PROCEEDINGS OF THE INTERMATIONAL CONFERENCE
ON FIFTH GENERATION COMPUTER SYSTEMS 1984,
edited by ICOT. @ [COT, 1988

887

MULTIPORT MEMORY ARCHITECTURES

Yuzuru Tanaka

Electrical Engineering Department
Hokkaido University
Sapporo, 060 Japan

ABSTRACT

This paper shows how a k-port memery aystem can be
made of single-port memory devices or multiport memory
devices with fewer ports. Aceess conflicks never decur in such a
system unless more than one port tries to write to the same
address. A& k-port memory system with N words, however,
requires O%2) deviees with N words for each, This large
redundancy makes it impractical to select a large & The aceess
time of & &-port memory system is & sum of the device access
time and the time to calculate the parity of & bits, The latter Is
proportionel to logek. For a smalk k, The latter component can
be neglected. Since we are interested in the applications to
mulliprocessors with a shared memory, the number k of our
coneern is within the range from 4 to 16, and hence the loggf
compoenent of the access time may be neglected. Such a
multiport RAM aystem (MPL) ean be used as a multiport
cuche memory to form a Jarger multiport memory together
with a previeusly proposed mulliport page-memory (MPPM)
(Tanaka 1984a, 1984b), This configuration reduces the cost of
the multiport memory system from O0E2) to O(1). Such a
multiport cache architecture outperforms parallel cache
architactures, especially for k> 8.

1 INTRODUCTION

Progress of parallel processing has made us realize the
insufficient communication bandwidth between a processing
unit and a memory unit (Hwang and Briggs 1985). This
bottlensck is sometimes called von Neumann's bottleneck.
Super eomputers are coming to require a multiported veetor-
register file and a highly interleaved main memory to match
the data provision capability of memory systems to the high-
speed pipeline eomputation power of multiple operation pipes.
Ceneral purpose computers adept both instruction pipeline
and operation pipeline, and reguire cache and memory
interleaving technologies to mateh them. Some consiat of more
than two processors sharing a memory space. High-
performance compubers require more powerful pumps to
provide the data processing unit with a suffictent ameunt of
data in a sufficient speed. Parallel database architectures are
eonfronted with a 'disk paradex’ indicating that the
commercial disk unit development efforts, directed toward
mare capacity, result in the use of fewer units to store the
same database and, hence, lower the maximum data provision
power to nullify the parallel processing (Beral and DeWitt
1983). .

Multiprocessor architectures are alming for & shared
meamory architecture beller than parallel cache architectures.
While SIMD array processors performs multiple operations
with regularly arranged parsllelism among them,
mulliprocessors perform multiple processes having no regular
structure among them but sharing a single memory space

andfor exchanging messages. Concurrent memory accesses in
multiprocessors have no such regular patterns as can be seen
in SIMD areay processors, which makes it diffienlt to schedule
concurrent memory aceesses prior to the execution, therelore
requiring a shared memory architectura. Parallel cache
architectures have to maiotain the cache coherence (Dubois
and Briggs 1982, Goodman 1983, Papamarcos and Pate] 1984,
Katz et al. 1985, MeCreight 1984, and Archibald and Baer
18988). Hence they somehow reguire sequential execution of
concurrent write requests to a common single-port memary or
a common bus.

All these problems indicate the requirement of larger
communication bandwidih between processers and memory
banks. The idealistic solution to these problems is the
multiplication of the memery 0 ports without deteriorating
the aceess rate of each port, Thia paper shows that such a
multiport memory used as a multiport cache together with a
praviously proposed multiport page-memory significantiy
outperforms parallel cache architectures especially for
applications to tightly coupled multiprocessars with 4 ko 18
Procassers.

In the current state of the art, however, multiport memory
devices with more than 2 ports are only available as smali
capacity memory devices mainly used as register files, Their
applications to shared main memery systems require not only
further integration of cireuits but also more [0 pins to and
from a single chip. -

This paper gives an alternative approach to implement
multipert memory systems, Instead of circuit-technological
methods used in multiport memory devices, we will show
architectural methods to build & multiport memory system
using memory deviees with fewer ports. A trivial example of
how we can multiply memory ports is a multiport read-only
memory using ene copy of the same memory unit for each port
(Figure 1.1). This implementation requires as many memory
copies as the number of memory ports,

A nontrivial example is a mulkiport page memory {MPPM)
proposed by the present author in 1984 (Tanaks 1984a). In an
MPPM, an access unit is not a word but a page. Each access
reads or writes a whole page. The size of a page, or the number
of words in a page, is restricted to be a multiple of the number
of ports. As shown in Figure 1.2, an MPPM consists of a rotary
gwitch and as many memory banks as the number of its ports.
The rotary switch repetitively changes the connections
between the set of poris and the set of banks so that the
(i+ 1)st port may connect to the (({i+/) mod &)+ 1)t bank at
tha {f+1)st clock, where k stands for the number of ports, Bach
page is stored across the & banks as shown in Figure 1.2, A
number assigned Go each word in a page indicates the
displacement of that word in a page. The MPPM architecturs

