FROCEEDINGS OF THE INTERMATIONAL COMFERENCE
OM FIFTH GENERATION COMPUTER SYSTEMS 1983,
edited by ICOT. © ICOT, 1988

861

DESIGN OF AN EFFICIENT DATAFLOW ARCHITECTURE
WITHOUT DATA FLOW

Guang R. Gao

School of Computer Science School of Computer Science
MeGill University
3480 University

MeGill University
3430 University

René Tio

Herbert H.J. Hum

Centre de recherche
infermatigue de Montréal
1650 de Maisonneuve 0.

Montréal, Quebec H3A 2AT Montréal, Quebec HIA 2A7 Montréal, Quebec H3G 1N2

ABSTRACT

An efficient static dataflow architecture based on
an argument-fefching data-driven principle has re-
cently been proposed by Dennis and Gao (5. This
architecture opens possibilities in combining the tech-
nologies of existing high performance conventional

pipelined architectures with the strengths of the.

dataflow model of parallel computation. The key fea-
ture is that data never “flows™ in the new architec-
ture even though instruction scheduling remains data-
driven. This paper outlines the instruction set archi-
tecture design of the argument-fetching dataflow ar-
chitectiire. Some important aspects, the addition of a
structure memory to for arrays, split-transaction array
accesses and interprocessor communication support in
the instruction set design, are described. We also
discuss extensions for a dynamic argument-fetching
dataflow architecture where multiple function inveoea-
tions can be effectively supported.

1 INTRODUCTION

In recent years, we have witnessed remarkable ad-
vancernents In such Al applications as knowledge in-
formation processing and robotics. These advance-
ments have spawned an increasing demand for higher
performance in computing power. More and more re-
searchers agree that, to meet these increasing chal-
lenges, parallel processing iz becoming a necessity.
The next generation of computer systems may employ
parallel computers with tens, hundreds and even thou-
sands of processors together to accomplish a fask. It
becomes increasingly clear that traditional von Neu-
mann etyle programming and architectures are inade-
quate to meet such technological challenges [4].

The dataflow model of computation offers an al-
ternative with a sound, simple, vet powerful model of
parallel computation. Howewver, there have been seri-

ous doubts that dataflow processor architectures can
compete with the efficiency of their conventional coun-
terparts. One major concern is the amount of data to-
ken flow in the processor. In order to exploit fine-grain
parallelisms, the dataflow model appears to require a
higher volume of data traffic — a criticism common
to all proposed dataflow architectures. The overhead
becomes even higher in mest dynamic dataflow archi-
tectures (such as the tagged-token dataflow architec-
tures) due to the matching of tokens needed in the
critical datapath [3,12].

A new static dataflow multiprocessor architecture
based on an argument-fetehing data-driven principle
has recently been proposed by Dennis and Gao [5].
Thies new architecture opens possibilities in combining
the technologies of existing high performance conven-
tional pipelined architectures with the strengths of the
dataflow model of parallel computation. The key fea-
ture is that data never “flows” in the new architecture
while instruction scheduling remains data-driven.

In traditional prepesals for a dataflow processor,
the data value computed by one instruction is trans-
mitted to its destination insiruection to signal that
the input operand is available. In such argument-
flow dataflow architectures, there is more data move-
ment involved than necezsary. The problem lies in the
decision to keep data information (values) and con-
trol information (addresses) bound together in packets
“Howing" through the processor. In the argument-
fetching dataflew architecture, the data and signal-
ing roles of the information packets are separated and
an instruction fetches its own arguments from a data
memory just like in conventional processor architec-
tures.

The new architecture has two parts: & dataflow
instruetion scheduling unit (DISU) and a pipelined
instruction processing unit (PIPU). The PIPU is an
instruction processor that uses conventional tech-

862

nigues to achieve fast pipelined operation. The DIST
holds the data~-dependency signal graph of the collec-
tion of nodes allocated to the processing element, and
maintains a record of which nodes are enabled for exe-
cution by the firing rules of the signal flow graph (see
sec. 4.2.) Each of the enabled nodes in thiz pool is
available for execution by the PIPT, The new archi-
tecture has a significant advantage over vector pipe-
lined processors as well as RISC processors [5]. The
highly pipelined processing power of the new architec-
ture can be exploited by the dataflow software pipeline
for array operations in sclentific numerieal computa-
tion [6,7,8].

