PROCEEDINGS OF THE INTERNATIONAL CONFERENCE
ON FIFTH GENERATION COMPUTER 5YSTEMS 1988,
edited by TCOT. € ICOT, 1968

Unification-Based Query Language
for Relational Knowledge Bases
and Its Parallel Execution

Hidetoshi MONOI, Yukihiro MORITA, Hidenori ITOH
Institute for New Generation Computer Technology™
Toshiaki TAKEWAKI, Hiroshi SAKAIL Shigeki SHIBAYAMA
Toshiba R & D Center!

ABSTRACT

Relational database systems are very uselul and widely
accepted as the systems that handle large amounts of
data efficiently. However, the expressive power of the
data model is limited because of the restriction of the
first normal form. Thia hmitation prevents storapge of
knowledge representing data with a complicated struc-
ture to a traditional database system and prevents the
realization of applications using large amounts of knowl-
edge. The relational knowledge base (REB) model was
mtroduced to remove such limitations on the logic pro-
gramming language. The BEB epables Prolog ferms to
be stored and manipulated within the framework of the
relational model. :

This paper introduces a manipulation language for sets
of terms stored to the RIKB. This manipulation [anguage
is embedded in the Jogical programming language and
enables it to manipulate large amounts of knowledge
represented by terms. Because our manipulation lan-
guage can handle terms using the unification operation,
unification-based logic programming languages can in-
corporate functions to manipulate sets of terms stored
in the RKB without operational gaps.

1 INTRODUCTION

As knowledge information processing technology ad-
vances, many konowledge-based systems, such as expert
systems, will be made for practical use. The amount of
knowledge and the degree of complexity of knowledge
representing data used in such systems will increase ac-
cozding to the degres of maturation. Sueh knowledge will
be required to be shared by knowledge-based systems on
the analogy of traditicnal database systems.

In recent years, logic programming languages have be-
come very popular in the design’ and implementation of
knewledge-based systems. Hewever, these systems are
established with the premise that all knowledge is in-
cluded as part of the systems in spite of the fact that

*4-28, Mita 1-Chome, Minato-lon, Tokya, 108, Japan
11, Kemukai-Toshiba-che, Saiwai-ku, Kawasaki, 210, Japan

they must handle large amounts of knowledge or that
they have a knowledge base management system for pri-

“vate use. In such situations, it is necessary to establish a

dedicated system which can efficiently manage and store
large amounts of knowledge, that is, knowledge repre-
senting data with a complex structure, shared by several
knowledge information processing systemns. We call this
dedicated system & knowledge base system. _

Database systems are very useful and widely acespted
as systems to manipulate and share large amounts of
data. However; the expressive power of the data model
15 limited becanse of restrictions such as the first normal
form of the relational database. This limitation prevents
the use of traditional database systerms as the back end of
logic programming languages which use structured terms’
as the basic data structure. Recently, much research has
been conducted towards extending the fraditional data
model and adding more useful semantics to it [7][9]]14].
For the relational data model in particular, many exten-
sions have been made because of its formally definable
semantics, '

We are researching a knowledge base system which
can be accessed from knowledge information process-
ing systems based on the logic programming language
in Japan's Fifth Generation Computer Project. A logic
programming language can be regarded as a program-
ming language which manipulates terms as basic data
structures. It can manipulate terms with a complex
structure by using a unification operation. Therefore,
we intend to establish knowledge base systems that can
store and manipulate large amounts of terms efficiently.

We have proposed a relationad knowledge base (RKEB)
model as an extended relational data model which can
store a sef of terms to a table (relation) and manipulate
terms by extended relational algebraic operations based
on a unification operation [5][13]. The collection of these
extended relations is called the REE and the extended
operations are collectively called retrieval by unification
(RBU) operations. We have also proposed an architec-
ture of the knowledge base machine (KBM) with pro-
cessing elements and a mulliport page-memeory. On this
KBM, each RBU operation is executed in parallel for the

fast retrieval of RKB.