BBR

porkl pert2 perkd porid

[[w W 4 coples
bank1 bank 2 bank 3 bank4
Figure 1.1 A trivial implementation of a 4-port read-
only memory.
potl perd2 porkS portd
] ‘_\ rotary
[i] I switch
1] 1 2 3 i
paged
4 i T
1 2 3 pagej
4 & g 7
4 memory banks

Figure 1.2 An implementation of & 4-port page memaory.

iz based on the [act that an access of o page does not imply any
preferred order of word accesses in the page. Suppose that we
want to start the access to page { through the second port when
this port is conneeted to the third bank. Suppese also there are
4 ports, and thet the page size is 8, The third bank stores the
words at the displacements 2 and 8 in page { Therefore, the
sacond port can instantaneously acceas either of these words.
At the next clock, this port will be eonnected to the fourth
bank, and will be able t¢ access the word at a displacement of
gither 3 or 7. Therefore, the second port can access all the
words in page { in the order of displacements £, 3, 4, 5, 6, 7, 0,
and 1. These accesses are not influenced by any accesses
through other ports. An MPPM requires no redundant
storage, and hence, implements & wide range of &, i.e., from a
couple of ports bo hundreds of ports,

This paper gives another nontrivial class of multiport
memory architectures, i.e, a multiport RAM. A multiport
RAM, or simply a multiport memory (MPM), allows random
aecesses of words concurrently requested from multiple ports.
Construction of a multiport RAM from memory devices with
fewar ports has been believed infeasible. This paper gives an
implementation requiring O(k%) redundant use of memory and
Oilogak) time for each access. Because of this cost and access
time, our architecture is only applicable to small & The
maximum feasible & is defermined by the cost of redundancy
rather than by the access time. This limit on k depends on the
number of ports of each constituent memory device. If single
port memory devices are used, our multiport memory requires

k2 redundant use of memory. In this case, the maximum
feasible & may be no larger than 5. If dual port memory devices
are used, the redundancy becomes . Now the maximum
feasible & may be doubled, If guad port memory deviees are
used, the redundancy becomes gpmCq. This may further double
the maximum feasible k. We think that the maximum feasible
k is roughly no more than 4m, where m is the number of ports
of egach eonstituent memory device. Therefore, our
architecture is currently applicable te multiprocessers with no
more than & processors. The maximum nomber of processors
will be doubled to 16 in a few years.

The architectural implementation gives larger capacity
and more ports than current multiport memory deviees, The
architectural method and the circuit-technological method
should not be considered as competitors but complementary
inethods. When device technology comes to give larger
capacity and more ports, the architectural technologies will
enable us to assemble those devices to provide a larger number
of eoncurrently accessible ports.

The next section defines multipert memories and access
conflicts, The third seetion shows problems of parallel cache
architectures, and their solution by a multiport cache
architecture. Section 4 gives a multipert RAM
implementation with single-port memories, while Saction &
shows another implementation using dual port memories.
Section 6 gencralizes these architectures to use multiport
metnories with an arbitrary number of ports. Section 7
eoncludes this paper,

2 VARIOUS ACCESS CONFLICTS
IN MULTIPORT MEMORIES

A shared memory with & ports allows its & ports to
eoncurrently aceese information stored in it An aeccess unit
may be a word or & page. A memory with a page as its access
unit is called & page memory. Bach port of a shared memory
may access an access unit at any address. An aceess of a
shared memery [rom one port may block an access from
another port. This sitoation is called & conflict. A shared
memory resolves a conflict among aceesses by selecting one of
them Lo proceed with others being kept waiting.

Access conflicts in & shared memery are caused by the
physical limitations of its constituent memory devices. For
example, an ordinary memory device has only one port and
does not allow v simulianecus accesses unless they are read
accesses to the same aeeess unit. We call this kind of conflict a
physieal conflict, Physical conflicts are due to the limited
number of congurrently accessible ports provided by o single
memory devies. .

Even if we can remove physical conflicts by providing a
memory with a sufficient number of concurrently accessible
ports, we have still another type of conflict called a logieal
confliet. If two write accesses simultaneously omeur to the
same access unib, their effect can not be logically defined
withouot losing the symmetry bebween two accessing ports.
Suppose, for example, that port i tries o wrile g while port ip
tries Lo write ve. If port i) is given the higher priority, the
access unit is updated to vy, However, this loses the symmetry
belween Lbwo ports because the exchange of port {) and port i
updates the same access unit to a different value vy

Any logical conflict can be resolved if we discard
symmetry between ports and give the higher priority to one of
them. Even il we resolved physical and logical conflicts, we
may still have another type of eonflict if the aceess of an access
unit requires more than one aceess. A page access, for example
requires as many memory accesses as the words in one page. IF

a page is to be updated, this operation should be atomie, Le.,
no read nor write of this page should be aliowed belore the
completion of this update, (Otherwise, some partof a page may
be updated by one port and the remaining part by another
port,