PIFU
Fu-.—:: . -.:—-m
Ed O - O
O iy DISU oo a
. O - ml=

D maiting lnstroctions
E ennbled Instructions

Figure 1: An Argument-Fetching
Dataflow Processor

2 THE ARGUMENT FETCHING
ARCHITECTURE

The argument-fetch dataflow processor consists of
two major sections (fig. 1) designed specifically to per-
form instruction execution and scheduling functions.
The Dataflow Instruction Scheduling Unit {DIST)
stores the signal graph of the dataflow program and
is responsible for identifying and “firing” instructions
that are available for execution. The Pipelined Inst-
ruction Processing Unit (PIPU) executes these in-
structions and informs the DISU when each instrue-
tion finishes execution.

The fire link in figure 1 is for transmitting the ad-

dresses of enabled instructions from the DISU to the .

PIPU. The done link is for transmitting back fo the
DIST the addresses of imstructions which have com-
pleted their processing in the PIPU, together with a
condition code used in sending conditional signals.

The PIPT can be considered a conventional pipe-
lined processor without a PC — the von Neumann
style program counter — while the DISU performs the
role of a PC by providing addresses of candidate exe-
cutable instructions. The difference is that this “*PC*
is data-driven and maintainz not one, but a pool of
concurrent candidates.

We have extend the architecture proposed in [5] to
include 2 structure memery unit for handling arrays

and an I/O unit for interprocessor communications to
the PIPTI.

2.1 The Pipelined Instruction Pro-
cesging Unit

Figure 2: Structure of the PIPU

The organization of the PIPU iz shown in figure 2.
It consists of four major pipeline stages to handle inst-
ruction fetch and decode, operand effective address
calculation and fetch, instruction execution (consist-
ing of a scalar operation unit and a structire operation
unit), and result store.

The scalar operation unit performs arithmetic and
logic functions (such as basic fixed and floating point
arithmetic) as well as scalar memary operations, while
the structure memory unit performs data structure
oriented memory operations, such as arrays accesses.
The I/O Unit is used for interprocessor communi-
cations, specifically, fetching data from remote PEs
(sec. 5.8). Our architecture also provides built-in

primitives for handling FIFO buffers.

The unique character of the PIPU stems from the
absence of a program counter and its related control

logic.

2.2 The Dataflow Instruction Schedul-

ing Unit
(153 i dons 4
m:ﬂ' l Frocessor
tnit = Tait
] L]
! |
r————
Epaidle
Cennr
Wemsry Yampry

Figure 3; Structure of the DIST

The DISU (fig. 3) consists of a signal processing
unit {SP) and an enable controller (EC) umit. The
signal graph of a program is represented in the DISU
by the signal lists stored in the signal list memory of
the SP unit. Each signal list represents a set of signal
arcs leaving the associated node of the signal graph.
The enable count memeory of the enable controller unit
holds count and reset status values for each node in the
signal graph.

In response to a done signal from the PIPU for
instruction n;, the SP unit retrieves the signal lisis
for o; and sends a count signal for each entry in the
active lists (the set of active lists is determined by the
condition code returned with the done signal.) The
EC unit receives the eount signal and decrements the
count value of the indicated node. When this count
value reaches zero, an “enable” flag for this instruction
is set and the reset value is copled back into count
to prepare for the next firing cycle of the instruction
{e.g. in the next iteration of a loop.} The EC unit
continuously monitors all the enable flags and issues
fire signals for enabled nodes.

3 THE PROGRAM AND
INSTRUCTION FORMAT

863

A dataflow program graph G for the argument
fetching archifecture is represented by a program tuple
{P,5}, where P is a set of PIPU instruciions and &
a signal flow graph, represented by a set of signaling
instructions. Formally,

= <P.3>

Each actor in the dataflow program graph has an
entry in both P and 8 sections of the program tuple.
The instructions in P (p-instructions) contain no in-
formation about the sequence of execution. Instead,
the sequencing information is given separately by the
signal flow graph 5.

