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ABSTREACT

The paper briefly discusses the relation between AT
and parallelism, particularly from the viewpoint of dis-
tinction of three levels; interpretation, algorithm and
implementation. It points cut that, on one end, paral-
lel symbolic AT models cover the levels of interpretation
and algorithm, and, on the other end, the emerging
paradigm for subsymbelic Al models with massively
parallel computation encompasses the algorithm and
implementation levels. The paper concludes that the
effort for parallel Al should shed more light on the level
of alporithm that is the place where the symbolic and
subsymbolic approaches meet.

1 LEVELS FOR PARALLEL AI

Artificial Intelligence (A} started with the belief
that the human intelligence can be simulated on com-
puting machines. Some of our beliefs were realized, but
gome are still behind the scene. Yet much effort has
been invested for making the latter show up on stage.
Parallel computation is regarded, for a long time, as
an expected vehicle to bring them appear on the stage
with universal applause,

Then, what are they? What kind of players are we
expecting to be on stage? Do we just wish to make
Al programs run much faster? Or do we have other
Somethings in mind to run on future-day computers?
The purpose of this paper is to briefly discuss these
broad issues from a particular viewpoint, concluding
that parallelists in Al should distinguish interpretation
of intelligence and its implementation more cleacly.

Towards this end, let me first introduce the level
distinetion for parallel AL Distinetion of levels has be-
come popular, for example, by the work of Marr (1982)
and Newell (1982). I believe that it iz a key issue for
clarifying the entangled relations between parallelism
and AL The following description of levels and their
distinction into the interpreiation level, algorithm level,
and implementation level, does not precisely reflect the
arguments of Marr, or Newell, but it may suffice for our

issues.

First, the interpretation level refers to models of Al
that are drawn by our mind, directly reflecting our con-
seious interpretation of intellipence. For example, mod-
els of grammatical rules for natural language (Chomsky,
1965) are at the interpretation level. State-space mod-
els of problem solving (Newell and Simon, 1972) are also
at the interpretation level. In this vein, Poggio and his
colleagues’ interpretation of early vision as regulariza-
tion of ill-posed problems {Poggio and Koch, 1885 iz a
formulation of vision process at the interpretation level,
though they call it the level of computationial theory.

Second, the algorithm level refers to the formulation
of interpretation-level models by computational algo-
rithms. For instance, the same set of grammatical rules
can be computationalized for syntactic analysis by a
serial top-down DCG algorithm (Pereira and Wallen,
1980), or & parallel bottom-up PAX algorithm (Mat-
sumoto, 1986). Also, very different parallel or serial
algorithms for tree search can represent the same prob-
lem solving models at the algorithm level.

Third, the implementation level refers to the ex-
ecutable organization of computational algorithms on
software and hardware architectures. For example, a
parallel marker propagation algorithm, which is a for-
mulation at the algorithm level, can be executed on a
specific kind of semantic network machines at the im-
plementation level (Fahlman, 1979). The introduetion
of shared and read-only variables in concurrent logic
programming (Shapiro, 1883) also corresponds to the
implementation level.

2 LEVEL DISTINCTION

The distinction of three levels introduces qualita-
tively different possibilities for parallel Al In this see-
tion , I briefly discuss pros and cons of those possibili-
ties. Just to simplify discussion, I would like to classify
the current approaches to Al into five directions: (1)
logic, {2) heuristic search, (3) constraint satisfaction,
(4) memory-based reasoning, and (5} neural modeling,
Also, because of the character of this paper (served for
a panel), | enly summarize my personal view below,
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pointing only to directly relevant references. Readers
interested in more of specific results may consult other
references, e.g., Fahlman (1988).

2.1 Interpretation Level

First, note that conventional Al wark with logic and
heuristic search is mostly concerned not with parallel,
but with serial meodels at the level of interpretation.
The reason for this is that most of them model human
thought, which is inherently serial at the level of con-
seiousness. Even most of the work under the banner
of distributed problem solving employs serial models,
when we see them at the interpretation level.