Suppose, for example, that a page has twe words wy and
wy, and that port iy and port i try to write (a, b) and (e, o)
respectively on (wq, we). We assume that no physical conflicks
oceur. While a logical conflict pravents these two poris to
modify either wy or we simulianeously, these two ports can
concurrently modify wy and we in two different orders, Le., for
example, port i modifies wy and wy in this erder while port iz
in the reverse order, This concurrent execution modifies (e,
wa) to (e, b), which is different from either of the two update
results, Bimilarly, il o page operation is not atomic, a read of &
page may get the bafore value for some part and the after
value for the remaining of the same page. Suppose that port {
modifies (wy, g with an initial value (a, b) ta (¢,) while port
ig concurrently reads the same page (wy, wg). If the second port
nceesses Lhe two words in a different order to aveid logical
conflicts, the port iz may get either (a, d) or (¢,) as read out
walues, Neither of these values are equal to either the before
value (g, b) nor the afler value (¢, o). Any access to a page
under modifieation by some other port should be foreed to wait
until the modifiealion is complete. While each page may be
concurrently sceessed by any number of read eperations, it can
accepl only one write operation with no concurrent read
operakions, Conflicts caused by this restriction are called
structurs] conflicts.

Among three kinds of conflicts, only physical conflicts are
due to hardware restrictions. [t is desirable to remove physieal
conflicks. A multiport memory is a shared memory that causes
no physical conflicts, This implies that any access request is
immediately accepted and performed without being forced to
wait unless it causes any legical or structural confliet. If its
aceess unil is a page, it is called a multiport page memory. A
multiport memaory with a word as its aceess unit is called a
multiport RAM. A multiport page memory has both legical
conilicts and structural conflicts, while a multipert RAM has
anly logical conflicts.

Logical conflicts as well as struetural conflicts are sasy o
detect. The detection only requires the comparison of
addresses sent by the ports. The detection and arbitration
circuits can be externally provided independent from the
memoery. This erganization allows & memaery itself to allow
more than one logically conflicting or structurally conflicting
access. The updated result may nol be correct if the update is
involved in logieal or structural conflicts. Such a memory,
without external detection, is called & kernel memory. In the
following of this paper, ‘multipert memory’ stands for ‘kernel
multiport memory' unleas otherwise specified. A multiport
memory in this sense has no conilicts. From the definition,
they have no physical conflicts,

8 PROBLEMS OF PARALLEL CACHE
ARCHITECTURES AND THEIR SOLUTION

Parallel eache architectures were Lhe only known
techniques to implement a shared memory for a
multiprocessor sysiem with 4 to 18 processors (Dubois and
Briggs 1982, Goodman 1923, Papamarcos and Patel 1984,
Katz et al. 1985, McCreight 1984, and Archibald and Baer
1986). Their effective access time, however, significantly
increases as the number of ports increasss in this range.

A parallel cache has a configuration as shewn in Figure
3.1. We assume that exch cache is doal-ported. This assumes

889

Q¢ QQ

cachd

commaon bus

OO
Mamary

Figure 3.1 A parallel cache architecture,

an idealistic situation. The processor accesses its cache
through one of these two ports, while the common bus accesses
it through the other, Each read access by one of the processors
first accesses its dedieated local eache C, If it finds the word in
it, the access completes, Otherwise, it sends out the address (o
the common bus. The bus accesses every cache through one of
its poris Lo Mind out this word, If it is found in another cache,
the block containing this word is read and its copy is
transferred to the local cache O Otherwise, the block is read
from the eommon memory and sent to the tocal cache C. BEach
write sccess writes the value bobh in the local cache and the
ecommon memory. For simplicity of our analysis, we adopt the
write-throogh policy with the bus-snooping technique for the
coheraney maintenance, Different from the simple write-
through policy, it gives almost as good performance as any
write-back policies. In the bus-snooping, each write request is
also sent to other cache memories through the common bus to
uwpdate the copies of the accessed words, and to maintain cache
esherence. This uses only one of the two ports of each cache.

In vur modeling of a parallel cache, wo assume that local
eache memories and the common memory have a same access
time. We further assume that this access time is samea as the
elock eyele of the system. Each processor is assumed to take
two machine eyeles to execute any instruction. It uses the first
eycle for the instruction feleh and the second for the execution.
Each machine eycle takes one clock cycle at least. All the
assumptions above set a rather idealistic situation so thal our
analysis based on them may approximately give the upper
bound of the system performance, Let o denote the proportion
of the memory-read machine cycles, B the proportion of the
machine cycles without memory accesses, and ¢ the cache hit
rate. Sines sach instruction feteh reads the shared memory,
the value of a is no less than 0.6. The number of local cache
memories is denoted by k. The memory space is divided into
blocks of B words for each. The bus amd Lhe common memory
constituta the common resource. An access o this common
resource blocks further accesses to itsalf.