3.1 Instruction Format for the PIPT

The instruction graph P is a list of instructions
where:

i= <p-inst-list >

<p-inst-list> =
< p-instruction>
| <p-instruction> <p-inst-list>

<p-instruction> =
<opeode> <op-address> <op-address>
<result-address>

<op-address> , <result-address> ;=
<mode> <address>

Each p-instruction is & three address instruction
common to conventional architectures, These instroe-
tions are stoted in PIPU instruction memory and are
executed by the PIPU (see section 3.2). The effective
address can be calculated from the address field and
the addressing modes,

3.2 Signal Graph Format for the DISU

The signal graph & of the program tuple deter-
minez the sequencing of the instructions. Formally,
the graph consists of a list of signal nodes:

§ = <g-nodelisi>

<g-node-list> 1=
<s-niode
| <s-node> <g-node-list>

B4

<g-nodes =
<signal-count> <signal-list>

Each signal node, or s-instruction, contains three
address lists designated the unconditional, true and
false signalii:,g lists, These signal lists are used in the
implementation of conditional expressions [10]. The
signal count consists of both enable-count and reset-
count fields to enforce the dataflow firing rules.

4 INSTRUCTION EXECUTION
AND SCHEDULING PROCESS

The operational semantics of 2 dataflow program
graph is described by the firing rules of the actors in
the graph. In the argument-fetching architecture, the
firing rules are implemented jointly by the PIPT and
DISU, where the PIPU performs the actual execution
of an operation and the DISU performs the schedul-
ing of the operation. These two phases are called the
execution phase and the scheduling phase.

4.1 Execution phase

The exeention phase of an instruction in the PIPU
begins when a firing signal for that instruction’is sent
to the PIPU. The firing signal contains thé address
of & p-instruction, which the PIPT will retrieve and

.execute in a conventional pipelined manner. When the
operation completes, the execution phase ends and a
done signal is generated and sent to the DIST.

4.2 Scheduling phase

The DISU performs the scheduling function by
processing a done signal from the PIPU. A done signal
has the following format:

<done-signal> :i= <address> <condition-code>

where <address> is a pointer to the signal node coun-
terpart of the “done™ p-instruction, and <condition-
code> is either T, F or [f. When a done signal is
received, the corresponding s-instruction is retrieved
and a count signal is sent to the enable controller unit
for each address in the active signal lists of the signal
node (fig. 4). The rules of signaling are:

» the addresses in the unconditional signal list are
always signaled;

_Aﬂ*- aount
— w3,
‘_B“
£ rassat

& h
(C Teqeine § Bure slgrals to fire)

— Aul—_
f e
L F!
il (o
t 8
4 Bu
4

| A t
g B1C

L

{c) B signais C if the FIPU returns’™tros
C i onabled and “aount” walue 1a resat

Figure 4: DISU Scheduling Phase

s if the condition code is T (F), the addresses in
the true (false) list are also signaled.

The count signal contains the address of the sta-
tus information of an s-instruction. The signal causes
the EC unit to retrieve the status of the specified inst-
ruction and decrement its enable count field. The
instruction is identified as enabled when this count
reaches zero. At that time, the count field of the en-
abled s-instruction is returned to the value of reset.
Finally, the EC unit chooses an enabled instruction
and sends a fire signal to the PIPU. Since there may
be more than one enabled instruction, the EC unit
uses a scheduling mechanism to determine the order
in which the instructions are fired. Such a scheduling
mechanism should be “fair” [6] to ensure that the ma-
chine does not repeatedly fire a group of instructions
without giving attention to other enabled instructions.

Currently, the enable fag bits in the BC unit are
organized as a two dimensional array. The selection
of instructions for execution is done by checking each
tow in turn and sending the contents of any mon-zero
row to a column encoder. No row is considered again
until all other rows have been examined. The column
encoder scans each flag bit in the selected row in turn,
issuing a fire command for each bit that is on.

This selection scheme is fair in the following sense:
If we define a sweep as the time required by the row
logic to loop through all rows and return to some start-
ing row r, then the mechanism guarantees that all cells
that become enabled during one sweep will be fired by
the next.

