PROCEEDINGS OF THE INTERNATIONAL CONFERENCE
ON FIFTH GEMNERATION COMPUTER SYSTEMS 1988,
edited by 1COT, © ICOT, 1983 -

869

CELL AND ENSEMBLE ARCHITECTURE FOR
THE REWRITE RULE MACHINE*

Sany Leinwand, Joseph A. Goguen' and Timothy Winkler
* BRI International, Menlo Park CA 94025

Abstract

The Rewrite Rule Machine (RREM) project at SRI Interna-
tional combines advanced architectural concepts with mod-
ern software technology. This combination is based on a
novel model of computation called comcurrent term rewrit-
ing, bridging the gap between ultra high level programming
end massively concurrent execution.

The REM architecture may be described at four differ-
ent levels of granularity. The lowest level is the cell, which
gtores an individual data token. The second level is the en-
semble, which organizes many cells to represent terms and
applies rewrite rules to them wnder the direction of a single
common controller. Each ensemble is planned for implemen-
tation as & single custom VLSI chip. The cluster level orga-
nizes many ensembles to cooperate in solving common prob-
lems. Finally, the whole KRM consists of several clusters
interconnected in a nelwork. Ensembles are ideal for fine-
grained concurrency, while clusters also allow coarse-grained
eoncurrency. This multi-grain concurrency allows the RREM
to exploit the local homogeneity of typical problems.

This paper presents recent results of the Rewrite Rule
Machine project. Some topics described in previous papera
[8,4,12,8] are only summarized. The focus is on recent; results
detailing the operation of cells and ensembles. Architectural
simulaticns show the validity of the propesed solutions and
prepare for actual VLE] implementations.

1 Introduction

The RRM project at SRI International is a synergistic soft-
ware and hardware effort to build & novel computer system
featuring

‘e Multi-grain massively concurrent program execution.
¢ Unusual ease in programming and reprogramming by
using ultra high level declarative languages.

1.1 Massively Concurrent Architecture

Concurrent architectures rely on cocperating resources to
solve a given problem. Such cooperation can be achieved in
seversl ways:

+ Coarse-grain concurrent execution organizes the come-
putation in sizable tasks that seldom exchange infor-
mation. Components of a coarse-grain architecture are

*Supported by Office of Navsl Resparch Contracts N00014-85-C-0417
and NOOD14-B6-C-0450,

tAddress from Zeptember 10088 onward: Oicford University Cotn-
puting Laboratory, Programming Research Group, 8-11 Heble Heoad,
Onford 021 3QD, England (UE).

capable of independent aperation. The efficiency of data
exchanges between tasks is important, but not a eritical
factor.

» Fine-grain concurrency partitions the problem into very
amall tasks that constantly exchange data. Fine-grain
architectural components are typically incapable of car-
rying out any meaningful operation alone, but are capa-
ble of reaching high performances as an aggregate. The
efficiency of data exchanges is of paramount importance.

The RRM architecture exploits concurrency at several lev-
als, achieving a hiererchical, mulli-grain mode of exscution.
At one level, the architecture exploits technological advances
in VLSI to pack on a single chip many simpls processing cells
operating in fine-grain mode. At a higher level, several such
chips cooperate within a coarse-grain architecture to sclve
larger problems. As a result, higher performance, typical to
fine-grain concurrency, cen be attained even when solving
problems that are oaly lecally homogeneous.

1.2 TUlira High Level Programmability

Oue hurdle in the utilization of massively concurrent archi-
tectures is the difficulty of programming them. The RREM
project demenstrates that ultra high level languages (UH-
LLs) are the key to combining hardware efficiency with pro-
gramming ease and Hexibility. From the bardware point of
view, UHLLs do not prescribe specific orders of execution,
and thus provide maximal opportunity for concurrent execo-
tion. From the software point of view, UHLLs have features
that support all pheses of system development, from design
to maintenance.

The software component of this project has developed
multi-paradigm languages that combine the advantages of
functional [1,2], object-oriented [7], and logic programming
[5]. A companion paper [6] summarizes these languages and
shows how they can be implemented on the RRM. In con-
trast to traditional programming languages, these lanpuages
are logical, in the sense that their statements are sentences
in a logical system, and their declarative semantics is given
by models that satisfy those sentences.

1.2 Term Rewriting Model of Computation

The RRM project is based on & clearly defined model of com-
putation, called concurrent term rewriting [3]. Term rewrit-
ing operates by applying rewrite rules to data terms consist-
ing of modes organized as a tree structure. A rewrite rule
is composed of two templates: the rule's lefthand side de-
fines a pattern to be matched against subterms cccurring in
the data term; when the match s succeasful, the righthand
side guides the replacement of the subterm instance. Vari-
ables in & rule’s lefthand side denote structures within the

870

matched term that can be used to create a new siructure
according to the righthand side. Although the model uses
tree-structured terms, directed acyclic graphs (DAGs) are
needed for eficient implementation of shared substructures,
Several advantages are accrued:

Storage can be reduced lJln]' sharing common data struc-
turea.

Replacement is greatly simplified in the DAG model,
since the pure tree data representation requires copy-
ing (poseibly huge) trees whenever variables occur more
than once in the right-hand side of a matched rule.

» DAGs are unavoidable for object oriented program-
ming, since multiple access to objects is essential to that
paradigm.

