PROCEEDINGS OF THE INTERNATIONAL COMFERENCE
ON FIFTH GENERATION COMPUTER SYSTEMS 1988,
edited by ICOT. £ 1C0OT, 1988

ARTIFICIAL INTELLIGENCE RELATED RESEARCH ON THE CONNECTION MACHINE

David L. Waltz
Craig Stanfill
Thinking Machines Corporation
245 First Street
Cambridge, MA 02142 USA

ABSTRACT

Artificial Intelligence (AI) has a demand for
high-performance non-numerical computing
which, until the development of practical
parallel computing engines such as the
Connection Machine, was largely unmet. In this
paper we summarize a variety of Al applications
of the Connection Machine. deKleer's ATMS
has been modified to run on the CM, which is
both much faster and much simpler than the
LISP-based ATMS system. A new Al technique,
memory-based reasoning, has been developed
and applied to the pronunciation of English
language text. A parallel dynamic memory
system (PARADYME) has been developed for
the case-based reasoning system JULIA., A
variety of connectionist systems, including
backpropagation learning and simulation of a
goldfish retina, have also been written. A
variety of work has been done in the area of
machine vision, including low-level algorithms
such as edge detection and stereo vision and
high-level vision such as object recognition.
The Connection Machine has also bee applied to
a difficult search problem in chess endgame
analysis. Finally, a variety of work has been
done in scaling up natural-language systems to
produce commercially viable systems. All the
above work has been done in two years by a
small number of researchers. On the basis of
this, rapid progress in certain areas of
experimental Al seem likely over the next few
years.

INTRODUCTION

Artificial Intelligence has always been a
consumer of high-performance non-numerical
computers. While numerical computers have
been developed which deliver hundreds of
millions of operations per second, non-
numerical computing has lagged, with no
practical system delivering more than 10
million operations per second. This plateau in
computational power has partly led to a plateau

in experimental artificial intelligence, as the size
of problems which may be worked on and the
computational methods which are fast enough
to be practical has (for the most part) stood still.

With the recent development of practical
parallel computers such as the Connection
Machine System [23]1[50] many non-numerical
computations may now be performed at rates of
several hundred million to several billion
operations per second. This paper will discuss
the impact which this machine has had on Al
research over the past two years.

2.1 Assumption-Based Truth Maintenance

One major application of this machine has been
to assumption-based truth maintenance systems
(ATMS's). An ATMS is a propositional infer-
ence system used to aid in a variety of problems
which may be reduced to propositional logic or
{equivalently) constraint satisfaction. Examples
of such problems include qualitative physics,
vision, diagnoesis, natural language processing,
and map coloring. Dixon and deKleer were able
to realize a 70-fold speedup on a 16K processor
CM, while reducing the size of the ATMS code
from 60 pages to 3.

2.2 Memory-Based Reasoning

Memory-based reasoning (MBR) is an Al
technique in which problems are solved by the
intensive use of memory, including in
particular the use of best-match associative
retrieval as an inference mechanism. Such
techniques generally require exhaustive searches
of memory which, on a serial machine, is
expensive if the database is at all large. On the
Connection Machine System, these algorithms
become fast enough to be used for real-time

processing.
2.3 Dynamic Memory

Case-based reasoning is an Al technique in
which problem solving is achieved through the
retrieval and modification of solutions to
formerly encountered problems. As was the
case with memory-based reasoning, associative
retrieval is an important issue as the experience
of the system increases. A parallel dynamic
memory (FPARADYME) has been implemented
on the Connection Machine System to improve
the performance of this phase of CBR. The
resulting memory exhibits constant-time
retrieval regarcdless of the size of the memory
base.

2.4 Connectionism

Connectionism is a branch of Al concerned with
the emergent behavior of large networks of
neurcn-like computational devices. The most
prominent example of a connectienist technigue
is backpropagation learning, in which networks
have been used for a variety of tasks including
pronunciation of English words and signal
processing. A backpropagation system has been
implemented on the Connection Machine,
realizing a significant speedup over VAX-based
implementations. A second project within the
connectionist paradigm simulated the
formation of connections between the retina
and visual cortex of goldfish.

2.5 Machine Vision

Vision has long been frustrated by the sheer
volume of information contained in images.

1011

There are many low-level operations (e.g.
thresholding, edge detection) that have been
long understood, but for which no fast serial
operations exist. The result is that research on
higher-level vision has been slowed:
experimenters spend an excessive amount of
time waiting for low-level algorithms to run.
Also, the slowness of low-level vision hampers
the application of machine vision to real
applications, where response time is usually of
critical importance. A variety of vision
programs have been written for the Connection
Machine, including stereo vision and object
recognition.

2.6 Chess Endgames

The determination of optimal play for chess

- endgames represents an interesting task in

problem solving because certain endgames can
be: classified as wins, losses, or draws, even
though forcing a win in some positions requires
50 moves by each side. Recently a technigue has
been developed for retrograde analysis of such
positions, in which an algorithm starts by
computing all won positions for a given
combination of pieces, then starts working
backward, labeling accessible positions as wins or
loses. This technique works because, for small
numbers of pieces, the number of possible
positions is relatively manageable. A program
implementing this technique was developed for
the Connection Machine, and was 4000 times
faster than the fastest previous solution. Waork
in progress will apply this technique to problems
which are otherwise infeasible to attempt.