The mejor contribution of this paper is to show how
to embed a manipulation language for the RKB in logic
programming langnages. Introducing the unification op-
eration as a basic operation, the manipulation language
is naturally embedded in a logie programming language.
This embedding will provide a convenient environment
for logic programming languages when a large amount
of knowledge is required. This paper introduces a query
language in the form of predicates of the logic program-
ming language, which can define the retrieval and up-
dating of sets of terms. This paper also explains how
to execute our manipulation language in parallel on our
KBM.

The remainder of this paper describes the relational
knowledge base model, manipulation language for RKB
and its parallel execution. Section 2 overviews the rela-
tional knowledge base model. Section 3 defines queries
for the relational knowledge base. Section 4 describes
our manipulation language for term relations. Section
5 briefly describes the architecture of our KBEM and the
way to execute our manipulation language in parallel on
this KBM. Lasily, Section § iz a discussion and a sum-
mary of this paper.

2 OVERVIEW OF THE RELATIONAL
EKNOWLEDGE BASE MODEL

This section overviews the relational knowledge base
model, This model enables us to define terms as ab-
tribute values of the relational scheme and to manipu-
late these terms by unification operations. Because items
stored to each relation are terms, instances of the rela-
tional scheme are called ferm relations.

A relational knowledge base is a collection of term re-
lations, An n-attribute term relation is defined as a re-
lation whose domain of each attribute is a set of terms.
Here, we define terms as:

1. A varigble is a term.
2. A comstant is 4 term.

3. I f is an n-ary function symbel and 4 45, , &,
are terms, then f{t,43,---,4,) is & term.

This definition of terms is the same as logic programming
languages such as Prolog. Hxpressing a set of terms,
F;, an n-attribute term relation iz defined as a subset of
the Cartesian product of sets of terms, K, Ky, -, Ky
{5][13]. Assuming that T is an n-attribute term relation,
T is defined as:

TCHKywKyw--w K.

In the process of extending the relational data model
to the relational knowledge base model, operations of

BT

conventional relational algebra, such as join, projection,
and restriction, are extended to operations based on uni-
fication. We call these extended operations RBT ap-
erations. The extension 1'a.u!.';I made by enhancing the
equality check between constants to unification opera-
tion between terms. The wnification-jein and wnification-
restriction operations are defined as RBU sperations
[5][13].

Let us consider a simple knowledge base which will be
used to illustrate the relational knowledge base model.
In the following, we express a tuple of an n-attribute
term relation, r, as:

T(I‘.I.:Iﬂl' 0T !Enj

where cach z; stands for a term defined above. Each tu-
ple with the same relation name and the same number
of attributes is stored to the relation with its relation
name, Moreover, we assume the conventions of DEC-10
Prolag, such that any werd starting with either a capi-
tal letter or - denotes variables, and other words denote
constants.

Allowing terms as attribute values, many expressions
become possible. The following 15 a simple bicycle
relation which expresses a module-submodule relation
among modules constructing bieyeles. Altheugh there
are several submodules for one module, we can express
that relation in just one tuple using a list structure,

Example 1 Module-submodule relation of bicycles
assembly(bike, [frame,wheel]).
agsembly (frame, [front fork, diamond frama]) .
assenbly(wheel,[tire,rim, spokes,hub]).

For example, the first tuple expresses the facl that the
bike module has wheel and frame as submodules.

Introducing n-ary functors, we can add more at-
tributes to each item. For example, we can distinguish
colors among modules by introducing a color atiribute
for each item. '

Example 2 More complez expressions using funciors

assembly (bike{red), [frame(red) ,wheall).
assembly (bike{yellow), [frama(yellow) ,wheal]).
assesbly (frama(red),

[front_fork(red) ,diamond frame(rad)]).
aszgembly (frame(yellow),

[front_fork(yellow) ,diamond frame(yallew)]).
assembly (wheel, [tire,rim,spokes,hub]].

This shows, [or example, that a red bilke has & red frame
and a red frame is composed of & red front_fork and a
red diamond frame.

By introducing variables, we can express the prop-
erty inheritance between a module and its submodule.
For example, the following tuple expresses the fact that
front_fork and diamond.frame have the same color as

frame.