Operationally, a term rewriting computation starts with
&n initial data term and a set of rewrite rules. These rules
are applied to the term (finding matching subterms and re-
placing thern with new structures) uatil no more matching
instances can be found; the initial data term has then been
reduced yielding the result. Conceptually, this mode] of com-
putation is inherently concurrent in the sense that several
different rewrite rules may be applied at many different data
subterms at once. Mo explicit constructs are required at the
language level to achieva or to describe concurrency.

A simple example of term rewriting ia illustrated in fg-
ure 1. The example shows how to compute the ['lb-unam:l
function defined by the equaticns

fibo(0) = O .
fibe(s(0)) = a{0) .
fibolala{x)) = fibol=(x)) + fibo(x) .

The example is posed without numerical cperations, using
natural numbers described with the e (successor) and O
functions (e.g.,, 2 = a{e(a(0)))). Figure 1{a) depicts the
rewrite rules needed to implement this function. The rules
are applied to a data term containing a mixture of fibo, +,
&, and O symbols. A given data term is reduced to a tree
containing no more instances of the fibo function. Figure
1(c) shows an initial data tree and, in the middle tres, the
final reault after applying the set of rules presented in figure
1{&].

The example = continoed with fgure 1{b) showing the
rewrite rules for eliminating + operators. By applying them
to the term illustrated in the middle of figure 1(c) the term
i3 eventually reduced to a data tree containing only 0 and &
symbols (i.e., an integer). The tree at the right of figore 1(c)
depicta the final result,

Architecturally, term rewriting seems ideal for supporting
massively concurrent computation because

Under a certain simple and quite common assumpticn
(called the Church-Resser property), the sequencing of
rules is immaterial; therefore rule scheduling can be dy-
naimically adapted to available resourcea.

» Actual success or failure of a match at a data subterm
where the match should succeed is not critical, since a
later attempt will succeed. Therefore dafa access can
be adapted locally to architectural resources.

The first feature removes the sequential control bottleneck
inherent to the von Neumann model of computation. The
second feature strikes a balance between pecformance (made
possible by using local connections) and Bexibility {made
possible by allowing remote connections that can result in
failures) that is absent in most other models of computation
eapable of handling fine-grain concurrency.

The scheduling of rule execution is important for under-
standing the REM architecture. Following are four relevant
choices:

1. Coneurrent term rewriting allows the application of sev-
eral rulea at multiple data sites at once. This could be
implemented in a MIMD architecture where multiple
controllers direct rewriting at multiple sites, While this
is the fasiest model (in the sense that it will complete a
given task carlier), it requires quite expensive srchitec-
tural support.

2. Parollel term rewriting allows the application of a sin-
gle rule at meny data subterms at once. In tradi-
tional architectures this corresponds to SIMD execu-
tion: a unique controller broadcasting instructions to
many processors. Some problems exhibit very homoge-

. neous data structures which are handled very well by
this model of computation.

8. Sequential term rewriting is the obvious restriction to a
single rule rewriting at a single data site.-

4. Coneurrent/parallel term rewriting partitions the data
term into domading, such that within each domain term
rewriting is performed in parallel (sypically with differ-
ent rules for dilferent domains). The choice of data do-
maina is dynamie, reflecting the evalution of term strue-
tures. -This model adapts the effectiveness of parallel
term rewriting to nonhomogen eous applications.

2 The Rewrite Rule Machine

The REM project explores a radically novel organization
suitable for implementation in state-of-the-art VLSI technol-
ogy. The architecture supports massively concurrent execn

tion of locally homogeneouns tasks. The mwrrent,."pa.rallel
term rewriting model of computation is the basis of & hise-
archical design capable of multi-grain concurrency.

2.1 _Architectural Levels

The RRM architecture may be described at the following
four levels of granularity:

1. A cell stores an individual node compenent of a data
term structure,

2. An ensemble coordinates the operation of many cells ex-
ecuting instructions broadcast by a common controller.,

4. A eluster intereonnects many ensembles cooperating on
solving a homogeneous or nonhomogeneous task.

4. A network is compesed of several clusters contributing
to the solution of a larger problem.

871

fibo .
s /N INT
fibo 5 iﬂm fibo + +
' T] /N = /N
= N YT
0 * Ty X
@ ®)

Eibﬂ +‘/\+ &

s N N s

f /N ;

’; p n

] 0

0

i)

Figure 1: Rewrite Rules for Fibonacei and Addition

The paper focuses mainly on the first two levels, for which
new reanlts are presented. However, in order to help the
reader understand the complete REM organization, the
other levels are briefly discussed below.

2.1.1 Cell Architecture

A rewrite task is exercised on many thousands, or even hun-
dred of thousands, of cells. Each cell stores ene node of the
data term, and can also perform simple cperations; thus,
cella mix storage and computation.

2.1.2 Ensemble A_l.rchitecmre

An RRM rewrite ensemble conaiats of many cells, support
for their communication needs, a common controller, and
local storage for currently applicable rules. Since fasf inter-
cell communication is of paramount impertance to execution
speed, each module is implemented on a single VLSI chip to
avoid delays associated with off-chip signals.