A machine cycle accesees Lthe commen resource if and only
if it executes either & memory write operation or a memory
read operation resulting in a cache miss. In the latter case, the
machine eyele is expanded to B clocks to complete the block
transfer, We denote by P the probability that a machine eyele
aceesses the common rasource, We obtain P as

P=(l1-a—+all=r). (3.1)
We denote, by T, the mean length of one machine cycle that
acepsses only the common resooree. This value is caleulated as

Te={UF){l —a—) +all =7 }H]. (3.4)

In a steady state, we assume W ports are requesling
accesses bo the common ressurce. Some of them are requesting
8 single word access, while ethers are requesting a block

890

access, We may think that each port is requesting T word
accesees to the common resource on the average. Therefore,
there are, on the average, ToW word-aceess reqguests to the
common resoures. During the next elock eyele, one of them is
performed, At the same time, the remaining (k— W) ports
isgues access reduests Lo the common resource with the
probability P, Therefore, we obtain the following equality,;

ToW=ToW-14{k-WPTp, (3.3}
which gives
W=k={14PT)). (3.4)

This approximation of W is correct if there exisis a steady
number of access requesting ports, Le., W=1.

We denote, by Tp, the mean length of one machine cycle.
We obtain this length as

Tp={1=F)+F{W = (12NTg+ (k= WP + 1021 Te) (3.5

for W=1. The first term represents the case where the
accessed word is found in the local cache. The second term
corresponds to a cache miss. There are W ports requesting
accesses bo Ehe common resource in the steady state. One of
them is under exeeution. On the average, half of it is executed.
Therefore, 2 new aceess Lo the eommon resource has o wait
{W—{1/20Tc time at least, During the current elock eycle, the
remaining (& =W} ports newly request accesses to the common
respurce with the probability P. Therelore, we have (k—=WWP
more ports including the port of our conearn, The request by
the port of our concern will be acknowledged as the (&=
WP+ 1)2)-th request on the average: Therelore, the port of
our concern has to wait (((k=WP+ 102 Ty more time for the
completion of its access to the commen reseurce. Summation of

these gives Tras above, Using (3.1) and (3.2, we obtain
Tp={1—a—@ik— (172 +all—r)kE - (1/2)). (3.6
IFTW=1, we obtain Tpas
Tp={1-P)+ PRP+1)Te/2. (3.7

In such a ease, no ports are accessing the common resource
when one of them requests aceess to it. The number of ports
that request access to the common ressurce simultaneously at
this same time is approximately &P, Therefore, one of them
takes (kp+ 1)T /2 time on the average to complete its access to
Lhe common resourse.

We show, in Pigure 3.2, the value of T as a function of &
for various values of a, P and 7. The size B of a block is selectsd
to be & to compare these results with the performance of our
new architesture proposed in the following. These graphs
show serious inerease of Tp as & increases, The effective
performance of & multiprocessor with & processors provided
with this parallel cache is no more than &Tp, which is shown
in Figure 3.3 as & function of k. Especially for &>6, we see
seripus performance decreases by the use of additional
proceasors under Ehe assumption thata, fand r do not change.

For a constant-size black, say B= 16, the effective number
of processors ehanges as shown in Figure 3.4, This shows
performance satoration around four processers, The small
bump arsund each shoulder is due to the rough approximation
around W=1,

We show in the sequel that a multiport cache significantiy
outperforms parallel cache architectures for 6<k= 16 where
we lacked a solution to high-performence shared-memory
multiprocessor systems. A f-port cache memery system
conaists of a k-port RAM and & k-port page memory. Its block
size B is selected as a multiple of & Figure 3.6 shows a
configuration of a k-port cache. Its mean lengith Ty of one

Hean machine-cycie rine
54+

28t
15+

lar

Hunber af ports

a=0.7

#| r i #| r i #l r i
1109 (016 |4 095|015 |7 | 0975 | 0.15
21048 020 (5| 085 020 |3 | 0,975 | 0.20
3108 026 |6 | 006 025 |9 | 0.975 | 0.25

Figure 3.2 Mean machine-cycle length Tpofa
mulbiprocessor using a parallel eache
architecture (B=4#),

Effective nunber of processsors

iy
[
Fl
9
?ﬂ
2 456
122
Bé 4 a8 12 16
Actual number of prooessars
a=0.7
#| r B #| r f #| 7 B
1|09 |l |4 | 085|015 |7 (0.975 | 0.15
2|09 (020 |6 | 095|020 (&) 0976 | 0.20
3|08 |02 6| 095|025 |9 0976|025

Figure 3.3 Effective multiplicity of processors sharing a
parallel eache memeory (B = k).

machine eyele 15 equal to that of a single processor with a
cache divided into blocks of B words. We assume that the
cache and each bank of the MPPM have the same access time
that is equal to the elock eycle. We adopt the flaggoed-write-
back strategy in which the MPPM iz updated only when a
dirky block in the cache has to be replaced with & new bleck in
MPPM. A bleck in the cache is dirty if it has been modified
during its stay in the cache. We denote by 5 a probability that
we have to replace a dirty block. The MPPM is accessed only
when a cache miss oceurs. We have to read out the block
containing the accessed word from MPPM to the cache after
making a room in the cache for this block. This requires a
replacement. Therefore, We obtain Ty as

Tag =P+ (1= Pl + (1 =7 N1--81B). (3.8
We show Ty in Figure 3.8 as a function of & for B=4k, =02,

Effective numbzr of prooeszsoes

!
= 3
8
v
@
=]
43
¥ 129
e
% 4 B 12 1&

" Aetual nunber of processors

Figure 3.4 Effective multiplicity of processors sharing a
parallel cache memory (B =16).