2.7 Full Scale Natural Language

Al has developed a variety of techniques for
dealing with natural language text, but most of
them have been applied only to "toy problems"
with small amounts of text. Use of the
Connection Machine promises to allow many of
these techniques to be scaled up. The best
example here is a commercial project in Infor-
mation Retrieval (IR), in which the Connection
Machine is used as a search engine to locate
documents in a large database, using techniques
such as document-ranking and relevance
feedback. Preparation of the database for search-

1012

ing presents many opportunities for the
application of natural language processing
techniques, but because the databases are many
gigabytes in size, issues of scale become quite
important. This has led to research in parallel
parsing and analysis techniques.

3. PROCESS0R ARCHITECTURE

The Connection Machine Model CM-2 parallel
ing unit contains up to 64K (K=1024) data
processors. Each data processor contains:

an arithmetic-logic unit (ALL)
four 1-bit flag registers

router interface

NEWS grid interface

optonal floating point accelerator
1/Q interface

64K bits of bit -addressable memory

* & & & & & &

The data processors are implemented using four
chip types. A proprietary custom chip contains
the ALLL, flag bits, router interface, NEWS grid
interface, and I/Q interface for 16 data
processors, The memory currently consists of
commercial dynamic RAM chips. The floating

point accelerator consists of a custom floating.

point inferface chip and a floating execution
chip; one of each is required for ever 32 data
processors. A fully configured parallel
processing unit of 64K data processors, and
therefore contains 4096 processor: chips, 2048
floating point interface ships, and 2048 floating
point execution chips, and half a gigabyte (512
MB) of RAM.

3.1 Data Processors

A CM-2 ALU consists of a 3-input, 2-output logic
element and assoclated latches and memory
interface. The basic conceptual AL cycle first
reads two data bits from memory and one data
bit from a flag; the logic element then computes
two result bits from the three input bits; finally,
one of the two results is stored back into
memory and the other result into a flag. One
additional feature is that the entire operation is
conditional on the value of a third flag; if the
flag is zero, then the results for that data
processor ave not stored.

The logic element can compute any two boolean
functions on three inputs; these functions are
specified by the sequencer as two 8-bit bytes
representing the truth table for the two
functions.

This simple ALU suffices to carry out all the
operations of the instruction set for PAFRIS
(PARallel Instruction Set, the CM's assembly

language).

Arithmetic is carried out in a bit serial fashion:
at about half a microsecond per bit, plus
instrucdon decoding and other overhead, a 32-
bit add takes 21 microseconds. With 64K
processors, this produces an aggregate rate of
2500 Mips (that is, 2.5 billion 32-bit adds per
second). All other PARIS operation are carried
out in like fashion.

The ALU cycle is broken down into subcycles.
On each cycle the data processors can execute
one low-level instruction (called a nano
instruction) from the sequencer and the
memories can perform on read or write
operation. The basic ALU cycle for a two-
operand integer add consists of three
nanoinstructions:

LoADA: read memory operand A, read flag operand, latch
one fruth table '

LOADE: read memory operand B, read condition flag,
latch other truth table

STORE: store memory operand A, store result lag

Other nanoinstructions direct the router, NEWS
grid, and floating point accelerator, initate I/O
operations, and perform diagnostic functions.

3.2 The Rouler

Interprocessor communication is accomplished
in the CM-2 parallel processing unit by special-
purpose hardware. Message passing happéns in
a data parallel fashion: all processors can
simultaneously send data into the local
memories of other processors, or fetch data from
the local memories of other processors. The
hardware supports certain message-combining
operation: the communication circuitry may be
operated in such a way that processors to which
multiple messages are sent receive the bitwise
logical OR, SUM, MAX, or MIN of all the
messages.

Each CM-2 processor chip contains one router
node, which serves the 16 data processors on the
chip. The router nodes on all the processor
chips are wired together to form a boolean n-
cube (this fact is not apparent to the
programmer). For a fully configured CM-2
system, the network is a 12-cube connecting 4096
processor chips. Each router node is connected
to 12 other router nodes; such that router node i

(serving data processors 161 through 16i+15) is
connected to router node j if and only if li-fl =
2k for some integer k, in which case we say that
routers i and j are connected along dimension k.

Each message travels from one router node to
another until it reaches the chip containing the
destination processor. The router nodes auto-
matically forward messages and perform some
dynamic load balancing.

The algorithm used by the router can be broken
into stages called petit cycles. The delivery of all
the messages for a Paris send operation might
require a single petit cycle if only a few
processors are active, but if every processor is
active then several petit cycles are needed. It is
possible for a message to traverse many
dimensions, possibly all 12, in a single petit
cycle, provided the congestion does not cause it
to be blocked; the message data is forwarded
through multiple router nodes in a pipe-lined
fashion. A message that cannot be delivered by
the end of a petit cycle is buffered in whatever
router node it happens to have reached, and
continues its journey during the next petit cycle.
If petit cycles are regarded as atomic operations,
then the router may be viewed as a store-and-
forward packet-switched network. Within a
petit cycle, however, the router is better regarded
as circuit-switched network, where dimension
wires are assigned to particular messages whose
contents are then pumped through the reserved
circuils. :

Each router node also contains specialized logic
to support virtual processors. When a message
is to be delivered by a router node, it is placed
not only with the correct physical processor, but
in the correct region of memory for the virtual
processor originally specified as the message's
destination.

3.3 The Floating Point Accelerator

In addition to the bit-serial data processors
described above, the CM-2 parallel processing
unit has an optional floating peint accelerator
that is closely integrated with the processing
unit. The hardware associated with each of
these options consists of two special purpose
VLSI chip (a memory interface unit and a
floating point execution unit) for each pair of
CM-2 processor chips. There are two possible
options for this accelerator: Single Precision or
Double Precision. Both options support IEEE
standard floating point formats and operations.

1013

They each increase the rate of floating point
calculations by more than a factor of 20. Taking
advantage of this speed increase requires no
change in user software.