A controller broadeasts commands to all the cells in its
chip. Following a successful pattern match, the term is
rewritten at all places where the pattern was found, accord-
ing to the rule's righthand side. In gemeral, several cells
must cooperate to locally change the structure of the data
tree. This involves cccupying new cells, and considerable
exchange of informaticn. Ensemble execution is fine grain,

2.1.3 Cluster Architecture

A eluster contains a large number of rewrite ansembles, some
backup memory, and facilities for connecting to a conven-
tional computer storing the complete set of rewrite rules, Of
particular interest at this architectural level are communi-
cation protocols, rewrite rule distribution and coordination,
and so on [3]. Ensembles are relatively independent enti-
tiea needing relatively little intercommunication. Therefore,
cluster execution is coarse-grain.

2.1.4 Network Architecture

A network consists of several interconnected clustera. They
participate in sclving multiple or very large problems. A
reasonably small number of clusters is expected for an REM
petwork, so that a general-purpose interconnection switch
would be appropriate. At this level, one has to deal with
preblems typical of higher grain concurrency, such as exe-
cuting several reduction problems simultaneously.

2.2 Architectural Features

Efficient execution of the term rewriting model of computa-
tion requires extensive cooperation among cells. Such coop-
eration is needed either to match a rule’s lefthand side, or to
change the term structure according to a righthand pattern.
Therefors fast intercell connections are eritical to the RRM
design. The following summarizes & number of architectural
features of our design and the problems that they address:

1. Cells combine proceasing and storage capabilities, thus
eliminating memory access bottlenecks,

2. The problem of synchronizing the operation of cells
within the same ensemble i3 simplified because they all
obey a single shared controller.

3. Cells are intentionally kept as simple as possible, so that
an ensemble composed of several hundred cells and a
controller can be packed on a single VL3I chip. This
avolds delays associated with off-chip signal propagation
and enables ensembles to operate at high clock rates,

. Cells within an ensemble (implemented en a single VLEI
chip) are comnected by short, dedicated sigmal wires.
VLSI experionce and theory [10] show that data can be
exchanged on such wires much faster than over nonlocal
connections. As a result, only physically adjacent cella
within an ensemble are allowed to communicate.

872

5. It ia also clear that cells should be placed on the VLSI
chip in a regular tessellation pattern so as not to waste
gilicon ares. The combined constraints of creating a
regular pattern and of using local communication imply
that cells within an ensemble are interconnected by a
regular grid.

3 Cell Architecture

A single term rewrite may be executed by thousands, or
even hundreds of thousands, of cells, each storing one data
node. Cells can also perform simple computations and can
also serve as way stations for data transfer, Thus, cells mix
storage, computation, and communication. Although the
operations performed by each cell are extremely simple, the
REM architecture achieves great power from the cooperation
of many thousands of cells on & commen task.

3.1 Cell Organization

Cells are physical realizations of the abstract notion of a tree
node. The information associated with a node dictates the
minimal requirements for cell design, When a cell ia alle-
eated to & node, its resources must be able to accommeodate
all node information. A cell should therefore be capable of
storing

A token that uniquely encodes the node's function sym-

bol or constant.

» Various flags summarizing the state of computation at
the current node (e.g., match condition checked success-
fully, reduced subtree, ste.).

» Pointers to other siructures that serve as arguments to
the function symbol.

Partitioning problems into sufficiently local computations
keeps the number of distinet function symbols small, so that
only a few bits (say 8 to 10) are needed to encode any given
token. Pointers are also fairly short (around 10 bits), since
the number of cells in a single ensemble iz limited by avail-
able silicon area. Data terms are represented by binary trees
or DAGs where functions of higher arity are represented by
several binary ones, Therefore, sach cell nesds to store at
most two pointers,

3.2 Cell Operations

Theoretical studies [0 suggest using the Aags stored in nodes
for performing pattern matching on data terms. Simple
broadeast instructions check the presence of a specific flag
or token in a cell, Complex patterns are matched by pro-
gressively identifying larger and larger substructures.! This
requires each cell to have a token (and flag) comparator.

Following & successful match, 8 new term structure is con=
structed, including pointers to substructures in the matched
pattern. This pew structure then replaces the matched sub-
term. To suppart this aperation, there must be some way to
allocate empty cells to new data nodes and to keep pointera
to partially constructed structures. The cell design provides
three temporary registers for holdlnx pointers to partially
built new stroctures.

“This process can emphasize sither a bottom-up (from the pattern
lenven to it root) or a top-down strategy.

3.2 Numerical Computation

Using the RRM for numerical computaticn requires addi-
tional capabilities at the cell level. Although numerical op-
erations could be implemented from “basic principles® by
uzing only the successor operation on natural numbers (i.e.,
Peano arithmetic), this would be much too slow. A better
solution is to Jet cells perform simple operations on amall
(8 to 10 bit) numbers, including signed addition, negation,
shift, and bit operations. The incremental cost over the al-
ready required equality comparison on tokens i3 quite small.
ERM compilers can build a complete set of arithmetic op-
erationa using these built-in cell operations. A novel redun-
dant representation of arbitrary precision numbers as trees
of small integera [11] permits highly concurrent arithmetic
cperations, and thus effectively exploits the RRM capabili-
ties.

3.4 Cell Control
As clarified below, the design requires that each cell

* Obey simple broadcast instructions, typically moving
data between registers (temporary, pointer, or token
storage) or comparing tokens with broadeast data.

s Attempt to conmect to another cell whose address is in
a register, and if successful, exchange information with
that cell.