On the other hand, virtually all of AI models based
on constraint satisfaction, memory-based reasoning, and
neural modeling more or less incorporate parallelism,
However, most of those models are concerned not with
conscious, but with rapid, subliminal infermation pro-
cesging such as perception and memory retrieval,

The survey of research in Al sugpgests that paral-
lelization of Al models for thinking and other higher-
level human information processing at the interpreta-
tion level has not attained sufficient success. It is inter-
esting to see that those models are represented typically
in symbolic terms.

2.2 Algorithm Level

The algorithm level iz essentially independent from
the interpretation level. Different serial or parallel algo.

rithims ¢an represent the same interpretation-level model.

However, we see that, at least in some areas of research,
the former draws heavily on the characteristics of the
latter.

" Particularly, it is a commeon phenomenon that the
seriality of models for human thought is brought down
to the elgorithm level. Working memories in production
systems { Forgy f al., 1984), blackboards in blackboard
architectures (Nii, 1986), and global control of hypothe-
ses in belief revision systems (de Kleer, 1986) are exam-
ples for this. Also, the parallelism of models for rapid
subeonscious processing is typically inherited to the al-
gorithm level. Examples include relaxation labeling in
image understanding (Waltz, 1975}, data-parallel algo-
rithms in memory-based reasoning (Stanfill and Waltz,
1986), and stochastic relaxation methods for image re-
covery {Geman and Geman, 1984),

One of the important issues in AT and parallelism
is how to evaluate the algorithm level, particularly to
what degree it should be independent from the interpre-
tation level, More concretely, the problem is to what
extent we should reflect our own interpretation of intel-
ligence directly on the structure and semantics of algo-
rithms.

2.3 Implementation Level

The implementation level is alss independent from
the algorithm level. The same algorithm can be imple-
mented on radically different software or hardware ar-
chitectures. However, there emerge two opposite camps
to leave apart from there.

One camp believes that, to obtain a sufficient speed
for computation, the semantic gap of the twe levels
should be diminished as much as possible. Examples are
the designs of special-purpose neural chips and image-
processing machines. The other camp accepts it with
eredit that architectures can be just independent from
algorithms, and it is enough to design general-purpose
machines that ean execute any algorithms fast. Exam-
ples are recent advances of massively-parallel comput-
ers with processors of various granularity levels. An-
other example iz parallel implementation of a variety of
symbol processing languages, from Lisp and Prolog to
production systems and object-oriented languages.

From the viewpoint of traditional symbolic AI, the
implementation level is the most remote from the se-
rious consideration, since it puts primal emphasis on
modeling at the interpretation and algorithm levels, and
deemphasizes their connections to the level of imple-
mentation, The emerging new paradigm of massively
parallel computing algorithms and their implementa-
tion techniques have started to break such belief down
at least partially. The intelligence is not occupied en-
tirely by internal processing of & given limited number
of symbols. The core of intelligence lies in its dynamic
interaction with the outside world. Thus, the imple-
mentation level, which must support such interaction,

- should be directly related not enly with the algorithm

level, but also with the interpretation level.

2.4 Interlevel Relations

We have seen that, though the three levels, interpre.
tation, dlgorithm and implementation, are essentially
independent, we need to consider models that encom-
pass more than one level to realize more intelligent ma-
chines. ‘An obstacle against it is that most of the models
for symbalic intelligence are not brought down to the
implementation level, and most for rapid, unconscious
intelligence do not chimb up to the interpretation level.

Oxne good sign for rescuing this gap is that both ap-
proaches cover the level of algorithms. Especially, if
algorithms from both sides share the same semantics,
it will open up the possibility of integrating both direc-
tions. In the following section, I describe some examples
suggesting this good symptom.



3 EXAMPLES

Here, I provide three examples, all from the work
on neural computing, that might suggest possible inte-
gration of levels for parallel AL

3.1 Modular Neural Networks

One of the simplest tasks that call for both of
higher-leve] reasoning and lower-level perception is se-
ries extrapolation problem solving. For example, to find
aletter that occupies - in the alphabetical series, abmed-
mefm._, cooperation of serial reasoning to discover the
underlying abstract representation, and rapid parallel
processing to find patterns like m...m...m helps to hy-
pothesize the regularity as guickly as possible. In other
words, the latter works, at the interpretation level, as
the generator of hypotheses for periodicity of a given
series. Thus, if algorithms for the former and the latter
match in semantics, then it provides a good example of
the integration of the interpretation and implementa-
tion levels grounded at the level of algorithms.