5 STRUCTURE MEMORY
OPERATIONS

These instructions are extensions of conventional
dataflow operations and are used to support scalar
and array accesses in structure memory.

5.1 Regular Load/Store Operations

Load and Store operations are used to transfer
scalar datum between data memory and structure
memory. A Load operation from a certain address
must be preceded by a Store at the same address.
Henee, there must be some signal path from the Store
actor to its corresponding Load in order for the Load
instruction to fire safely (fig. 5).

“‘},; ==

lend eddr, Beaull

" ol
;

Gtz
ar

Figure 5: Load and Store Node Signaling

5.2 Array Append and Select Opera-
tions

Append takes as operands the base address of the
array A, the index into the array i, and a value, and
writes this value into the array memory location cor-
responding to Ali]. Select loads a value from array
memory at base address 4, index 5. Since there may
be no direct correlation in the order which array ele-
ments are being produced and consumed (ie., 7 and
§ may be generated by different functions in different
code blocks,) a synchronization bit similar to the I-
structure valid/invalid bit [2] must be included with
each location in array memory. An Append operation
sets the valid it of the memory location that it is
currently writing to. A Select operation must check

B635

and wait until the valid bit of a memory location is
sot before attempiing to read it. Therefore, the done
signal of the Select operation may have to be delayed
while waiting for the required datum.

5.3 Implementation of array opera-
tions using Load/Store

Array Append and Select operations can be imple-
mented by split-transactions based on the the scalar
Load/Store operations. We introduce two new in-
structions, S-Indez and L-Indez, for computing mem-
ory addresses of Append/Select operations from the
array base address and the index.

 When the base A and index value { for L-Index
is available, the corresponding L-Index instruction is
executed in the structure memory unit of the PIPTS.
First,, the address of the data in structure memory
is computed from .4 and 1. Then it checks the valid
bit of the corresponding memeory location and, if re-
set, the issuing of the dome signal will be delayed.
When the index and data values for the Append oper-
ation becomes available, the S-Index instruction fires
and computes the memory address of the array ele-
ment. The operation will then (1) activate the Store
instruction and (2) release all corresponding pending
done signals “parked” in the structure memery unit.
To guarantee that the Store operation iz fired before
the Load operations activated by the released done
signals, the extended argument-fetching dataflow ar-
chitecture provides a “short-cut™. The signal link be-
tween S-Index and Store does not go through the usual
PIPU-DISU-PIPU cycle. Instéad, the done signal of
the S-Index will act as the fire signal for the Store
instruction and is routed directly back to the fire in-
put of PIPU, bypassing the DIST altogether. Because
of this, the signal arc from the source node of the da-
tum to be stored enters the S-Index instruction in-
stead of the Store, as S-index is responsible for firing
its corresponding Store (fig. 6). Since there are no sig-
nal arcs at all to the Store instruction, the structured
Store will not have an s-instruction counterpart in the
DISU.

This split-transaction realization of Append/Select
are an attempt to achieve I-Structure style memory
lateney telerance while avoiding the overhead of cre-
ating extra memory traffic, as only Load/Store op-
erations are sent to memory. The S-Index/L-Index

866

Figure 6: Implementing Append/Select using Load
and Store

instructions can be handled elsewhere where a “valid
status" bit map of the structure memory unit is main-
tained.

6 INTERPROCESSOR
COMMUNICATIONS IN THE
ARGUMENT FETCHING
ARCHITECTURE

Dataflow architectures show great potential in
multiprocessor applications. There is no software
cost needed for synchronization since the data driven
model of computation eliminates the need for inter-
rupts, context switches, or busy waits. Addition-
ally, the multi-threaded model ensures that no enabled
instruction will be blocked from execution by a wait-
ing instructiom.

Previous dataflow architectures based their com-
munications on the argument flow model where the
source instruction originates the routing transaction
to aremote target. This lacks fAexibility and incurs the
overhead of having to add data duplicating instruc-
tions for routing between multiple PEs (since each
instruction may route data to at most one remote
PE.) In this section, we propose an interprocessor
communication model based entirely on the argument-
fetching scheme.