Q Q Q Qe

maltiport RAM

I I l |

MPFM

Figure 3.5 A multiport cache architecture,

Hean machine-oyole tine
™

2t

1;

% 4 2 1z 16
Hunber of ports

#| r [#1 r 5 |#| r &

1108 0,3 (4|09} 03 |7 099 |02

2|09 02 {5095 02 |3 {0875 |02

3|08 0.1 §6) 0485] 01 |9 { 0.975 |01

Figure 3.6 Mean machine-cycle length Tarola
multiprocessor using a multiport cache
architecture (5= k), ’

and some different values of y and B,

We show in Figure 3.7 the value of BTy as a function of &,
where B iz assumed to be egual to k. This value &/Tar
represents the effective multiplicity of processers. Different
from parallel eache architectures, Lhe multiport eache
architecture allows more than 6 processors to share a memoery
space without seriously deteriorating the effective number of
processors from the netual number of processors,

891

Effective mamber of processsors

15
12
a2
&
i'
Ackual mmber of proc=ssors
#r 5 |#]| r 8 |#| r 5

Liog 04 |4 | 085 03 |7 | 0875 | 0.3
2109 0.2 |6 055 02 |8 | 09756 | G2
4|02 01 |6 085| 01 |9 | 08976 | 01

Figure 3.7 Effective multiplicity of processors sharing a
multiport cache memory (5 =4#).
In Figure 3.8, we show the effective multiplicity of

Effective nunbér of processors
16

12

Rstual nunber of processors

Figure 3.8 Effective muitiplicity of processors sharing a
multiport cache memory (B =16).

processors for the constant bleck sixe (1.e, B=16). Different
from Figure 3.4, we have no performance saturation in this
CASE,

The analysis given in this section gives a sufficient reason
to develop 8 multiport RAM architecture providing 416
ports.

4. MULTIPORT RAM ARCHITECTURE
USING SINGLE-PORT MEMORY

It is well known that a dual port memory can be made of
two single port memory banks as shown in Figure 4.1, It uses a
a pair of banks. The two ports are always connected Lo
different banks, They exchange the partner banks
alternatively. Each read access accesses the current parbner
bank, while each write access spends two consecutive phases
to write the both two memory banks. This architecture,
however, ean be extanded to no more than two ports. The
difficulty lies in the fact that the write aceess cannot be locally
performed even if we use redundant storage of information,

Instead of a write access, we consider an inversion of an
accessad word, For simplicity, we assume that a word consists
of a single bit, This does not result in any loss of generality.
Any write operation can be performed by an inversion
operation after a read operation. If a bit value read out is

892

even cyele odd cycle
port 1 po_rt. 2 pe!'t 1 pn_rl: 2
alternating
switch
i
bank1 bank2 bank1l bank2
copies coples

Figure 4.1 A wall-known implementation of a dual port
meamory with two single-port memory banks.

different from a new value to write, an inversion of the
addressed word performs this write operation. Otherwise, no
operation is needed since the write operation does not change
the bit value. While a write operation eannot be lecally
performed, an inversion can be localized as shown in Figure
4.2, This k-port memory system uses & memary banks. Bach

portl port® potd popld 4 inversion
S A A ports
ooy i lnvert
] 1 g1 1]
¥ /i\)\ one read port
+ + (+)—
Al 1 >0
bank1l bank2 bank3 bankd4 invertad

Figure 4.2 Local execubion of an inversion operation ona
shared data.

one bit word is stoved in & one bit words aeross & different
memory banks, The value of this word is defined as the parity
of these keorresponding words, Since the parity function of k
bils changes its value if"only one of these k bils changes its
value, each port of the memory in Figore 4.2 can invert any
word in the memory by accessing only its dedieated bank. The
memory in Figure 4.2, however, has only one read pert. Te
provide sufficlent number of read ports, we may multiply this
memory sysiem. The result is shown in Figure 4.3, [ts access
eyele consists of bwo phases, Le., a read phase and an inversion
phase.

Each read access waita for the next read phase, uses this
phase to read the memory, and waits during the next
inversion phase. Bach write access waits for the next read
phase, uses this Lo read the word, and spends the next
inversion phase to invert this word if necessary. A read access
from a read port firel accesses the same address of k memory
banks connected to this read port and ealculate the parity of
these k bits to obtain the stored value. A wrile aceess through

_ inversion ports
portd porkd pork4d

port 1.