898

Example 3 Ezpression of property inherifance using vari-
ables
assembly{bike(red), [frame(red) ,wheal]).
azsembly(bike(yellow) , [frame(yellow) wheall).
azsembly(frame(X),
[frentfork(X),diamend frame(X)]).
assembly(wheel, [tire,rim,spokes, hub]}.

As stated above, relational algebraic operations are
extended to RBU operations. The RBU operations al-
low the unification operation to be used between terms
as conditions of relational algebraic operations. In the
following, we use © to dencte the unification operation
ag a condition, and use many symbols defined in [12] to
denote relationsl algebraic operations, ie., o, M, and =
for restriction, join, and projection, respectively.

Using the unification-restriction operation, we can re-
strict tuples whose first atiribute can be unified with
bike(X) from the assembly relation of Example 3. Sup-
posing that the results of this restriction are stored into
the new bwo-attribute relation, re ﬂulti{h, ia), this op-
eration can be expressed as follows.

resultl = T Ay bikel X :,e.ascmbiy[..rii, .f'igzl

Exa.mpfe 4 is the result of this n‘pl:ra.‘t.iun.

Example 4 Hesult of the unificafion-restriction
resultl(bikel(red)} , [frama{rad},vheel]].
resulti(bike(yellow), [frams(yellow) ,uheel]).

We can make a list of parts that are necessary to maloe
bike{red) and bike{yellow) from assembly of Exam-
ple 3 and the resultl relation. First, to extract sub-
modules one by one from the list of the second attribute
of the assembly relation, we must introduce a special
relation, template, which has only one tuple, such as:

template(X, ¥, [X[¥]).

and make the following unification-join operation be-
tween the template relation and assembly relation.

temp =
Tay.4: (template(Ay, Az, As) m:ﬁ assembly(By, By))
We can obiain the temp relation below as a result.

temp(frama{red) , [vheell).
temp{frame{yellow), [wheell).
temp{front_fork{X), [diamond_frama(X1]).
temp{tira, [rim,spokes , hub]).

Then, making the unification-join between the temp
relation and the assembly relation, we can obtain the
relation of Example 5.

resultd =
.85 (temp(Ay, Az) , op, assembly(By, By))

frama(X) in the first attribute of the assenbly relation is
unified with frame(red) and frame(yellow) in the first
attribute of the temp relatipn. and the binding to varable
¥ is propagated to ferms in the remaining attribute.

Example 5 Result of the unification-join
result2{frame(zred),
[front fork(red) ,diamond frame({red)]).
result2{frame(yallow),
[front.fork{yellow) ,diamond frame{yellow)]).

Although other operations, such as aggregate fune-
tions, are not deseribed abowve, the relational knowledge
base model includes them with the same operational se-
mantics defined in the relational data meodel.

3 QUERIES TO THE RKB

This section considers how to access term relations
from a logic programming language. A logic program-
ming language can be regarded as a programmming lan-
guage that manipulates terms as a basic data structure,
The RKB enables direct storage and manipulation of
terms. These functions are effective in managing and
storing large amounts of knowledge represented by terms.

Term relations are manipulated by the relational alge-
braic operations in the previous section. Those relational
algebraic operations are procedural operations. Because
a logic programming language is rather declarative, it
is necessary to make manipulation language declarstive
s0 that it can be embedded in the logic programming
language without operational gaps.

3.1 BRelational Calculus for the RKB

For the relational data model, we already have a
declarative manipulation language, called relation®l cal-
culus, which is based on predicate caleulus. Because
predicate caleulus ia also a logic programming language
base, it is desirable to establish a manipulation language
for the RKB based on relational caleulus,

This section gives an informal definition of the ma-
nipulation language for the RKB, based on relational
caleulus. It can be considered as an implementation of
domain relational calculus for term relations. Referenc-
ing the definition of domain relational caleulus in [12], we
axtend it for the term relations. The extension is made
by extending the domain of each caleulus to the set of
terms and operations defined between constants to the
unification operation between ferms.