+ Enter an inactive state whenever a comparison or & con-
nection attempt fails—inactive cells do not “listen” to
the broadcast instructions, but can be brought back to
attention when a special activation command is broad-
cast by the controller,

* When in inactive mode or free, use its resources to per-
form maintenance operations, such as garbege collection
and data restructuring,

4 Ensemble Architecture

An RRM enssmble consists of many communicating cells, a
shared controller, and local storage for current rules. Each
ensemble is implemented on a single VLSI chip to avoid the
delay of off-chip signal propagation. A contraller broadcasts
commands to all eells in its ensemble. Such commands are
elementary imstructions for pattern matching and pattern
replacement.

4.1 Regular Ensemble Mappings

Given the limited flexibility of an efficient physical intercon-
nection structure (for example, a rectangular grid), there
appears to be a conflict between accommodating match-
ing and replacement. The best way to achieve fast com-
munication during matching is to ensure that nodes that
are logically connected are placed in cells that are physi-
cally adjacent.? On the other band, replacement requires
creation of new data structures, ineluding pointers to data
subterms matched by variables, This task ia eased when

“As alvendy discussed, it is assumed that only local connections are
accommodated.

logically connected cells can be placed in arbitrary cell loca-
tione. In [8], these two alternatives are called physical map-
ping, which seeks to place logically linked nodes in physically
adjacent cells, and logical mepping, which allows placing log-
ically linked nodes in arbitrary cell positions and implementa
communication requests by some form of message passing.

4.2 Dynamic Multiplexed Mapping

Our salution to the mapping problem, called dynamic mul-
tiplezed mapping, divides the slicon real estate into in &
regular array of tiles, Each tile has resources sufficient to
implement several cells (8 iz the pumber of cells currently
under evaluation). Adjacent tiles communicate direstly on
short wires, so placing logically linked cells in adjacent tiles
permita efficient matching., Changes in term sbructure are
usually handled' by finding free cells in the tiles adjacent to
the requesting cell. Occasionally, all adjacent tiles are fully,
booked; then remote cells must be allocated. Pointers to
remote cells can also arise when a new structure contains a
link to & subterm matching & rewrite rule variable.

Since only local wires are used for connections, nonadja-
cent cells cannot be accessed directly. Instead, whenever a
cell uses & link to a remote cell, the currently broadcast op-
eration is aborted for that particular cell (other eells in the
grid may continue their eomputation) and a special request
is issued. As illustrated in Section 6.2, this special request
will eventually cause the distant data node to be relocated
to & physically adjacent cell.

To summarize, dynamic multiplexed mapping

1. Performs intercell communication at high speed (on lo-
cal wires) at the expense of occasionally failing to make
a connection when remote cell access is needed.

2. Decreases the occurrence of remote connections by in-
creasing the alternatives for placing a new data cell cre-
ated during replacernent.

3. Haa several cells per tile, thus making better use of
shared resources, such as communication links and spe-
cial data processing functiona,

4.3 Inferconmnection Capabilities

Since connections are the main resource to be optimized in
modern technology, the RRM ensemble architecture provides
direct connectiona only-between adjacent tiles, In more de-
tail, each edge in the tessellation mesh is implemented by a
communication port supporting either duplex or half-duplex
data transmission.? A port between two tiles is shared by all
links between data nodes that happen to be mapped on the
same pair of tiles. As a result there is competition for com-
munication bandwidth, with only one request being honored
at & time. Rejecting a connection because of lack of a free
pork is similar to falling to execute a broadcast instruction
when a remote connection is involved, and cormmunication
failures of either kind are handled by a similar combination
of anftware and hardware.

When the mesh degree is sufficiently high (at least 4), the
probability that two cells within the same tile will request

B3 duples wire can simuelbanscusty transmit data in both directions,
while data on hajf~duples wires can be transmitted in only one direction
at a time. .

873

© eommunication to the same adjacent tile is lower. The fact

that all cells in an ensemble obey similar instrections aleo
helps to minimize the competition for bandwidth.

To the model of computation, failures due to remote con-
nection or insufficient bandwidth appear as occasionally non-
deterministic sxecution, in the senss of unpredictable, un-
reproducible sequences of events. Such nondeterminiam is
naturally handled by the concurrent term rewriting model
of computation. Indeed, these unpredictable sequences of
execution are a bonus for the REM, because they reduece
the danger of deadlock. In some simple situations, two data
trees are mapped into the same region of the grid. Match op-
erations can then compete for scarce communication band-
width, and it ia possible that neither may sueceed in match-
ing the broadeast pattern. MNondeterministic execution re-
duces the probability of staying forever in such a deadlocked
gituation. The rare remaining deadlock situations are elimi-
nated by having the communication ports select at random
a winning request whenever connection demands exceed the
port’s capabilities.

5 Ensemble Operation

Although RREM ensemble execution resembles traditional
SIMD execution, in that all the cells execute instructions
broadcast by a common controller, there are also some sig-
nificant differences, as discussed below.

5.1 Execution of Rewrite Commands

A set of rewrite rules is compiled into aimple microinstroe-
tions and loaded into the controller. Such microinstructions
perform matching and replacement operations or implement
a sequencing strategy for the rewrite steps. :

Each instruction broadcast by the controller is interpreted
in a local contezi—this is where the RRM architecture de-
parks from classical SIMD execution. Using the pointers and
temporary sterage available at the cell level, appropriate cell
connections are made according to the logical links in the
data tree. By contrast, the central controller in traditional
SIMD architectures must be sware of the physical locafion
of each data connection, A further departure from classi-
cal SIMD execution is that an active cell can momentarily
activate another cell in order to request information.