The new method behaves as if there were no
boundaries between PEs at all; instructions on differ-
ent processors are able to interact with each other di-
rectly in an interprocessor argument-fetching fashion.
Remote data is specified by an addressing mode in one
(or both) of the input operands of a p-instruction.
When a p-instrection with a remote argument fires,

the instruction is removed from the PIPT pipeline and
an [/O request for each rermote operand is quened in a

‘parking store in the local IO unit. The I/O unit ser-

vices exch request on a first-corne-first-served basis by
fetching the data from the memory of the remote PE
{via the remote I/O unit) and matching the received
data with the corresponding request in the parking
store. After a blocked instruetion has received all of
its operands, it is released from the /O unit and re-
joins the PIPU pipe. When the local p-instruction is
done, ita s-instruction image will send an fnierproces-
sor eount signal to the remote DIST, which will then
proceed as if this were any normal count signal.

Since data is fetched rather than sent from the
result register (i.e., the originator is the target inst-
ructlon,) data from one PE may be accessed by sev-
eral other PEs without adding extra instructions for
duplicating data. Since the blocked instruction does
not impede other instructions from being executed,
as long as there are enough enabled instructions, the
processor will be kept usefully busy and can tolerate
delay due to interprocessor communications.

Currently, we are investigating interconnection

techniques for a multi-PE argoment fetching model.

In particular, we will be constructing a multiproces-
sor simulation based on the hypercube network.

7T FUNCTION INVOCATIONS —
TOWARD A DYNAMIC
ARGUMENT FETCHING
ARCHITECTURE

The application spectrum of dataflow architectures
is not only limited to high speed nomerical computing.
In particular, we have been study the applications of
the architecture to AL, where the support of multiple
function invocations and recursive functions becomes
crucial. This represents a departure from the static
moadel towards a dynamic one.

A function invocation instance comtains activily
templates of each actor in the invoked function. The
activity template of an actor N, in a function inve-
cation instance Fj, must be “distinct enough® from
all other activity templates of N in other invocation
instances Fy, where 1 # j,

We propose to associate a frame of consecutive
mernory space for each function invocation called 2
function overlay. These are used to store operand val-
ues of PIPU instrections in the function invocation

(the data memory overlay), as well as other dynamic
information such as the count values in the DISU (the
enable memory overlay). The operand values in the
data memory overlay can be accessed with an offset
plus a basge address. The same base addressing scheme
can be applied to the count values in the enable mem-
ory overlay. The static portion of an actor now con-
gists of (1) a PIPU part, consisting of an opcode, op-
erand offsets, and a result offset, and (2) a DISU part,
consisting of signal list offsets, initial enable count,
and reset count.

The key attribute for a funetion invoeation is the
base address of its overlays. In our implementation,
the fire, done, and count signals must be angmented
with base addresses. The instruction and signal for-
mats must zlso be modified. Although the base ad-
dress can be considered as an association of color (or
tags) to the signals, the new architecture is entirely
based on the argument-fetching principle, thus no data
token flow (and hence no color matching) exists in the
processor, This makes it unique from most proposed
dynamic dataflow architectures.

Currently, we are considering the imtroduction
of a special module, the Memory Overloy Manager
(MOM), for providing dynamic memory management
support of multiple function invocations. As for the
DISU, we hope to remove the function invocation
scheduling (performed by the MOM) from the eritical
path of the processor architecture. A more detailed
presentation can be found in [9].

8 CONCLUSIONS

In this paper, we report the research work and
preliminary results on the argument-fetching dataflow
architecture as an emerging research project in our
group — the Advanced Computer Architecture and
Program Structures Group at the School of Computer
Selence of McGill University.

We have described the instruction set architecture
design of the argument-fetching dataflow architecture,
in particular the program and mstruction format, as
well as the instruction scheduling and execution mech-
anism of the new machine. We have also described
other important extensions to the basic architecture,
namely the structure memory, array operations, and
interprecessor communication support in the instruc-
tion set design. We briefly discuss the extensions to-
ward a dynamic argument-fetching dataflow architec-

867

ture where multiple function invocations can be effee-
tively supported.