Expressions in domain relational calenlus for the term
relations are of the form:

vyt > hlxr,xe, 0 000))

where each #; (1 <i < k) and =; {1 < j <1} is a term
and 1 is a formula built from terms and atomic formulas

{": tlttﬂd "

defined below. Each 4; can include the same varizables
used in each r; so that when variables in each z; are
instantiated in the evaluation of ¢, bindings are propa-
gated to the corresponding variables in each #;. Atomic
formulas forming o are defined ds follows:

r{xy,%Xg,:--,X) : where r is the relation name of an [
atiribute term relation and every z; is a term.

xly : where £ and y are terms and # is an operator de-
fined between terms.

In the definition of domain relational caleulus for
the relational data model, each r; must be a constant
or a varizble, and r{zy, 2y, -+, z) merely asserts that
the value of each z; variable must be selected so that
ayEg -+ - xp 16 in relation . However, we must extend this
definition o that it can manipulate sets of Lerms.

The first type of atomic formule asserts the follow-
ing. Suppose that <y, 4, -, 4 > dencies an arbitrary
tuple of relation r, the value of each z; (1 < 7 < I}
must be x; such that r{z), o5, -, 5[] is the result of
unification between r{zy, &3, -, 21) and #{y,va, o).
That is, there is a most general unifier, 8, between
(1, T2, - -y 3) and r{vy, ¥, -+, 1), such that

T[:‘]I_! E;:_' tty mﬂ E T{‘Ill'mil t I!}ﬁ = !'l:;,l'h ayeoe syﬂﬁ'

For example, supposing that X and ¥ are variables, we
can select all tuples from the assembly relation of Ex-
ample 3 using the formula of assembly(X,Y¥). Using the
assembly (bile (X) ,¥) formula, we can select the same
tuples as Example 4.

. The second type of atomie formula, =8y, asserts that
z and y must be terms that make =8y true. # is also
extended frem an arithmetie relational operator to the
operator defined between terms. The next section in-
troduces various lands of relational operators between
terms, '

Atomic formulas may be combined by means of logical
operators such as WV, A, and =, We define formula
recursively as follows:

1. Every atomic formula is a formula.

2. H 44 and 1y are formulas, then ¥ V s, 1 A 1y,
and —wdy are formulas. These formulas assert re-
spectively that "y or 3, or both are true®, “yy
and tfy are both true”, and "4y is not true®.

3.2 Relational Operations between Terms

For the relational data model, arithmetic relational
operators are sufficient to compare constants. However,
these arithmetic operators cannot handle structured data
types such as terms. Therefore, it is necessary to add
other relational operators which are defined between

899

terms for the REKB. This section introduces relational
operations between terms. These operations are based
on unification, unifiability, arithmetic comparison, and
generality between terms.

In the fellowing, it is assumed that x and y stand for
terms. Bach operator is defined as follows:

(1) Unification

Unification is one of the most necessary operation
primitives to manipulate terms. We have defined three
kinds of operators relating to unification.

When we want to unify two terms or extract substruc-
tures from terms, we can do it using the unification op-
ergtion, which is shown by = x = y asserts that it is
true when two terms are unifiable and x is unified with
y. For example, when the following formulas are used
for the assembly relation of Example 3,

assenbly(X, Y) A (X = bike(A))

we can select the first two tuples, whose first attribute’s
value is bike(A) of the assembly relation, and ohizin
{red,yeliow} as a set of bindings to variable &,

_Sometimes, it is necessary only to test whether two
terms can be unified or not without applying their sub-
stitutions. We call this a wnify-check operation and as-
sign the <= symbol to it. For example, when the abowve
formula is:

assembly(X, ¥) A (X <=> hilusl:ﬂlj:l

it merely selects the first two tuples, and cannot cbtain
any bindings for the variable, A.

{2} Generality

When we want to know if several terms have the same
structure or if several terms may have the same meaning
in our semantic definition for terms, neither the unifi-
cation nor the unify check operation can be used. To
enable this, the generality of terms should be compared.
The generality of terms is defined as follows. '

Generality: Between terms t and «, £ i3
defined as more general than u if and only if
there is a substitution, #, such that 8 = u.

According to the above definition, £(X,Y) is more gen-
eral than £(3,2). This is shown using >>:

£{E,¥)>»£(3,2).

When one term is more general than the other and vice
versa, the generalily of these terms is regarded as equal.
For example, £(X,Y) and £({A,B) is such a case. Thisis
denoted <<>>, as follows.