In order to perform locally conditional operationa, all cells
containing data nodes are activated and then tests are broad-
cast. Modes that do not satisfy & test are deactivated and
do not execute further instructions until the next global ac-
tivation., A cell that experiences & communication failure is
aleo deactivated.

5.1.1 Pattern Matching

Matching consists of finding cefls at which the pattern of
a lefthand side occurs. The oceurrence of a given pattern
or subpattern at & particular cell is represented by setting a
corresponding fAag in that cell. The simplest subpatterns are
tokens, for which a flag is set in the cell. A flag representing a
larger subpattern is placed in a cell when lags cerresponding
to its immediate subpatterns occur in ita children cells.

874

5.1.2 Replacement

Following a successful pattern match, the replacement phase
creates a new term structure that should replace the matched
one. This new structure is gradually grown by allocating new
cells. Since communication failures could prevent this new
gtructure from being completed, the replacement algorithm
ghould be capable of being aborted at any stape without
corrupting the criginal data term. The following measures
are taken for this purpose:

s The replacement is alwaye performed by constructing
the righthand side pattern nsing newly allocated cells,
and possibly peinters to matched subterms.

The matched data term is using the atomic operation
(eommit) guaranteed to succeed eventually. When the
commit operation iz finished, the newly constructed
righthand side pattern replaces the matched subterm.

« If constructing the righthand side does not succeed (ei-
ther by not being able to allocate enough new cells, or
due to communication failures), the partial structure is
deallocated and the matched subterm iz not changed.

5.2 Rewrite Cyeles and Termination

The model of computation does not prescribe an order or
_rule application. However, the order in which instructions
are broadcast by the controller affecta the ensemble perfor-
mance. For simple examples (most of the best cases analyzed
so far), it is sufficient to repeatedly broadcast the same se-
quence of instructions until the tarm is reduced. In more
complex cases, the controller may check that there are suc-
cesaful match instances before stacting a long sequence of in-
structions directing the corresponding replacement. Check-
‘ing whether there are any instences of certain marks requires
feedback fram the cells in an ensemble to the controller. Thia
can be implemented with a simple binary tree network that
ORs signals from all cells, but of course, obtaining resulta
from this network will take more time than a single instruc-
tion cycle.

Rewrite rules can interact; for example, one rewrite could
create the sitwation where another applies. For this reason
rules must be attempted several times, trying to match pat-
terns created by intervening successful replacements. The
controller must therefore employ strategies to group rules in
related execution cycles that are repeatedly broadcast until
all rewritea have been performed. The grouping of rules in
sequences and their order of execution is eritical to efficient
execution.

Closely related to execution strategies is the issue of ter-
mination. In principle, according to the term rewriting
model of computation, rewrite rules are applied wntil no
more matches succeed. However, since an ansemble cannot
handle a complete sat of rewrite rules (and moreover, its cells
can only store a small part of the data tree), only & subset
of the whols rule set is executed at one time. ‘The termina-
tion condition bécomes more difficult in the presence of such
partitioned rewrite rules. Also compounding the problem
is the possibility of communication failures, in which case a
currently unsuccessful match could succeed at a later time.

5.3 Autonomous Term Relocation

The dynamic multiplexed cell mapping may introduce re-
mote connections that cannot be used for direct data trans-
fer. The novel concept of sutonomons execution is proposad
to handle these situations. A cell that is not currently ac-
tive (i.e., has not satisfied recent broadcast tests or is frec)
ignores the instructions broadeast by the controller, and ean
inatead perform simple maintenance operations.

In the case of a remote connection, any request for data
transfer through it fails, with the side effect of starting an
autonomous process that will eventually relocate the connee-
tion target to a cell physically connected to the requester.
The strategy used for this is to create an autonomous mes-
sage cell that “moves” toward the target cell. This is simply
achieved by hawing each autonomous cell allocate ancther
cell closer to the target, copying its state inte it, and finally

"deallocating the current cell. When the target is reached,

the reverse move is performed, until the requester is reached.
When a cell is relocated, its connections to previeusly adja-
cent cells can becormne remote. In the long run, the effect of
the relocation process is to have data structures move around
the grid attempting to eliminate all remote connections. The
example presented in Section 6.2 illustrates the power of au-
tonomeons processes for relocating data in a ensemble.

6 Architectural Simulations

The RRM architecture is currently being validated by simu-
lation, to enable us to explore design choices and to eliminate
mistakes and problems before descending to more detailed
levelzof design. Several simulators, written in Commen Lisp,
have been developed for testing different abstraction levels:

* Concurrent term rewrifing simulations in which rewrite
rules are the primifive operations; their goal is to es-
tablieh the amount of concurrency inherent in UHLL
programs. Resulta obtained at thia level are presented
in [12].

o Logical ensemble simulations deal with abstract tree (or
DAG) structured data; the rewrite rules are decom-
posed into simple operations that are broadeast to all
the nodes, and arbitrary connections are allowed.

s Physicol ensemble simulations consider the effect of lim-
ited communication resources, stemming from the map-
ping of cells onto a regular silicon grid.