In this regard, we have devised a computational
model of the former, reasoning process, applying a neu-

ral network with local representation (Anzai ed al., 1987).

Its algorithm is based on spreading activation and mi-
cro features (Waltz and Pollack, 1985). Also, we have
constructed a model of the latter, perceptual process,
using neural modules with distributed representation
{Anzai and Shimada, 1988). The model consists of a
position-independent shape-recognizing module, shape-
independent position-recognizing module, and a module
for integrating them. The three modules work based on
extensions of von der Malsburg’s competitive learning
algorithm {von der Malsburg, 1973).

The coupling of those two madels is made by acti-
vating nodes of the reasoning model by the outputs of
the perception model. The integrated model is mod-
ularized, and organized by sparse interconnections, at
the level of algorithms.

3.2 Discourse Processing

Waltz and Pollack {1985) pioneered in applying
neural networks to resolving ambiguity of natural lan-
guage meanings. We are taking similar direction, with
some modifications, in Japanese discourse processing
(Tamura and Anzai, 1987). These pieces of work cover
the interpretation and algorithm levels, and make some
suggestions for a relation to the implementation level.

Ambiguity resolution in our system is made by the
mixed computation of rule-based symbolic procassing
and neural-network-based spreading activation. The
former is used for constructing part-of-speech instance
networks, and the latter is applied to resolving am-
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biguity. The representation and control of networks
are made in the environment of OPHELIA, an object-
oriented knowledge representation language that can
represent hierarchical sets of production systems (Anzai
and Kondo, 1986).

The system reads each word w from the top of a
given sentence, and executes the following steps in or-
der: (1) generates an instance of w, (2) activates the
concept class of w, and generates and activates a con-
cept instance of w, (3) activates the feature class of w,
and generates and activates a fealure instance of w, (4)
generates and activates a part-of-speech inatance of w,
(5) spans a part-of-speech instance network, and (6)
performs spreading activation.

The steps (1)-(6) are executed for each of the con-
secutive words in the given sentence. The meaning of
the sentence is defined as the pattern of activation lev-
els distributed over the nodes in the network given at
the time when the steps for the last word are completed.
Japanese syntax is represented by production rules that
are included in one of OPHELIA objects. These rules
are used in step (5) to span networks for part-of-speech
instances,

We have applied our system to resolution of Japanese
ambiguity in simple discourse contexts, where the mean-
ing of the second sentence is determined by that of the
first.

Syetems of the kind mentioned above are based on
the interpretation-level model that natural language dis-
course ambiguity can be resolved hy the cooperation of
symbolic and associative processes. At the algorithm
level, those processes are represented by execution of
rules, and activation of nodes, respectively. At the
implementation level, each processing unit corresponds
to an object, and message passing procedures imple-
ment the exchange of link weights between those ob-
jects. Thus, this example from resolution of Japanese
ambiguity exhibits a model that covers all of the three

distinct levels.

3.3 Problem Solving by Neural Net-
works

One of popular applications of neural networks lies
in finding suboptimal selutions of complex discrete op-
timization problems. In these applications, a problem
is formulated typically as the minimization of some en-
ergy function, which is radically different from symbeolic
medels for problem solving, This new approach even
results in an easy implementation of the model as ana-
log circuits (Hopfield, 1984). Though this approach,
including its followers like Boltzmann Machines (Ack-
ley, Hinton and Sejnowski, 1985) and Cauchy Machines
(Szu, 1987), does not simulate the conscious process
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of human problem solving, it is able to cover both the
algorithm and implementation levels.

Thus, as the last example, I present a particular
piece of work on Packing Puzzle problem solving by
neural networks [ Akivama et ol , 1988). Packing Puzsle
consists of an mxn board, and tiles of various shapes,
The goal of the problem is to exactly pack the board
by the tiles without overlapping.