3.4 The Role of the Front End

A front-end computer is a gateway to the
Connection Machine system. It provides
software development tools, software debugging
tools, and a program execution environment

_ familiar to the user. From the point of view of

the user, the Connection Machine environment
appears to be an extended version of the normal
front-end environment. In addition to the
usual suite of tools and languages provided by
the front end, the environment includes at least
one resident compiler or interpreter for a
Connection Machine language. The front end
also contains specialized hardware, called a
Front-End Bus Interface {or FEBI), which allows
communication with the Connection Machine.

A front end can be any computer system for
which a FEBI exists. At the present times, a FEBI
is available for most Digital Equipment
Corporation VAX 8000 and 6000 series
minicomputers, for Sun 4 workstations and
compute servers, and for Symbolic 3600 series
Lisp machine. Different types of front-end
computers may be attached to the same
Connection Machine and be running
applications simultaneously. In addition, a
single front-end computer may contain more
than one FEBI to support up to four time-
sharing users running Connection Machine
applications simultanecusly.

The front-end computer serves three primary
functions in the Connection Machine system:

« It provides an applications development and
debugging environment.

* It runs applications and transmits
instructions and associated data to the
Connection Machine parallel processing
unit.

» It proves maintenance and operation utilities
for controlling the Connection Machine and
diagnosing problems.

3.5 Applications Development

Users create Connection Machine programs in
the development environment provided by the
front end. The editors, file systems, and

1014

debugging tools are part of the front end's
normal environment. The resident Connection
Machine language, which contains parallel
extensions to a language already familiar to the
user, is used to express algorithms exploiting the
data parallel structure of a problem. Thus, users
with very little experience in data parallel
programming may begin to use the Connection
Machine immediately.

The native debugging facilities of the front end
are augmented by simulators provided as part of
the Connection Machine software system. The
use of simulators can enhance productivity of
users by allowing them to debug application
programs, without tying up the Connection
Machine hardware.

3.6 Connection Machine I/0 Struchure

The Connection Machine I/Q structure allows
data to be moved into or out of the parallel
processing unit at aggregate peak rates as high as
320 megabytes per second for a system with
multiple 1I/O controllers. Input/output is done
in parallel, with as many as 2K data processors
able to send or receive data at a time, All
transfers are parity checked on a byte-by-byte
basis, ’

The data processors send and receive data via
1/0 controllers, which interface through an I/O
‘channel to Connection Machine data lines.
These I/0 controllers, in turn, operate under the
control of the parallel processing unit
sequencers. There may be as many as four
sequencers in a fully configured system. The
maximum I/O configuration for a 64K processor
Connection Machine system includes eight 1/0
channels.

3.7 The DataVault

The DataVault is the Connection Machine mass
storage system. It combines very high reliability
with high transfer rates for large blocks of data.
The DataVault holds five gigabytes of data,
expandable to ten gigabytes. It transfers data ata
peak rate of 40 megabytes per second and a
sustained rate of 25 megabytes per second. Eight
DataVaults, operating in parallel, offer a

combined peak data transfer rate of 320

megabytes per second (200 megabytes pre second
sustained) and hold up to 80 gigabytes of data.

Each DataVault unit stores its data in an array of
39 individual disk drives. Data is spread across
the drives. Each 64-bit data chunk received from
the Connection Machine 1/O bus is split into
two 32-bit words. After verifying parity, the
DataVault controller adds 7 bits of Error
Correcting Code (ECC) and stores the resulting
39 bits on 39 individual drives. Subsequent
failure of any one of the 39 drives does not
impair reading of the data, since the ECC code
allows any single bit error to be detected and
corrected. Although operation is possible with a
single failed drive, three spare drives are
available to replace failed units until they are
repaired. The ECC codes perrnit 100% recovery
of the data on the failed disk, allowing a new
copy of this data to be reconstructed and written
onto the replacement disk.

3.8 High-Resolution Graphics Display

The Connection Machine graphics system
consists of a framebuffer module and a high-
resolution 19-inch color monitor. The frame
buffer, unlike the DataVault, is not connected to
a Connecton Machine I/0 bus; instead it is a
single module that resides in the Connection
Machine backplane in place of an 1/0 controller.
This direct back-plane connection allows the
framebuffer to receive data from the Connection
Machine processors at rates up to 1 gigabit per
second.

The framebuffer contains a large video memory,
which holds the actual raster image data. There
are 28 planes of memory, divided into 4 buffer
areas: red, green, and blue areas having 8 planes
each, and an "overlay” area with 4 planes. Bach
plane provides one bit per pixel, and contains
enough memory for 22! pixels. There are also
three color lookup tables (red, green and blue).
Each color lookup table is 8 bits wide and has 259
entries; the first 256 entries handle data from the
red, green, or blue area, and the last 3 entries are
used for overlay processing.

The region displayed from the video memory
planes is software configurable. Pan and zoom
logix allows a specified subrectangle of the video
memory to be displayed, magnified by an
integral zoom factor. The subrectangle displayed
at zoom factor 1 (no magnification) is typically
1280 x 1024 pixels.

3.9 Languages
The data parallel style of programming

associates a processor with every element of a
program's data. there are very few differences

between a data parallel program and a
conventional serial program. In both cases, a
single sequence of instructions is used, with a
serial control structure. The Connection
Machine system provides parallel processing
without requiring the applications programmer
to indicate synchronization explicitly in pro-
grams.

Because the data parallel and serial
programming styles are similar, they utilize the
same languages. The languages currently
supported for the Connection Machine system
are C*, Fortran, and *Lisp. The Fortran 8x array
extensions to Fortran 77 are implemented
directly, with no changes to the standard
language definition. Each of the other languages
is very close to the corresponding serial
language specification, but in each case extends it
by adding a new data type. Very little new
syntax is added, the power of parallelism arising
instead from extending the meaning of existing
program syntax when applied to parallel data.