6.1 Logical Ensemble Simulation

The logical ensemble simulator deals with breadeast in-
structions, of the kind generated by the RREM compiler. The
rewrite example depicted in figure 1 is continued with a de-
tailed presentation of hand-coded instructions suitable for
computing Fibonaccl. The broadcast program is separated
into two rewrite phases, one reducing Fibonacei symbals to a
combination of plus and successcr symbols—shown in figure
2-and the other eliminating plus symbels (i.e., performing
addition in Peano a.ri.t,]imgﬁc]—ah.awn in figura 3.

The registers of a cell are called token, left, right,
vtemp, vleft, and vright. :

The microinatructions consiat of a sequence of segments of
the form

(loop

(Lloop

(init)}
(init)
(init)

{init)

{init)

{imit)

{init)

(imit)

(init}

{test-token 'fiba)
{add-mark *a)
{test-token '8)
{add-mark 'b)
(teat-token '0)
(add-nark 'c)
{test-tree 'a :lmark 'c)
{move ‘0 token)

{comzit Q)

{test-tree 'a :lmark *b)
{add-mark ‘d :pointer left)
{teat-tree 'd :lpark 'e)
(add-mark ‘el
(test-tree ‘a :lmark ‘e)
(fetch left left wieft)
(nove 'e token)

(commit 1)

(test-tree 'd :lmark ‘b)
{fetch left left vhemp)
{add-mark '£)
{test-tree 'a :lmark 'f)
{alloc vleft 'fibe)
{fetch left left viemp)
(alloc wright °fibe)
(store vtemp vleft left)
(fetch left vtemp vtemp)
(store vtemp vright left)
{move ’+ token)

(comnit 2)

Figure 2; RRM Code for Fibonacc

{init)
(init)
(init)

(init)

{init)

{init)

(test-token "+)
{add-mack 'a)
{test-token '8)
{add-mark 'b)
{test-token '0)
{add-mark ‘c)

{test-tree 'a :rmark 'c)
{feteh left right vright)
{fetch left left vleft)
(add-park 'd}

(test-mark 'd)

(commit O :pointer left)
(test-tree 'a :rmark 'b)
(alloc vleft 's)

(fetch right left vright)
(etore left vleft left)
(commit 2)

Figure 3: RRM Code for Addition

875

1. An activation command waking up all inactive cells
{init).

2. An enabling condition such as

tost-token n enabling only these cells containing
specified token “n™
& test-mark x enables cells having flag “x* set

tegt-tree a :loark b :rmark ¢ enables cells
having flag "a” set provided their laft and right
arguments are marked with “b™ and "c®, respec-
tively {either “b” or “c” may be omitted}.

3. A sequence of operations to be performed on all enabled

GH“E:

» add-mark x sets the cell flag . A mark can be
added to the cell pointed at by a cell’s left pointer
by (add-mark x :pointer left).

& Temove-marlk x removes mark S

» nove x y transfers either the token "x” or the con-
tenta of register ¥ to y

+ fetch x y 2 moves information from register ¥ in
the cell pointed at by x to register =

= gtore x ¥ & transfers the contents of register x to
register z in the cell pointed at by ¥

* alloc x t allocates a new cell with token “t” and
puts & pointer to it in register x

* copnit indicates that the structure built under the
controller’s direction should replace the matched
term. As part of this, vleft is tranaferred to left
and vright is transferred to right. 1

This simulator emulates the cperations performed locally
by each cell, but ignores the effects of distant pointers or
limited connection bandwidth. In effect, the constraints in-
troduced by the physical grid are not considered. The simu-
lation can also be used to debug the hand-generated instruc-
ticna or to find compiler problems.

6.2 Physical Ensemble Simulation

The logical simulator ignores technological constraints lim-
iting the number of cells that can communicate with one
ancther, ete. The next level of simulation models these of-
fects, All cell-to-cell communication requests are checked to
see whether they are physically possible (i.e., the requester
and target cells are in adjacent grid tiles). If the request is
physically possible, then the operation is immediately per-
formed. Otherwise, an autonemous process aimed at moving
the target cell to a directly connected file is started.

The simulation results may be shown graphically as grid
“znapshots,” The Fibonacei example is contineed here by
depicting a number of selected pictures in Bgure 4. The sim-
ulation assurnes a 4 by 4 rectangular grid connection (each
tile can acceas four neighbora) with half-duplex wires. Each
gnapshot shows the allocated cells by their token name, and
their arguments by arrows correspending to their “left™ and
“right” pointers,

“The pumerical arpueient |8 used to coordinate batween the Inapes-
thon of mewly created structures and the deallocation of old ones, This
in a difficult l2aas beyend the seope of this paper.

373 |

fibe

]
1
+a fibo
; 5

1

.II /h:--ﬁr'? E'
oo + T s

229

a fibd fibol

/

fibo

a Fib
5

<[
;

fiboy

“‘ﬁ-.llﬁjﬂ

i .
1{1:,; o
4 I'.
- fibo
i

™

r 0
.'-r' g |

176 % ¢

fiba|

Tl

876

}]
\

%
CA

Figure 4: Grid Rewrite Simulation

.w_f_ﬂl"T‘“}bs

The snapshot in figore 4 at clack 16 depiets the initial data
term as loaded on-the grid. The "root” token indicates the
start of the term; the starting term for reduction consists
of the function symbol 2ibe with an argument consisting of
a sequence of 5 operators applied to 0. Although each of
the 18 tiles is able to accommodate several data nodes, the

" nodes normally are evenly distributed about the grid.