It is our plan to conduct a more precise analysis
and comparison of the advantages and disadvantages
between the new architecture and other dataflow or
conventional processor architectures. Members in our
group are currently studying the performance aspects
of the new architecture through simulation. In partic-
ular, for the static argument-fetching architecture, we
are developing code mapping strategies for a multipro-
cessor architecture based on compilation techniques
for functional languages such as Val and SISAL [1,13].
We also plan to continue our research in the dynamic
architecture for Al applications. Portions of the re-
search are being or are expected to be performed in
collaboration with other researchers both at MeGill
and in other institutions.

9 ACKNOWLEDGEMENTS

We thank Dr. J.B. Dennis for many long hours of
discussions over a wide range of topies; several ideas
inspired by these discussions are included in this pa-
per. We also thank the participants of recent work-
shops sponsored by our group which provided many
constructive suggestions, in particular, the following
members of our group: Wong-Kook Hong, Zaharias

Paraskevas and Luc Boulianne,
REFERENCES

[1] Ackerman, W.B. and Dennis, J.B., Val — 4
Value-Oriented Algorithmic Language: Pre-
liminary Manual, Technical Report 218,
Laboratory for Computer Sclence, MIT,
Cambridge, MA, June 1979,

(2

Arvind, Culler, D.E., Iannueei, Two Funda-
mental Issues in Multiprocessing, first ap-
pearance as MIT Computational Structiures
Group Meme 226-2, Jul. 1983, Subsequent
versions of the paper were published In sev-
eral computer science conferences.,

3

Arvind, Culler, D.E., Dataflow Architec-
tures, Annual Reviews in Computer Science,
Vol.1, pp.225-253, 1986,

[4] Backus, J., Can Programming Be Liberated
from the Von Neumann Style? A Funetion
Style and Its Algebra of Programs, CACM,

868

I5]

l6]

[7]

Vol.21, No.8, Aug. 1978.

Dennis, J.B., Gao, C.R., An Effieient Fipe-
lined Dataflow Processor Architecture, to ap-

pear in the Proceedings of the IEEE and

ACM BIGARCH Conf. on Supercomputing,
Florida, Nov. 1988,

Gao, G.R., A Pipelined Code Mapping
Schermne for Slatie Data Flow Computers,
Ph.D dissertation, Laboratory for Computer
Science, MIT, Cambridge, MA, 1983,

Gao, 3. R., A Pipelined Solution Method
for Tridiagenal Linear Systems, Proceedings
of 1986 International Conference on Parallel
Processing, IEEE Computer Society, pp 84-
01, Aug. 1986,

8] Gao, G. R., A Pipelined Code Mapping

[o]

Strategy for Data Flow Supercomputers, to
appear on the Proceedings of the Third In-
ternational Conference on Supercomputing,
Boston, MA, May 1988,

Gac GR., Hum H., Function Application
Support in the Argument-Fetching Dataflow
Architecture, Advanced Computer Architec-
ture and Program- Structures Group Memo

[10]

[11]

[12]

[13]

03, School of Computer Science, McGill Uni-
verzity, Montreal, May 1988.

Gao, G.R., Paraskevas, 7., Efficient Soft-
ware Pipelining in an Argument-Fefehing
Dataflow Architecture (Preliminary Ver-
sion), Advanced Computer Architecture and
Program Structures Group Memeo 02, School
of Computer Science, McGill University,
Montreal, Feb. 1988,

Gaon, G.R., Tie, R., Mnstruction Set Defi-
nition for the Argument Fetching Dateflow
Architecture, Version 1.0, (Preliminary Ver-
sion), Advanced Computer Architecture and
Program Structures Group Memo 01, School
of Computer Science, McGill University,
Montreal, Feb. 1988,

Gurd, J. R., Kirkham, C. C. and Watson, L,
The Manchester Protolype Dataflow Com-
puter, CACM, Vol. 28, No. 1, Jan. 1985,

McGraw, J., SISAL: Streams and Reratfons
in a Single Assignment Language, Language
Reference Manual, Lawrence Livermore Na-
tional Laboratory, CA., Mar. 1985,