900

X, Yr<ee>E(a,B).

According to the above definition, if the generality of
two terms is equal, they can be made literally identi-
val by appropriately renaming the variables of ane term.
Note that there are many cases when the generality or-
der is not applicable. For example, we cannot decide the
generality between £(X,3) and £{2,Y).

{3) Equality

This 15 used when we want to test whether the two
terms currently instantiating each term ere {terally
equal. Fapedially, variables in equivalent positions in the
two terms must be literally equal. Literally equal is de-
nated ==, Far example, although £(X,¥) and £{4 ,8) are
equal in generality, they are not equal in the case of liter-
ally equal when each variable, X, ¥, &, and B, is not instan-
tiated. However, if ¥=A and ¥=Z, then £(X,¥)==£(4,B).

3.3 Query Expressions in the Form of Calculus

As stated in the preceding sections, queries for the
RKE are expressed as a combination of two kinds of
atomie formulas, This section gives some query expres-
gions using atomic formulas defined in the preceding sec-
tions by examples. Suppose that each {; and z; is a term,
and a calculus expression is an expression of the form:

{": LATE S TERERS h['[:rll Egat x\’.}}*
The unification-join between relations »(X,¥) and
t(Z,W) is expressed as;
{<XY,0 > |x(X,Y) At(Y,H)).

Attributes used to join are designated by the same vari-
able name. In this case, r and t are joined on the second
attribute of = and the first attribute of . The bindings
to each variable of one predicate are propagated to vari-
ables with the same variable name in ofher predicates,
the same as the execution of Prolog clauses. We ¢an
rewrite this formula using the unification operator, =, as
follows.

[XY, [=(XY) At(Z,W) A (Y =2)}
Moreover, equijoin can be asserted by the literally-equal
operator, ==, as follows.

(XY W> (X AZWA(Y==2)}.

A restriction operation which obtains tuples in
resulti of Example 4 from assembly of Example 3 is
expressed as:

{< bike(X),Y > |assenbly(bike(X),T)}.

Lastly, unification-jein and projection between
resultl and assembly to obtain result2 of Example 5
is expressed as follows:

{< ¥,2 > |resulti(X,[Y].]) A assembly(Y,Z)}.

4 MANIPULATION LANGUAGE FOR THE
RKB

We have established a manipulation language for the
RKB. This manipulation language is embedded in ESP
[3], which is a logic programming language with object
oriented features. ESP has been developed in ICOT and
used to establish the SIMPOS, the operating system of
the Al personal work station, PST.

As described in the previous section, gqueries for the
term relations can be built based on the unification op-
eration defined among terms. Becanse the unification
operation can be regarded as a basic operation of logic
programming languages, it is possible to integrate the
manipulation language for the RKPE into a logic pro-
gramming language without operational gaps. That is,
we can establish a manipulation langueage with the same
operational semantics as a logic programming language.

We have embedded the manipulation language for the
RKB by providing special predicates which manipulate
term relations. They are used to create lerm relations,
to insert tuples into term relations, or to retrieve tuples
from term relations, :

The special predicates for accessing the REB are de-
seribed below.

{1} Data Retrieval

Formai:
retrieve(Relation, uery)
retrieve(sort(Relation, Attrlist ,Eq0pList) , Query)
retrieve({unique(Relation,Eq0p) ,Query)
retriave
{group(Relation, Attrlist Eqiplist),Query)

Meaning:

The retrieve predicate iz always execufed success-
fully and creates a resultant temporary relation within
the knowledge base system as a side effect.

retrieve(Relation,Query) is the simplest predicate
for retrieving tuples from term relations. In this pred-
icate, Query denctes the condition used to retrieve tu-
ples. For example, in specifying assenbly(frame{X),Y)
as this Query for Example 2, tuples that have the
unary functor, frame, in the first attribute are re-
trieved. Relation denotes the specification for the re-
sultant relation of this retrieval operation. For exam-
ple, retrisve{color(X),assembly(frame(X},)} creates
a one-atiribute relation, coler, that consists of two tu-
ples, color{red) and color(yellow). If the relation
gpecified by Relatien is not in the REB, it is creatad
before execntion of the retrieval operation.

