Jume 1987,

AFPPENDIX

A THE COMPARISON BETWEEN WRC
AND WEC.

We briefly compare our WEC scheme with the WRC
scheme in [Bevan 87] and [Watson 87].

1. WEC has export and import table to reduce the
number of inter-processor read requests. The export
table also makes independent local garbage collec-
tion feasible.

2. The addition of WEC at importation does not have
its counterpart in WRC.

3. The WEC supply protocol and zero encoding do not
have their counterpart in WRC.

4. The notion of safe and unsafe external references is
not needed in WRO, sinee WRC is not applied to
logic programming languages. :

Of course, all these extra features in WEC have over-
heads associated. In particular, log encoding optimiza-
tion adepted in WRC is impossible in WEC, becanse
WEC can be added af importation. The trade-off de-
pends on the langnage as well as the ratio between intra-
and inter-processor communication throughput,