The instructions listed in figure 2 are applied to this data
term. At clock 20 the interesting function symbaols have been
identified by means of flag settings. Since an instance of
f#ibola(s(x))) has been found, the ensemble procesds to
build & new righthand pattern. The snapahot for elock cycle
42 ghows the original fibo cell having allocated two adjacent
cells that were loaded with £ibe tokens and have a pointer
set to the original argument with one & removed, in one case,
and twe removed, in the other. The old matehed term is re-
Placed by the new construction in a single commit operation.
The resulting term is depicted in Sgure 4 at clock 56,

The term as rewritten contains remote pointers; when at-
tempting to exchange information on such links the matching
process fails, and requests for relocating the term are issued.
Figure 4 at clock 81 indicates these requests (actually mes-
sengers) by dotted arrows. Both £ibo eperators request their
arguments. The details of the algorithm for moving cells en
the grid are too coraplex for this presentation, but the rasult
is shown at clock 86, where one of the moved arguments has
been located “above™ the fibe operator, while the sscond
one is gtill moving closer. At the completion of these moves
there are new remote pointers that in their turn trigger re-
quest messages. These can be seen-at clock 115, attempting
to bring closer the next level of £ibo arguments.)

Eventually the structure is contiguous enough for another
set of rewrites, as shown at clock 134, Similar to the execu-
tion of the firet rewrite, the two £ibo operators are identified
and new structures are allocated for each, Notice the comn-
current rewriting at two sites, corresponding to the parallel
teem rewriting model. The term after the replacement is
depicted at clock 176. The initial #ibo operator has now
spawned four new instances of itself.

Just as in the previous steps, the active” operators are
identified and mew righthand structurea built. But since
there are four rewrite sites, there is a high probability of
requests conflicting over scarce resources. For example, the
snapshot for clock 209 depicts three separate move requests
independently finding their targets in the grid. After a
few more clock cycles, the structure is contiguous encugh
to match more rewrite rules. As depicted at time 220, a
fibo(0) has been replaced by 0, and all other £ibo argn-
ments are in adjacent positions. One more rewrite step is
shown at clock 248, when another two inatances of £ibo are
rewritten. Finally, as illustrated by the enapshot at time 318,
all instances of the fibo operator have been eliminated, and
the term is *reduced® with respect to this rule set. The
data term represented corresponds to the tree shown in the
middle of figure 1(c).

Mext, the rewrite rules for addition (see figure 3) are ap- -

plied. As depicted at clock 381, the + and s operators have
been marked. The snapshaot for clock 365 shows twe + in-
stances being rewritten.

The next set of pictures is similar to the Fibonacel reduc-
tion sequence. The snapshot at clock 373 unveils some of
the messages used during commit. Af time 381, two of the

BT7

+ operators have been eliminated, and the remaining two
have their arguments in adjacent locations. Their rewrite
is shown at clocks 389 and 402. Eventually the data term
is fully reduced. The result, as shown at clock 454, is (as
expected) 3.

6.3 Architectural Explorations

The grid level simulator also allows experimentation with
different choices for several important architectural parame-
ters, such as

o The grid size and the tile mesh structure.
+ The number of cells accommodated by each tile.

The communication bandwidth between tiles and the
port allecation strategy used in case of conflicts.

Allocation strategies for new cella,

A number of other examples have been simulated: ad-
ditional versions of Fibonacel, matrix transpesition, bubble
sart, and a highly parallel tree sort. Through these simula-
tiona the algorithma for match and replacement have been
validated. The simulations also showed that the technigues
for resource management do not pose unacceptable overhead.

T Novel Architectural Features

This section summarizes some of the novel features' of the
RRM architecture. They are derived from the new model
of computation and stress the importance of communiestion
FESOUTCES,

7.1 MNoncritical Scheduling

The concurrent term rewriting model of computation has
been useful in fresing the architecture from concerns with se-
guential execution, separate data access protocols, ete. Since
this model requires that rules are executed until the data tree
iz fully reduced, rewrite rules mmst be executed cyclically,
but in arbitrary order. This permits any rewrite atternpt to
be abandoned at any moment, provided that the data term
iz left in a consigtent state. Thiz approach allows the REM
architecture to use an extremely fast conmection scheme that
is optimal on the average, without the need for complex logic
to handle overloading. Moreaver, cells that are disabled be-
cause of resource allocation problems (e.g., communication
bottlenecks) will get another chance in the next eycle of ex-
ecution for the same rewrite rule.

7.2 Self-Organizing Processing

In contrast to traditional fine-grain concurrent architectures,
the operations broadeast by the ensemble controller are in-
terpreted in the context of each cell, thus achieving wnusual
flexibility. For example, a traditional SIMD operation re-
quests each active cell to access the cell above it. But an
ensemble aperation ean request that each cell access the cell
indicated by one of its link registers. Loecal instruction inter-
pretation greatly simplifics compilation, and alse improves
RRM efficiency, because requests for scarce resources are re-
solved in & context specific to each cell.

878

The independent execution capabilities of cells are further
exploited by antonomous execution modes. Any cell that is
either inactive or free during a particular broadeast opera-
tion 15 able to use its resources for other worthwhile tasks.
The result is a self-organizing array of cells that either inter-
pret a broadcast stream of instructions or recrganize them-
selves to make best use of available global resocurces.