4. ASSUMPTION-BASED TRUTH
MAINTENANCE SYSTEMS

Assumption-Based Truth Maintenance Systems
{ATMS's), [13][14] are propositional inference
engines, designed initially by Johan deKleer to
support problem-solvers and other Al systems
that need to search complex spaces efficiently.
Recently an ATMS system was written for the
Connection. Machine by Dixon and deKleer: The
CM provided a dramatic speed-up, by orders of
magnitude over the previous fastest
implementation!. ATMS's have been applied to
problems in qualitative physics, vision,
diagnosis, and natural language parsing

[101(21}(35).
4.1 Problem-5Solving with Constraints

In the ATMS formalism, problem solutions
consist of a set of variables which have been
assigned specific values. If a particular variable,
vi, can potentially take on values {ag, ai,....an},
the ATMS formulation will create a set of
assumptions, [vi <--- ag, vi < aj,... Bi <=--
ap), only one of which will be true. The full set
of assumptions for all variables defines the
search space of the ATMS. In order to decide
which assumptions are true, the program must
apply constraints, which allow the ATMS
system to eliminate sets of assumptions that are

1 on lisp machines

1015

inconsistent. (It should be clear that ATMS
problems are closely related to satisfiability
problems [9][55].)

4.2_ ATMS on the Connection Machine

Two algorithms were tried, only one of which
will be described here. In this algorithm, all
assumptions are initially assigned a value of
"unknown", and the full set of assumptions can
thus be viewed as a solution vector, with all
values "unknown”. The ATMS system picks an
assumption, and created two copies of the
solution wvector, one with the assumption
marked "true" and the other with the
assumpton marked "false”. The system then

creates further copies of each of these vectors,
assigning particular assumptions at each step to
both “true” and "false", until the entire memory
space of the CM-2 is used up. (Each of the
copying steps can clearly be done in parallel; the
last step before filling the machine copies K/2
vectors in parallel, where the total memory
capacity of the CM-2 is K vectors. K may be
much larger than 64K, through the use of the
CM-2's virtual processor mechanism.)

One memory is filled, the ATMS system applies
constraints. These constraints eliminate, in
parallel, solution vectors that are impossible.
Thus, for example, a consiraint might state that
that assumptions vy <--- a; and vj <--- bz
must have the same truth values. In that case,
all vectors with vy <—- a; = time and vj<---bz =
false or with vy <--— a; = false and vj<--—- by =
true will be eliminated.

Once half or more of the memory has been freed
through the elimination of inconsistent vectors,
another assumption can be applied, and so on.
Clearly, the order in which assumptions are
made has a critical effect on the overall speed of
solution.

4.3 Results

The ATMS system was run off a 16K CM-2, and
was applied to a number of problems. For a n-
queens problem, with #=13, the CM-2 required
60 seconds, vs. 4235 seconds for the fastest
sequential implementation on a Symbolics Lisp
Machine. A 64K machine should easily achieve
a 4x speedup over this. Moreover, the
implementation, with aid from Craig Stanfill of
Thinking Machines, was completed in a very
short time.

1016

As Dixon and dekKleer write:

The development of the parallel ATMS has
also dramatically demonstrated the degree to
which working around the performance
limitations of serial machines has
complicated otherwise simple algorithms. In
order to obtain adequate performance the
Lisp Machine implementation uses complex
representations and elaborately crafted
algorithms. Its development and tuning has
taken over a year, and the resulting code is
about sixty pages long. The Connection
Machine algorithms are much simpler,
require three pages of code, and took about a
week to develop. In doing so we were also
led to a clearer analysis of the ATMS,
unencumbered by the complexities of the
serial implementation's representation[15].

5. MEMORY-BASED REASONING

Memory-based reasoning is an Al technique
which solves problems by the intensive use of
memory [45]. The basic idea is that everything
the system experiences is stored in memory
then, when a similar situation comes along, the
memory of the past situation is used to derive
the answer. The basic task here is to determine
which, of all the things in the system's memory,
most closely matches the current situation.

This sort of best-match associative memory has
not been widely studied in artificial intelligence
due to the high cost of performing the lookup:
the general solution to the problem of finding
the best match between the current situation
and items in memory which involves an
exhaustive search of all memories. The usual
work-around is to index memory in such a way
that the search can quickly be restricted to a
small number of potential candidates.
Unfortunately, this indexing process requires
that the system decide in advance which aspects
of a situation are important, and does not
constitute a general solution to the problem.

On a parallel machine there is a very good
solution to this problem: store each memory in
its own processor. When it comes time to recall
experiences from memory, each event can rate
itself according to how well it matches the
current situation. The result is a praclical means
of accessing memory.

This system has been used in the area of
pronunciation [42]. In the pronunciation task,
the system starts by memorizing all the words in
a subset of a dictionary. It is then given a set of
words which are not in that dictionary, and
endeavors to pronounce them by finding
analogous words in the dictionary. This is the
same task as was performed by the connectionist
NETtalk system previously mentioned. The
results are probably dose to the limit achievable
on the task: not perfect, but correct within the
limits of English's ambiguous spelling. Even
with a Connection Machine System, these
experiments in memory-based reasoning are
time consuming, and would have been
impractical on a serial machine.