Uuery expressions described in the previous section
are designated in the argument, Query, Variables used
in the query expressions are nol bound in execution of

the retrieve predicate. They are used only for specify-
ing where values that satisfy the conditions of Query are
placed in the resultant relation.

The remmaining three predicabes are retrieval opers-
tions to which aggregate functions are added. Fach pred-
icate corresponds to sorfing, to making unique, and to
grouping tuples of the resultant relation. AttrList spec-
ifies attribuie variables used in Relation in the form of
a list. Sorting and grouping are performed according to
the values of attributes designated in this list. Eqlp and
EqDpList denote relational operations that are used to
compare values to execute sach aggregate funclion.

(2) Tuple reference

Format:
get{Tuple}
getaslist(List, Numbar,Relatien)

Meaning:

As stated above, the retrieve predicate returns no
binding values with respect to the tuples in the resuliant
relation. Therefore, we need a predicate to reference
values -of each tuple in the term relation. We have two
kinds of predicate to refer the values of each tuple. One
refers tuples one by one, and the other refers all tuples
of the designated term relation at once.

The get(Tuple) predicate is the first kind of predicate.
Tuple specifies the relation name and its atbribute. For
example, we can specify assembly{frame(X),¥) as Tuple
for Example 2. Tuple is unified with one of the tuples in
the designated relation, and bindings that are the result
of thiz unification will be returned. We can access all
tuples in the term relation designated by Tuple using
backtracking. That is, in redoing get, an alfernative
tuple is unified to Tuple.

The getAsList(List,Number,Relation) predicate re-
turns the number of tuples specified by Number from
the relation specified by Relation to List in the
form of a Prolog list. Being different from the get
predicate, this predicate returns values in the form
of tuple with the relation name. For example, we
can use get(assambly(X,¥)) for tuple-wise reference or
getAsList(List,3,assenbly(X,¥)) for reference of the
first 3 tuples for the assenbly relation of Example 2.

(3) Tuple insertion

Format:
put (Tuplk al
putislist{List)

Meaning:
In the same way as tuple reference, we have two
kinds of predicate for tuple insertion into the ferm re-

901

=]

Tl net
| Inta‘cmnacﬂnn
1
[r=] e (o] - — - ﬂﬂ
I
MPPM

Figure 1. Knowledge base machine configuration

latione, They are put{Tuple} for tuple-wise insertion
and puthsList(List,Relation} for insertion of a set of
tuples. The arguments, Tuple and List, play the same
role as the get and getAsList predicates.

That pusi{Tuple) predicate inserts a tuple that is spec-
ified in Tuple argument or currently instantiates Tuple
argument when it iz executed. Tuple specifies the rela-
tion name and its attributes in Lhe same way as the get
predicate does. However, the ditribites must be instan-
tizted to values stored inbo the relation. The relation
name of this tuple is used as specifications for the tar-
get relations into which the tuples are inserted. That
is, target relations are decided dynamically aceording to
the values of the Teple argument when the predicate is
executed.

For example, when we write pot{assembly (bike(X),
[whael,frame(X)]1),
the assembly(bike(X),[wheel,frame(X}]) tuple is in-
serted into the assembly relation of Example 2.
Besides, suppose that variable X was bound to

"blue before the put predicate is executed. The

assembly(bike(blue}, [#heel,frame(blua)]) tuple wil
then be inserted.

The puthsList(List) predicale inserts a set of tuples
stored in List in the form of the Prolog kst into a rela-
tion. This predicate also uses the relation name of tuples
as specification for the output relation. Each tuple must
have the same relation name,

We realize not by the difference operation betwesn
term relations, that is, we express the negation of a re-
lation in a relative complement expression. Therefore,
we provide a meta-level predicate, such as dif (4,B,0),
where & and B are relations with the same attribute num-
ber and 8 is a relational operator, as a Query of the
retrieve predicate. dif(A,B,#) asserts the set of tu-
ples a in A such that, for arbitrary tuple b in B, afb is
not true if A and B have the same number of attributes.
£ mmst be ==, <<>>, or <=3, .