7.3 Sharing by Dynamic Data Passing

Dats sharing is difficult for massively concurrent architec-
tures because it requires expensive coordination, which con-
fHicts with the goal of high performance. Concurrent srchi-
tectures solve this problem by using either message-passing
or data-passing. Message-passing organizations rely on ex-
plicit data access requests, and typically incor large over-
head. They are most suitable for coarse-grain comcorrent
execution, where this kind of data access cceurs sufficiently
rarely. Static data-passing organizations (e.g., pipelined pro-
cessors) move daka in a prearranged pattern, such that when-
ever a shared piece of information is needed in a processing
cell at a particular moment, it arrives there on time. Static
data-passing ensures hiph-performance execution, at the ex-
pense of great inflexibility and painful programming.

The REM does nol incur the high owerhead associated
with message passing or the control inflexibility typical for
data passing. Data passing need not be static for an archi-
tecture thal is self-organizing in the sense described above,
since cells not enabled for a particular broadcast operation
can use their respurces to relocate data, For high perfor-
mance, this dynamic data passing makes use of local com-
munication coly. Any cell requesting access to a data item
must relocate the data item to an adjacent cell. Data shar-
ing is thus achieved by dynamically allocating resources to
cella, such that cells requesting access take turns at becoming
adjacent to the data-holding cefl.

Acknowledgments

We thank our fellow members of the Rewrite Rule Ma-
chine praject, Dr. Joaé Meseguer, Prof. Hitoshi Aida, and
Prof. Ugo Montanari, with whom we have had extensive die-
cussions of ideas presented in this paper.

References
[1] Kokichi Futatsugi, Joseph Goguen, Jean-Pierre Jouan-
naud, and José Meseguer, Principles of OBJZ. In Brian
- Reid, editor, Proceedings of 18th ACM Symposivm on
Prineiples of Programming Languages, pagea 52-86, As-
sociation for Computing Machinery, 1985,

I2

Kokichi Futatsugi, Joseph Goguen, José Meseguer, and
Koji Okada. Parameterized programming in OBJZ.
In Robert Balzer, editor, Proceedings, Ninth Tuterna-
tional Conference on Software Engincering, pages 51-
60, IEEE Computer Society Press, March 1987.

Joseph Goguen, Claude Kirchner, and José Messguer,
Concurrent term rewriting as a model of computation.
In Robert Keller and Joseph Fasel, editors, Proceedings,
Graph Reduclion Workshop, pages 53-33, Springer-
Verlag, 1987, Lecture Notes in Computer Science, Vol-
urne 279,

ki

[4] Joseph Goguen, Claude Kirchner, José Meseguer, and
Timothy Winkler. OBJ aa a language for concurrent
programming. In Steven Kartashev and Svetlana Kar-
tashev, editors, Proceedings, Second International Su-
percomputing Conference, Volume [, pages 195-198, In-
ternational Supercomputing Institube, Inc. (St. Peters-
burg FL), 1987.

[5] Joseph Goguen and Joaé Meseguer. Eglog: equal-
ity, types, and generic modules for logic program-
ming. In Dougles DeGroot and Gary Lindstrom, ed-
itora, Logic Programming: Functions, Relotions and
Equations, pages 205-363, Prentice-Hall, 1986. An ear-
lier version appears in Journal of Logic Programming,
Volume 1, Number 2, pagea 179-210, September 1984,

[6] Joseph Goguen and José Meseguer. Software for the
rewrite rule machine. In Proceedings, International
Conference on Fifth Generation Computer Systems,
ICOT, 1988, To appear.

[7] Joseph Goguen and José Meseguer. Unifving object-
oriented and relational programming, with logical se-
mantics. In Bruce Shriver and Peter Wegner, editors,
Research Directions in Obfect-Oriented Programming,
pages 417477, MIT Press; 1987. Preliminary version
in SIGPLAN Netices, Volume 21, Number 10, pagea
153-162, October 1986; also, Technical Report CSLI-87-
93, Center for the Study of Lenguage and Information,
Stanford University, March 1987.

[8] Sany Leinwand and Joseph Goguen. Architectural op-
tions for the rewrite rule machine. [n Steven Karta-
shev and Svetlana Kartashev, editors, Preceedings, See-
ond International Supercompuling Conference, Volume
1, pages 83-T0, International Supercomputing Institute,
Inc. (St. Petersburg FL), 1987

[8] Ugo Montanari snd Jossph Goguen. Anr Abstract
Machineg for Fast Parallel Matehing of Linear Pat-
terns. Technical Report SRI-CSL-87-3, Computer Sei-
ence Lab, SRI International, May 1287,

[10) Jeffrey Ullman. Computational Aspects of VISL Com-
puter Science Press, 1983,

[11] Timethy Winkler. Nemerical Computaiion on the
REM. Technical Report, SRI International, Computer
Ecience Lab, 19838, To appear, Technical Memorandum
Series.

[12] Timothy Winkler, Sany Leinwand, and Joseph Goguen.
Simulation of concurrent term rewriting. In Steven Kar-
tashev and Svetlana Kartashev, editora, Proceedings,
Becond International Supercomputing Conference, Vol-
ume [, pages 199-208, International Bupercomputing
Institute, Inc. (St. Petersburg FL), 1987.