Leners In] @ P
o hee Bl
het hat Tat
hear hear e

Mexuey dog deg dog
leg log lag

) frog freg. Trog
- Phasemes Ot 1 - £

Figure 1: Memory Based Reasoning

6. PARALLEL RETRIEVAL FROM A
HIERARCHICAL CASE MEMORY

Recently, a parallel system named FPARADYME
(Parallel Dynamic Associative Memory) has
been implemented on the Connection Machine
by Kolodner and Thau [30][48]. The goal of this
system is to rapidly find a small number of best
matching cases (cases typically represent events),
given an incomplete set of retrieval cues. To
provide a satisfactory cognitive model it is also
important that retrieval time not increase as
memory grows, and that generalizations as well,
as cases be retrieved as appropriate. Moreover, it
should be reasonable easy to add new cases to
memory.

PARADYME has been used with the JULLA
meal planning database [25][28](29][41]. Items are
found by first choosing a small set of categories
to search, and then using the features of the case
to be matched to drive the parallel traversal of
the branches of the structures of cases in
memory. Incorporation of new items into
memory is accomplished by finding the best
match in memory to the new item, and storing
the new case near the best match. Special-
izations and generalizations are made as the
item is incorporated.

7. CONMECTIONIST AND MEURAL MET MODELS ON
THE CONMNECTION MACHINE SY5TEM

Connectionism (also known as Neural
Networks) is an approach to Artificial
Intelligence in which computation is based on a
large number of very small computational
units, connected into a network, operating in a
manner thought to be analogous to human
neurons [20][37][54]. Each unit has "dendrites",
"axons", and "synapses" connecting it to other
units. As one unit in the network becomes
"excited" it will, in turn, either “excite" or
"inhibit" the other wunites to which it is
connected. The whole network is generally self-
organizing, with mechanisms for growing
connections or modifying connection strengths
in response to the environment. The hope is
that, if the correct methods of establishing and
modifying connections can be found,
connectionist systems will exhibit some of the
flexibility and adaptability possessed by the
human brain.

As the name "Connection Machine” would
suggest, connectionist networks were an early
stimulus to the developmenl of the machine.
The machine was, in fact, originally designed so
as to enable the fast simulation of dosely related
"semantic networks"[61[19]. This led to the idea
of building a machine with one processor for
each node in the network. Such a machine
clearly needs thousands or tens of thousands of
processors. As the design progressed, it became
clear that such massive parallelism was good for
a wide variety of problems, and the Connection
Machine became reality.

One prominent example of a Connectionist
system is NETtalk, a system for leaning how to
pronounce words [40]. This is done by feeding
written text encoded as ASCII characters into
one end of the network, pronunciations into the
other end, and letting the network develop
connections between the two via the back-
propagaton learning method [36]. When this
learning phase is done, the network will be able
to reproduce the pronunciations from the text,
using the connections developed during the
conditioning phase.

At this point, the CM has been used for several
projects in the connectionist paradi MNETtalk
has been re-written for the Connection Machine
[4][5]. This was done as a benchmark to establish
the degree of speedup, but no new science as
been done on it to date. More recently, the back-

1017

Figure 2: NETtalk

propagation system was used to predict the
angles between adjacent bonds on amino acids,
as part of a project to predict the tertiary
structure of proteins, based on training on a
corpus of known proteins!.

In addition, Robertson and Hillis have written a
"retina simulator”, which models the adaptive
growth of connections between a “retina” and a
"visual cortex" [24]. The program starts with a
relina, a visual cortex, and a set of nerve fibers
connecting the two. The problem is that the
nerve fibers do not quite grow straight, and
must organize themselves to that the wvisual
cortex receives a coherent image. This is done
by projecting onto the cortex a series of checker-
board images, and.allowing the units in. the
cortex to gradually develop connections to the
nerve fibers so as to preserve the local coherence
of the pattern.

Afmr Training

Figure 3: Retina Simulation

! This work was done by Xiru Zhang of Brandeis University
and Dean Pomerlean of Carnegie Mellon University as part

of their summmer 1988 projects at Thinking Machines. No

resulis have yet been published.

1018

A final piece of work in the are of network-like
representations is Blelloch's CIS {Concurrent
Inference System)(3]. This system implements
rule-based inference wia a network repre-
sentation, using node-activations to effect
inference in the presence of uncertain data and
uncertain rules of inference.

8. VISION

Computer vision research [1] has always been
hampered by the lack of sufficiently powerful
hardware., Low level vision - including such
operations as edge detection and contrast
enhancement - has always struggled with the
difficulty that, even though the algorithms for
these operations are guite simple, the amount of
information contained in an image is quite
large, and serial machines simply are not fast
enough to process this information in a timely
manner. The result is that experimentation
becomes very slow, somelimes requiring hours
to fully process a single image. In any event,
processing times are so long that, even if the
systems work, it is hard to see how they will be
of use outside the laboratory.

High level vision - which attempts to perform
such perceptual-level tasks as object recognition
- suffers from its own set of computational
problems. The first problem is the low-level
vision task mentioned above: applying low-
level algorithms to detect lines and perform
other image transformation. Second, the results
of these low-level operations are always
ambiguous; where a human might see a single
unbroken line in an image, a low-level vision
algorithm might find two, and the line that is
really there might be broken into three
unconnected segments. There are methods of
coping with these problems, but they are
computationally quite demanding,

One low-level wvision system which was
implemented on the Connection’ Machine
System was a stereo-vision algorithm [16] [17].
The system is given two images take from a pair
of cameras. The images are then loaded into the
CM’'s memory, and a series of operations
applied. First, the images must be corrected:
optical distortion and mechanical misalignment
always cause the points in an image to end up
some distance from where, in theory, they ought
to be. This is solved by having a calibration
map, which allows the CM to move every pixel

in the image from wherever its apparent
position is to where it would end up if the
camera system were perfect. Second, edges must
be detected, requiring a second pass over the
entirety of both images. Third, edges in the two
images must be matched. Once this is done, the
differing positions of the two lines in the image
allow the algorithm to determine how close it is
to the camera. Finally, the height of areas which
contain no line must be determined by
interpolation.