- S e ES ports
0 1 1] 0
port 3
0 & 58"
Y Yy Ty \
0 1 1]
port 4

tO—O—O—

Figured.d A 4-port RAM using 16 single port memory banks.

a port A also first performs a read access through the read port
A If the read out bit value is same as the value to write, it
spends the next inversion phase without deing anything.
Otherwize, it uses the inversion phase to invert & words at the
same address of the & memory banks that are connected to the
inversion port A.

This memory configuration removes physical access
conflicks from concurrent rend and write accesses, A R-port
configuration of capacity W, however, requires &2 memory
banks each of which requires the same capacity W. The parity
computation of k bits requires Ologghk) time. I & is small, this
time iz much shorter than the access time of the memory
banks, and hence, can be neglected.

5. MULTIPORT RAM ARCHITECTURE
USING DUAL PORT MEMORY DEVICES

It is also important te consider how a multiport memory
can be made of fewer-port memory devices. Dual port memory
devices are aleeady available, and quadpert memory devices
are expected to come on the market in the near future,

This section shows how dual pert memory deviees can be
assembled te implement a multiport memory system. We
assume that each word consists of & single bit. This does not
cause any loss of generality. A write access is again
implemented by an inversion operation after a read access to
lacalize its access to the memory bank dedicated to each port.
Ewvery pair of ports has to share the result of any wrile access
izsued by any of these two ports. To achieve this goal, one dual
porl memary bank is provided for each pair of ports. Since a set
of k ports has 3Cp dilferent pairs of ports, this requires the
same number of dual port memery banks, For any 1S i<j=k,
we denote a bank for the ith and jth ports by My;. The ith port
uses the first port of 3, while the jth port uses its second port.

Each of the & ports may be paired with other k-1 ports.
Therefore, sach port s connected to &1 dual porl memory
banls. Bach pert accesses a word that is distribotively stored
in &-1 words across the k-1 dual port memaory banks connected
to this port. For the time being, we assume Lhat k is an even
number. In this case, each port is connected to an odd number
of dual port memory banks, ie., each one bil word is
rapresented by an odd number of bits stored across k-1
memory banks, '

We define the value of each one bil word as the parity of its
associated k-1 bits. Then, as shown in Figure 5.1, an inversion

individual inversion

v

« read Ty £

port 2 (N \+/ +
t vy 1 v ¥

dual port] 0 1 o

;n;nn;::ry Mz Maz Mgy

port 3 port 4
invert

individual inversion

4—road @) 2
port2 */

f ¥ ¥ ¥
dual port 1) 1
E:_:E‘: ry Mz Mgz Mpy

[

port 1 pork 3 port 4

Figure 5.1 Local execution of an inversion operation
through dual pork memory banks,

of & word can be performed by individually inverting thesa &-1
bits by accessing k-1 different memory banks. Since we are
assuming thak logical conflicts are removed by an external
hardware, no two ports simultanesusly perform an inversion
operation of the same word. Suppose that an inversion of a
word W was performed by the ith port. For any j different from
i, the jth port shares only one dual port memory with the ith
port. Let this memory bank be M. If i<j, M iz Mj;. Otherwise,
it is M. An inversion of a word through the ith port inverts
the word in M, but does not change the words at the same
address in other memory banks connected to the jth port,
Since the value of each word iz represented as the parity of its
k-1 values stoved across the &-1 memory banks connected to
the accessing port, this word value is inverted by an inversion
of one of these k-1 values. Therefore, An inversion of & word
through any onz of these ports alse inverts the value of this
word at every other port,

Figure 5.2 schematically shows a configuration of a 8 port
memory systern, Bach horizontal line denotes an access ling of
each port, while each vertical line segment represents a dual

893

port 1 » -
port & »
part 3
port 4 ——
port 5 > -+

]:H:I]'I-ﬁ—l'.. —

Figure 5.2 A 8-port memory configuration using 15 dual
port memory banks.,

port memory bank with two ports marked by dark eircles. All
the bits in each memory bank are assumed Eo be initially rezet
to zero. A read and a write access respectively take one and
two memory eycles. Logieal conflicts are externally avoided,
Bach read access reads the specified address from thie b1 dual
part memory banks that are connected to the accessing port,
and gels thedr parity as a read out value. While the ealeulation
of the -parity takes O{logz(k-1)) time, it may be neglectad
eompared fo the memory access Hme if & is in the range of our
concern, Le., 45 k=16, A write access reads out the value of
the specified word in the first cyele, and in the sacond eyele, if
the value is different from the value to write, inverts this word
in each of the k-1 memory banks connected to the accessing
port. If the old and the new values are found to be the same in
the first cycle, the write access completes its operation in the
first eycle and saves the next cycle for the next access.