The model is & neural network with three parame-
ters: reference activation level g, temperature T, and
discrete time step Af. Those parameters are related by
the following four equations {Akiyama and Yamashita,
1988):

N
E'—Uijﬂ_f'l'ﬂi-l‘in

nely =
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o = kT,
P @
Mt T +neti,

o = flm)=tanh(Z) + 1)

where net; is the total input te neuron i, w;; is the
link weight from neuron j to i, §; is the input bias for
neuron i, £ is the Gaussian noise with the average 0
\/B/, @i is the activation level of

neuron i, 7 is the time constant, and f is the output
function,

The model, called Gaussian Machines, can thus be
represented as GM{ag, T, At). Gaussian Machines
can be regarded as a generalization of MceCulloch-Pitts
model (GM(0,0,1)), Hopfield model {GM (g, 0, A)),
and Boltzmann Machines (GM(0,T,1)). Gaussian Ma-
chines have suceeeded in solving Packing Puszles with
boards with reasonable sizes, using simulated annealing
for modifying T, and sharpening for adjusting aa.

Furthermore, Gaussian Machines have been imple-
mented on specially fabricated neural chips, realizing
variable conduectance on Hopfield cireuit by determinis-
tic and stochastic switched resistor circuits {Akiyama,
1988).

Gaussian Machines touch upon at least two levels of
interpretation, algorithm and implementation. Whether
the model is rigorously defined at the interpretation
level depends on whether we interpret the behavior of
Gaussian Machines for solving the puzsle as intelligent
or not,

and variance o%, k =

3.4 Summary

Summarizing the analysis in this seetion, we observe
that all the three distinct levels are more or less taken
into account by the examples from medular networks,
and discourse processing. But neural network models
for problem solving seem to lack the interpretation level.

Mote that the former two examplés include both of
symbolic and subsymbolic processes. Thus, it is natural
that they incorporate all the three levels. However, it
should be noted that such integration could be made by
using the algorithm level formulation. Also, note that
the third example for Packing Puzzle introduced only
the subsymbolic representation. It caused the model
not directly related to the interpretation level. To make
it related, it may need be tied with some symbaolic
model at the program level. '

4 OTHER ISSUES

There exist many important problems, other than
the level distinction issue, for parallelism and AL Fax-
amples include;

1. Knowledge representation: how does a parallel
Al model divide the labor between control and
data. This control-paralle] and data-parallel is-
sue is deeply related to the design of MIMD and
SIMD AT architectures,

2. Granularity of processors: which is better for par-
allel Al small-grained or large-grained processora?
Does the choice depend heavily on problem do-
mains?

3. Interprocess communication: which is better for
parallel Al sparse or dense inferconnections of
processors? . :

4. Interprocess structure: which is better for parallel
Al, fiat, hierarchical, or any other structure of
processer allocations?

§. Semantic gaps: Which is better for parallel AT
general-purpose or special-purpose hardware ar-
chitectures?

Most of the issues left untouched here, including
those listed above, are on parallelism in Al-oriented
languages and hardware architectures. It iz interest-
ing to observe that most of good results on symbolic
parallel Al are restricted to designs of languages and
architectures, and relatively few reported on models. 1
feel that this observation is not accidental, but caused
by an inherent nature of human intelligence,



5 CONCLUDING REMARKS

Three levels for parallelism in Al were discussed,
and the importance of the intermediate, algerithm level
for integrating serial/symbalic and parallel/subsymbolic
models of Al was emphasized with some examples.

I have not discussed’ directly issues related to Al
languages and architectures. It is because these issues,
though very important to realize fast computing ma-
chines, are not inherent in Al research. Rather, ene
of the most essential problems in parallelism and AT at
present iz how to organize the interpretation and imple-
mentation levels at the algorithm level in a naturalistic
way.

Again, T should remark that the view presented here
points out, based on presently available data, only one
particular issue, just among many. Forecasting the fu-
ture of parallel A is not a trivial task, since research
areas related to it are diverged but strongly connected.
Tts nontriviality may even be comparable with pinpoint-
ing the weather of the day one year after. But parallel
computation is crucially different from weather: the for-
mer can be developed by our own effort. The future for
parallel Al can be designed by ourselves.
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