Raw Images

Corrected Images

Fleight

Figure 4: Stereo Vision

A high-level object recognition system has also
been implemented on the Connection Machine
[52][53]. It operates by matching edges extracted
from images against a database of known objects.
This system is unusual in that it allows a scene
to contain multiple overlapping objects. Both
the low-level processing needed to extract edges
and the high-level algorithm for matching
known objects against the image are
computationally expensive, and benefit from
increased processing speed.

Tmape . E%
o o

%

Best Matth %

Figure 5: Object Recognition

Try Matches

9. CHESS ENDGAMES

Recent research by Stiller [47] has shown that
chess endgames can be solved on & 32K
Connection Machine (CM-2) about 4000 times
faster than the best previous solution. The
speed on a 64K CM-2 on the same problem is
expected to be 4-5 times faster yet, about 17,000
times as fast as the previous solution! (1.5
minutes for a full five-piece endgamie vs. 25,000
minutes). In Stiller’s program the search space
is encoded in the network topology, and the
motion of tokens through the topology compute
the search space in parallel.

9.1 The Chess Endgame Problem

Chess is played by two players who alternate
moves using six different types of pieces. An
endgame is roughly the portion of the endgame
when most of the pieces have been captured
{and thus removed from the board). Computer
programs that have exhaustively searched five-
piece end games have shown that traditional
wisdom is incorrect concerning the outcomes of
many of these games. For example, chess rules
have stipulated that a game that lasts more than
50 moves without a change of "material
balance" (i.e. a capture of one or more pieces) is a
draw. Exhaustive search of five piece endgames

has shown that there are some forced wins

using more than 70 mowves.

The goal of the program is to assign a value to
every possible arrangement of the pieces in an
endgame. The value represents either (1) the
minimum number of moves to a forced win by
the player to move, or (2) a notation that the
position leads to a draw (or He).

9.2 Problem Layout

Let us assume that we have a five piece
endgame: two kings, white and black (the point
of the game is to capture the opponent's king)
and three other pieces Py, P2 and P3. There are 64
possible squares on which each of these pieces
can sit. Thus, we can represent all the possible
arrangements of Py, P2, and Py by a 64 x 64 x 64
array of points (or, as it is actually done on the
CM-2, by an (8 x 8) x (8 x 8) x (8 x 8) array). At
each point in this array, we can represent all the
possible positions of the two kings by a 450-bit
vector. A number of points will correspond to

1 By Ken Thompson [50] on a sequent balance 12-processor
MIMD machine. .

1019

impossible positions, i.e. when two or more
pieces occupy the same square, these points are
specially marked. The entire array is laid out on
the CM-2 g0 that adjacent points correspond to
positions that can be reached by moving the
pleces.

9.3 Program Operation

To start the program, we mark all the positions
that correspond to wins for one of the players
(say white). We then find all the positions
which force a win in one move; all these
positions (points in the array) are marked with a
value of "1", meaning that there is a win within
one move. We then repeat this process uniil a
step marks no new positions. The entire
endgame is then solved.

One can envision the process in the following
analog: suppose that each point in the array is
either a slot that can hold a marble, or
corresponds to a hole, so that marbles arriving
there fall out of the array. All the points that
correspond to impossible positions are made to

be holes. We can place marbles painted with
different colors in each of the slots that
corresponds to a winning position. We can find
all the ways to reach these positions by tipping
the array, and letting the marbles roll, leaving
paint, until they fall out of holes or off the edge
of the board. We repeat with new marbles,
tipping the array in a different direction, until
all possible ways of reaching the position are
marked. (There are four directions: up/down,
right/left, and the two diagonals.) By placing
marbles either on these paint-marked slots, or
the complement of these sequences (all the slots
without paint) on alternating moves, we can
trace out the entire endgame space for both

players.

The needed operations involve only MEWS-
grid moves and bit comparisons (of the king
vectors or the slots) and thus this operates very
rapidly on the CM-2.

9.4 Related Problems

Similar methods will apply to domains that are
small enough to be searched exhaustively,
which can also sometimes prove useful at the
leaves of a larger alpha-beta search. An example
domain is for a "super optimizing" peephole
compiler [11][26][31]1[34). Another is the
alternating Turing Machine [7]. We hope
within the next year to begin exploring six-piece

1020

endgames; these require approximately 64 times
the memory required by the five-piece
endgames. This problem will thus have to be
solved using DataVault disk units for swap

Space. 10. FULL-SCALE NATURAL
LANGUAGE SYSTEMS

For most of its history, AI has been concerned
with "toy problems”. Scaling up presents
difficulties: at the two extremes of a spectrum,
one can hand-code [33], or one can use methods
to automatically build NLF systems. To date
there have been very few prachtical applications
of natural language processing, and this fact has
dampened the enthusiasm of funding agencies
and companies that support research in this
area?. Fortunately, there are signs that this
situation can be improved by strategically
merging AI/NLP and Information Retrieval
technologies. Over the last several years we
have been involved with such AI/IR research; it
offers novel opportunities both for automatic
learning, and for building systems that have
immediate practical value.