In figure 5.3, we show how two consecutive write aecesses

Mz Mz Mg

part 1

port

port

pork &
Mgy Moy
/@
write I thml:ig:h port 1

(k) P (o)
write 0 through port 3

Figura 5.3 Two consecutive write operations in a 4-port
memory system.

from different ports to a same address change the values of
this address in & dual port memory banks that constitute a 4
port memory systam. Initially, all the values of this word are
reset to zerg, After the first port has writlen 1, the values of
this word in Mys, Mg, and Mg are changed to 1 as shown in
{b). At this situation, each poert reads outl 1 as the vaiue of this
word. For example, the second port reads out 1, @, 0
respectively from Myyp, Mo, and Mg, to get 1 as their parity.
The second write operation is issued from the third porl, It
requests to write D to the same word. The third port first reads

804

gut this word to find that an inverslen is necessary. It inverls
the values of this word in Miy, Mg, and Mg as shown in {g).
Their values become 0, 1, and 1 respectively. This makes any
port to read out 0 from this word. For example, the second port
may raad out 1, 1, and 0 from Mg, Moz, and Mgy to get 0 as
their parity, The fourth port may read out 1, 0, and 1
respectively [rom Mpg, Mag, and Mgy to get 0 as their parity.

For any odd %, a k-port memory system with W words is
implementad by the same configuration except that each port
iz also connected £o a dedicated single port memory bank with
W words, Figure 5.4 shows the case with k=5, Without

port 1

pork 2

]

pork 3

port 4

port &

5 single-
port

MEMOTY

banls

Figure 5.4 A 5-port memory requires 10 dual port memories
and b single-port memories.

nddilional single port memory banks, an inversion of a word
from one port P inverts its value accessed by avery other port,
but not the value accessible from the port P iteelf In this case,
k-1 becomes even. Individual inversion of an even number af
bits does not change their parity. The added single port
memory banks selve this problem. They are involved in each
parity ealculation and in each inversion operation.

6. MULTIPORT MEMORY USING MEMORY DEVICES
WITH MORE THAN TWO PORTS

The multiport memory system configurations shown in
the preceding chapter can be applied also to systems using
memery devices with more than twe porte. Multiport memory
devices with 4 to B ports are technolegically within a scope of
eonsideration, Three approaches are now studied. The first is
an extension of each memory cell to allow multiple aceesses.
The second is the provigion of two buffers on the same chip of a
gingle port memory respectively for an access request quene
and for a result queue to make these three components to work
in a pipeline fashisn. The memery componsnt may adopt
memery interleaving technology. The result is & single port
pipeline memory that provides sufficient access rate to use it
as a memory with several ports. The third approach is a
combination of the previous two approaches. Our concern here
iz how we ean use a set of such multiport memory devices to
implement & memory system with a larger number of ports.

10 dual port mentory banks

We show in Figure 6.1 an 8 port memory system
constructed with six memory devices with 4 ports. As in
ehapter 5, each vertical line represents a memory bank with
four ports marked by dark cireles. Each horizontal line
represents an ascess line of & port. A darlk circle at the cross of
an access ling of a port P and a memery bank M means thal
this port P aceesses this memory bank 3 through one port of
this memory. Read and wrile accesses are performed in a same
way as described in the previous chapter,

_Far the same reason described in Chapter §, each port
must aeeass an odd aumber of memory banks. This condition,

port 1

port 2 -]
port 3 4
S

port &

port 6

pork T I:]

Figure 6.1 An 8-port memory using 6 4-port memories.

port &

however, i3 not a sufficient condition for the configuration to
work as a multiport memory system. The effect of an inversion
through a port is shared by ancther port through those
memory banks connected to both of these ports. When dual
port memory banks are used, there is only one memory bank
connected bo a pair of ports. Here, however, there may be more
than one memory bank corinected to a pair of ports. In Figure
6.1 for example, each pair of parts share three memory banks.
If o pair of ports share an even number of memory banks, an
inversion through one of this pair does not change the parity
value al the other port. Therefore, we need the following two
conditions for a configuration to correctly work as a multiport
MEmory,

{1) Each port must access an edd number of memory banks.

{2) Each pair of ports must share an odd number of memory
banks. .

Obwiously, these two conditions alse form a sufficient
condition for a configuration to work as a multiport memory.

An implementation of a k-port memery system using the
minimum number of memory banks with m ports is a block
design problem. We have no general method to selve this
problem for any k and m satisfying & > m. Figure 6.2 shows an

port 1 =— -
pork 2 > -
pork 3 { * -
port 4 - -
pork & L— — -
port f —— - +—b - &

G triport rmemories 3 additional G more
dual port single-
memories port

memories
Figure 6.2 A stepwise implementation of a 6 port memory
using triport memories.

example implementation of a 6 port memory system using &
triport meamory banks. It requires 3 additional dual port
memary banks to satisfy the above condition (2). This addition
violates the condition (1), and requires 6 additional single port
mamery banks to satisfy it. The result is not guaranteed to be
a minimum implementation, In fact, 2 configuration in figure

6.3 uses 4 triport memories and 3 dual port memories to
implemnent a &-port memaory.