902

5 PARALLEL EXECUTION OF THE
MANIPULATION LANGUAGE

The RKB is implemented on an experimental knowl-
edge bese machine (KBM) which is a multiprocessor sys-
tem with & multiport page-memory [4][6]. We connected
a PSI to this system as the host system. The manip-
ulation language introduced in this paper is used as an
interface language between the ESP and RKB [10].

This section describes how to execute the retrisve
predicate in parallel on this KBM.

5.1 KBM Architecturs

First, introduce hardware configuration of our KBM,
which is the background for parallel executions of
retrieve predicates, is introduced.

Figure 1 shows the basic hardware configuration of our
EKBEM. The main components of the machine are pro-
cossing elements (PEs) with disk systems, a multiport
page-memory (MPPM), shared memory as an intercon-
nection structure and a systermn contral processor (SCP).
PEs can execute RBU operations directly inpubting and
oulpulting sets of terms fromte MPPM and communi-
cate with each other through the shared memory. The
MPPM plays the role of & work space for each' PE when
it executes RBU operations. - The SCP is a front-end
processor for this KBM.

The MPPM is composed from a switehing network
with multiple input/output ports and memory banks.
An access unit of the MPPM is a page and each page is
allocated horizontally in all memory banks so that each
page can be accessed from several ports simultaneously
without any access confliet [10].

Each RBU operations are decomposed into concur-
rently executable operations and distributed among each
PE for parallel execution. The MPPM can be accassed
simultaneously from each PE in parallel execution. All
term relations are stored in the MPPM during execution
of REU operations.

5.2 Compilation and Parallel Execution of the
Manipulation Language

The retrieve predicates are processed as shown in
Figure 2. The Query part is compiled inte a sequence
of RBU operations whose result is in the form specified
in the Relation part. RBU operations are decomposed
‘into sub-operations.

Compilation iz made by analysiz in the form of an
AND-OR tree. Each node of this AND-OR tree corre-
sponds to a ABT operation, such as w-join, u-restriction,
and projection, each of which handles at most two rela-
tions. Becanse each RBU operation can handle at most
two relations as input relations at once, temporary re-

Retrieve predicates

£ rbu stands for

rhi rhu rhu rbu

[e[m]] - - - (2102

Figure 2. Parallel execution of retrieve

retrievelalX,Y),
(Ce(X,Z), (Y,), ¥=£ () ;d(X,¥,a)))
t'means OR (V).

|b{H,z}'| ICREN |d{x-,ft,m-!" [a='a" |
ol¥,2) | |Y=f(B)
[&'(Y,Z) «= -ﬂ"wﬂa]{c{‘f,z}}]
[tri(X,Y) & wxy(b(X2) 0p(Y.H) |
[d"{x 'lr} o #Lf{dloﬂf{d[x.l T,A]I}}]
[alXY) & tr(X,ud(XY) |

Figure 3. An retrieve predicate and its AND-OR tree

lations are introduced in compilation. The root node
corresponds to the resultant relation of a retrieve op-
eration. After the AND-OR tree has been created, a
sequence of RBU operations is generated from the tree.
Figure 3 thows an example of an AND-OR tree.

The compiled RBU operations are exscuted in paral-
lel on our KBM for fast execution. As explained above,
cach BB operation is decomposed into coneurrently ex-
ecutable sub-operations. This decomposition is made by
herizontally partitioning one relation which iz input to a
REBU operation. Then, these decomposed sub-operations
are distnibuted among PEs and executed concurrently.
In this method for parallel execution, relations on the
MPPM may be accessed simultanecusly from several
PEs. However, each PE can access relations without
any conflict because the MPPM can provide each PE
with an independent data transfer path. This decom-
positions are made in executing the sequence of RBU
operations which is generated as the result of the above

compilation, The size of each decomposed operation is
decided on the basis of the MPPM page size.

6 CONCLUSION

This paper introduced a manipulation language for the
RKE. The RKE is an extension of a relational database,
which ean store and manipulate sets of terms directly.
The manipulation language introduced in this paper can
manipulate terrns using the unificatien operation and
provides functions to access sets of terms stored in the
RKEB from a logic programming language. For fast re-
trieval, our manipulation language is executed in parallel
on our KBM, which is a multiprocessor system with a
large-scale shared memory.