A series of experiments and discoveries led
researchers at Thinking Machines, most notably
Craig Stanfill and Brewster Kahle, o devise a
document retrieval system that works in
parallel on the Connection Machine [44]. The
resulting system, now a commercial product,
provides a high quality search through a clever
interface . that can be-used effectively by a
computer-naive person after only about five
minutes of training. The basic idea is this: A
database of documents (e.g. news articles,
abstracts, books, ete.) is distributed to each of the
many processors of a Connection Machine (if
documents are 2K bytes long, each processor can
hold about twelve documents). ‘The user types a
few words (a question, description, or list of
terms will do) and a carriage return; the terms
are broadcast to all the processors in parallel

1 Commercially available natural language systems include
INTELLECT [22], a product of Artificial Intelligence Corp.,
which allows users to get information from a database by
typing questions in English: NL Menu [48], a product of
Texas Instruments, that lets users build natural language
"front ends” for programs — one uses a mouse bo select the
words fior each sentenca from a set of menu choices, insuring
that the system will "understand" any user input; Qand A,
a natural language database front end from Semantic Ine.,
and EFISTLE, a grammar correcting system from IBM.
IDARPA, the Defense Advanced Research Projects Agency,
expects to spend only about $1.4 million in fiscal 1989 on
natural language processing, compared to over 57 million
the previous year. Much of funding has been switched to

support speech processing research,

along with a numerical "weight" indicating the
importance of each terml. Each processor
compares the terms with the contents of its
documents, and adds the “weight" to the score
for each document in which the term occurs.
The headlines for the documents with the
highest total scores are then displayed to the
user. The user can view the text of each of these
documents by clicking a mouse button while
pointing to the headline. when the user sees a
document (or paragraph of a document) that
answers his request, s/he can mark it "good" by
pointing and clicking the mouse. The system
collects all the terms from all the documents
marked "good” along with the initial words the
user typed, and repeats the search process
described above, but now with many more
terms (often several hundred). Each search
requires less than a second, even on databases
up to 10 gigabytes. This method, called
"relevance feedback"[39], generally produces
substantially better search than is possible with
boolean search systems [2]2

This system offers two interesting opportunities
to extend natural language processing systems:

1. It is highly desirable to add natural
language pre- and post-processing to the
existing system, to improve its
performance, and to extend its capabilities.
For example, we are building recognizers
that can find, label, and store lists of terms
that refer to company names, geographic
locations, names of persons, etc.
Ultimately, this will help users to ask and
obtain answers to questions that would be
very difficult to phrase as boolean queries.
For example: typing "Earnings reports for.
MNew England ufility companies” would
expand to "Earnings reporis for Maine,
New Hampshire, Vermont, Massachusetts,
Connecticut, Rhode Island, utilities, power
companies, electric companies, Edison,
power and light...". In addition, natural
language processing systems will allow us
to post-process retrieved documents, to
filter out irrelevant articles, and thus
improve the performance of the system
from the user's point of view.

1 Term weights are assigned automatically by a program
that pre-processes the text and updates the database, The
mumber of cecurrences of each term are saved, and weights
computed proportional to the negative log of the
grobabﬂ:t}r of occurrences of each term.

A commercial software system based on these ideas has
been developed at Thinking Machines and purchased by
Dow Jones, Inc.

2. The retrieval system itself can be adapted to.

extract phrase sentence and paragraph
“templates” or patterns, in order to aid the
building of recognizers for particular topics
or types of stories. Such processing can
provide empirical data on language usage
that would be very difficult to find or
invent any other way, leading to
"dictionaries” of multi-word and multi-
sentence language patterns and to FRUMP-
like systems [12] with broad subject
coveragel.

Other related research, using dictionaries or
thesauruses, has become popular in recent years.
Some striking successes have been achieved by
Ken Church and co-workers at AT&T Bell
Laboratories [8][18] using the augmented "Brown
Corpus” [32]. The Brown Corpus consists of one
million words of text, chosen to represent a wide
range of text types and styles (newspaper and
magazine articles, books on history, economics,
etc.). It was "augmented” by Kucera and Francis
by assigning each word in the corpus to one of
about 450 classes, covering standard grammatical
categories (noun, verb, adjective) but also
including substantially finer distinctions (e.g.
noun + agent of sentence; verb + complements
of particular types). Church collected statistics
on the probabilities that various words would
follow particular other word (or category)
combinations. This system has been used to
judge the most likely categories for words in
novel text taken from newswire sources.
Success rates for Church's system are in the
range of 98-99%, much higher than for the best
syntactic parsers {in the range of 33% [38]).

All these current lines of research emphasize
breadth of coverage, rather than depih of
coverage, and are thus complementary to the
goals of traditional Al NL processing research.
All present attractive alternatives to hand-
coding [33], and all can be used to accelerate the
research into deep processing. We believe these
general approaches will have great importance
in the ultimate story of the achieving of truly
intelligent systems.

1 FRUMP recognized about 70 types of stylized or "scriptal”
newspaper articles: auto accidents, diplomatic visits,
burglaries, ete. FRUMP contained quite specifie, hand-
coded sets of patterns to match each of the types of
information needed to fill in the values in its scripts for

each stary type.

1021

11. SUMMARY AND PROSPECTS

In the experimental sciences, an improvement
in the tools available to experimenters usually
leads to a series of rapid advances. Such an
improvement has just taken place in the area of,
artificial intelligence. As the discussion above
demonstrates, the speed of certain computations
has just increased by a factor of 100-17,000. To
the extent that artificial intelligence is
empirically based, we can reasonably expect that
this improvement in computational tools will
lead to advances in science, both basic and
applied. Indeed, this is already happening on a
small scale.

It may be argued that the Connection Machine
does not speed up all algorithms; that there are
tasks for which the Connection Machine
provides no speedup. It may also be argued that
there are significant unsolved problems in
artificial intelligence for which increased
computational power is simply not required.