port 1 —1

port2 [_. *

pork 3 + —y—

pork 4 ﬁ'

pork & -

port & »—
4 triport "3 dual port
Mamayriges TNEeTmor ves

Figure 6.3 Another implementation of a 6-port
memory using fewer triport and dual port:
I meries,

Unfortunately, we have no general method, for arbitrarily
given kand m, that gives an minimum implementation of a k-
port memory using memories with ne more than m porks, For
an aven m and its multiple &, howeaver, the problem reduces to
a minimum implementation of 8 2&'m-port memory with dual
port memories, Iks & ports are divided into 2&'m groups. Each
group cengists of m/2 ports. The m ports of each m-pork
memory are also divided into bwo groups, m/2 ports for each,
Each group is considered as a single. port, This reduces the
original problem te o minimum implementation of a 2&/m-port
memory with dual pert memories. In the selution to a reduced
problem, each port accesses an odd number of memory banks,
and each paif of ports share only one memory bank, Therefore,
in the corresponding aolution to the original problem, each
port aceesses an odd numbar of memery banks, Each pair of
ports in the same group share an odd number of memory
banks, while each pair of ports in different groups shares
exactly one memory bank. We show an example minimupm
implementation of such a case in Figure 6.4. Such an

port reduced problem

1
port 2 EI'G;JIJI port 1
port 3 i
port 4
pork

L=

group2 port2 .

port

pork

o =3 ;

pork
port 9
port 10
port 11

group3 portd

EI:“I port 4

port 12

Figure .4 A minimum implementation of 2 12-port
memory using &-port memories and its
corresponding reduced problem.

implementation requires jgpmyCg of m-port memories, and
logz((2him)-1) gecess time.

895

Similarly, if m is a multiple of & and & is 2 multiple of m,
an implementation of a k-port memory using memories with
ng more than m ports is reduced fo an implementation of a
hdfm-port memory using memories with no more than & ports.

7. Conelusion

We have given architectural solutions to implement a
mulbiport RAM with 4~16 ports, A &-perl memory uses OFk2)
storage redundancy, and hence, eosts Q(k2) times a3 much as a
single port memory of the same size. While its aecess requires
Hloggk) time, it may be considered the same as the access
time of & single memory for 2= 16. The maximum feasible &
depends on the number of ports of the constiluent memory
devices. If we can use m port memory devices, the maximum
fengible & is roughly 4m. Therefore, an implementation of an
B-port meinory 1s now within the seope of a consideration. In a
coupie pl'yca.rs, we may consider implementations of 168-port
memories.

The most important application of multipert memories is a
shared memory for multiprocessor systems with 4-~18
processors. We have shown under reasonable assumplions
that parallel sache architectures are not applicable to
multiprocessors with more than 6 processors. The multiport
cache archilecture consisting of a multiport RAM asz a cache
and an MPPM as & main memory solves the cost problem of
the multiport memery architectures, and significantly
vutperforms parallel eache architectures for 6 < k= 16.

This multiport cache architecture will solve the bottle
neck between parallel processors and their shared memory
space,

REFERENCES

[1] 4. Archibald and J. L. Baer, ‘Cache coherence protocols:
Evaluation using a multiprocessor simulation medel,”
ACM Trans, on Computers, 4, no.d, pp.273-208, 1986,

[2] H. Boral and D. J. DeWitt, ‘Database machines: An idea
whose lime has passed? Datobose Machines, Springer-
Verlag, pp.166-187, 1983 :

[3] M. Duboiz and F. A, Briggs, ‘Bffects of cache coherence in
multiprocessor systems,” IEEE Trang, on Computers, C-31,
no, 11, pp.1033-1094, 1982,

[4] J. Goodman, “Using cache memery to reduce proceszor-
memory traffie” Proc. 10th [ntf Sympo. on Computer
Architeciure, IEEE, New York, pp.124-131, 1583,

[5] K. Hwang and F. A, Briges, Computer Archifeciure and
Parallel Processing, MeGraw-Hill, Inc., 1885,

[6] K. Katz, 8, Eggers, D. A. Wood, C. Perkins, and R. G.
Sheldon, 'Implementing a cache consistency protoecol,
Prog. 12th Intt Sympo. on Competer Architeciure, IEEE,
New York, pp. 2T6-282, 1985,

[T] E. McCreight, The Dragon Computer System An early
overvicw, Xerox Corp,, Sept, 1984,

[8] M. Papamarcos and J. Patel, ‘A low overhead coberence
solution for multiprozessors with private cache memories,’
Proc. 11th Infl Sympo. on Compufer Architecture, IEEE,
New York, pp. 348-354, 1984,

[8] ¥. Tanaka/'A multiport page-memory architecture and a
multiport disk-cache system, New Generadion Compuling,
2, no.3, pp.241-260, 1984,

[IMY. Tanaka, "MPDC: Massive parallel architecture for vary
large databases,” Froc. Int! Conf on Fifth Generation

Computer Systems 18584, pp.113-137, Tokyo, Nov., 1984,