There are approzches to integrate database systems
and logic programming languages, such as deductive
database systems [1][3]. Deductive database systems are
discussed on the premise that large numbers of facts are
stored into relational database systems. The RKB can
provide fuller expressive power to model knowledge than
the relational database. Therefore, the REB can carry
a greater part than the relational database when we in-
tegrate a logic programming language and 2 database
system. However, our manipulation language cannot ex-
press recursive queries at present. Recursive queries are
ene of the most important features for realizing deduc-
tion on a koowledge base, A future research topic ia fo
ineorporate the expression of recursive queries.

Ag described in [11], the impedance mismatch between
the relational query and & logic programming language
must be taken into consideration when the method of in-
tegrating them is considered. This mismatch eriginates
in the fact that, although the relational queries are based
on set-at-a-time semantics, the logic programming lan-
guage is based on tuple-at-a-time semantics. LDL: [11]
intends to resolve such problems by extending a logic
programming language to be based on set-at-a-time se-
mantics. We provide two special predicates, get and
getisList. These predicates enable the logic program-
ming language to access not only one tuple at a time but
also one set at a time. Compared to LDL, our manipula-
tion language does not resolve the mismatch essentially.
However, it enables a traditional logic programming lan-
guage to access the RKB without any semantic change.

Last, comparison of the expressive power between
RBU operations and the caleulus based manipulation
language is not discussed in this paper, because it is a
future research topic.

Acknowledgment

We wigh to extend our thanks to members of the
VLEEM meeting for many useful discussions.

o03

Heferences

[1] Bancilhen, F. et al., “An Amateur’s Introduction
to Hecursive Query Processing Strategies”, in Proe.
ACM SIGMOD 86, pp.16-52, 1986

[2] Chikayama, T., “Unique Features of ESP”, in Proc.
Int. Conf. FGCS, 1984

[3] Gallaire, H. et al., “Logic and Data Bases : A Dedue-
tive Approach”, ACM Comput. Suwry., Vol.16, No.2,
pp-153-185, 19584

[4] Monoi, H. et al., “Parallel Control Technique and
Performance of an MPPM Knowledge Base Machine
Architecture®, in Prec. {th Imf. Conf Data Engi-
neering, pp.210-217, 1988

[6] Morita, Y. et al.,, “Retrieval-By-Unification Opera-
tion on a Relational Knowledge Base”, in Proc, 128th
Int. Conf. Very Large Databoses, pp.52-39, 1986

[6] Sakai, H. et al, “A Simulation Study of a Knowl-
edge Base Machine Architecture”, in Detabase Ma-
chines and Knowledge Base Machines, Kluwer Aca-
demic Publishers, pp.585-598, 1088

[7] Scholl, M. H. and Scheck, H. J. (eds.), Proc. In-
ternational Workshop on Theory and Applications of
Nested Relations and Complez Objects, 1987

[8] Shibayama, S. et al, “Mu-X: An Bxperimental
Knowledge Base Machine with Unification-Based Re-
trieval Capability”, in Proc. France-Japan Artificial
Intelligence and Computer Science Symposium 87,
pp.343-357, 1987

[9] Stonebraker, M., “Object Management in POST-
(GRES Using Procedures”, Proc. 1986 Int. Workshop
on Objecl-Oriented Datobase Systems, 1986

[10] Tanaka, Y., “A Multiport Page-Memory Architec-
ture and A Multiport Disk-Cache System”, New
Generation Compuling, OHMSHA, 2, pp.241-260,
1984

[11] Tsur, S. et al, “LDL: A Logic-Based Data-
Language”, in Proc. 12th Int. Cenf. Very Large
Data Bases, pp.33-11, 1986

[12] ﬂliman, D.J., “Principles of Database Systems”,
Computer Science Press, Maryland, USA, 1982

[13] Yokota, H. et al, “A Model and an Architecture
for a Helational Knowledge Base™, in Proc. 15th Int,
Symp. Computer Architecture, pp.2-8, 1986

14] Zaniolo, C., “The Database Langaage GEM”, Proc.
ACM-SIGMOD Conf. on Management of Data, 1983