Both arguments are, of course, correct, and we
do not intend to suggest that the Connection
Machine is the answer to all AT's questions. It is
clear, however, that many areas of research have
long been stifled by the lack of adequate tools,
and that others have never made it out of the
laboratory due to the lack of computational
resources sufficient to support commercial
application. '

We believe there are prospects for rapid progress
in AI over the next several years, as the research
community learns how to use this new tool. As
with any new technology, some time will be

wired before a community of users facile in
its use will develop. Some ideas that had been
thought promising will fail, and other ideas that
nobody had taken seriously will prosper. One
thing is, however, clear: these vastly improved
tools will yield new results previously
unobtainable. The next several years should be
exciting ones for AL

REFEREMCES

1. Ballard, D., and C. Brown, Computer
Vision, Prentice Hall, Englewood Cliffs,
MJ, 1982,

2, Blair, D. and M. Marion, "An Eval-
uation of Retrieval Effectiveness for a
Full-Text Document Retrieval System"
Communications of the ACM28 3 pp
289-299, March 1985,)

1022

10.

11.

12,

Blelioch, G., "CIS: A Massively Con-
current Kule-Based System" Proc-
eedings of the Fifth National Conf-
erence on Artificial Intelligence, Phil-
adelphia, PA, August 1985.

Blelloch G., and C. Rosenberg, "Network
Learning on the Connection Machine"
Proceedings of the Tenth International
Joint Conference on Artificial Intelli-
gence, Milan, Italy, 1987,

Blelloch, G., and C. Rosenberg, "An
Implementation of Network Learning
on The Connection Machine", chapter
in Connectioni Model Their
Implications, eds. D. Waltz and .
Feldman, Ablex Publishing, Norwood,
INJ, 1988,

Brachman, E., “On the Epistemological
Status of Semantic Networks” in Assoc-
iative Networks: Representation and

wledge by Computers, ed.

M.V. Findler, Academic Press, NY, 1979,

Chandra, A., D. Kozen, and L.
Stockmeyer, "Alternation" Journal of
the Association for Computing Machin-
ery, 28 1 pp. 114-133, January 1981.

Church, K., "A Stochastic Parts Program
and MNoun Phrase Parser for Unre-
stricted Text" Unpublished manuseript,
ATET Bell Labs, Murray Hill, NJ, 1988.

Cook, S., "The Complexity of Theorem
Proving Procedures" Proceedings of the
Third Annual ACM Symposium on

_ Theory Computing, 1971,

D'Ambrosio, B., "A Hybrid Approach to
Uncertainty" Infernational Journal of
Approximate Reasoning, to appear.

Davidson, J., and C. Fraser, "Automatic
Generation of Peephole Optimizations”
Proceedings of the ACM SIGPLAN 1984
Symposium on Compiler Construction,
pp 111-116, June, 1984,

DeJong, G., "An QOverview of the
FRUMP System", chapter in Strategies

for Natural Language Processing, eds.
W. Lehnert and M. Ringle. Lawrence

Eribaum Assoc., Hillsdale, NJ 1982,

13.

14.

15,

16.

17.

18.

19.

20.

21.

24,

deKleer, J., "An Assumption-Based
TMS" Artificial Intelligence, 28 pp 127-
162, 1986,

deKleer, ., "Extending the ATMS"
Artificial Intelligence, 28, pp 163-196,
1988,

Dixon, M., and deKleer, "Massively
Parallel Assumption-Based Truth Main-
tenance" pp 199-204, Proceedings of
Seventh Natiomal Conference on Artif-
icial Intelligence, St. Paul, MN. August
1988,

Drumheller, M., "Connection Machine
Stereomatching” Proceedings of the
Fifth National Conference on Artificial
Intelligence, Philadelphia, FA 1986.

Drumheller, M., and T. Poggio, "On
Parallel Steren” Proceedings of the IEEE
International Conference on Robokics
and Automation, San Fransisco, CA.
1986,

Ejerhed, E., "Finding Clauses in
Unrestricted Text by Stochastic and
Finitary Methods" unpublished manu-
script, AT&T Bell Labs, 1988.

Fahlman, 5., NETL: A tem_for Rep-
resenting and Using Real-World Know-
ledge, MIT Press, Cambridge, MA, 1979.

Feldman, J., and D. Ballard, "Connect-
ionist Models and Their Properties”
Cognitive Science, Vol. 6 3 pp 205-254, .
1982,

Forbus, K., "The Qualitative Process
Engine” University of Illinois Technical
Eeport UIUCDS-E-86-1288, 1986.

Harris, L., "Robot: A Full Performance
Matural Language Data Base Query
System” Procesdings of the Fifth Inter-
national Joint Conference on Artificial
Intelligence, pp 903-904, 1977.

Hillis, D., The Connection Machine,
MIT Press, Cambridge, MA, 1985.

Hillis, D., and G. Fobertson, personal
communications, 1987,

27.

3.

3z

Hinrich, T. "Towards an Architecture
for Open World Problem solving”
Proceedings of the DARPA Workshop
on Case-Based Reasoning, 1988.

Kessler, P., "Discovering Machine-
Specific Code Improvements” Proeed-
ings of the ACM/SIGPLAN Symposium
on Compiler Construciion, pp 249-254,
June 1984,

Koledner, I, "A Protess Model of Case-
Based Reasoning in Problem Solving"
Proceedings of the international Joint
Conference on Artificial Intelligence,
LA, 1985.

Kolodner, J., "Capitalizing on Failure
Through Case-Based Inference” Proc-
eedings of the 1987 Conference of the
Cognitive Science Society, 1987,

Kolodner, I, "Extending Problem Solver
Capabilities Through Case-Based Infer-
ence" Proceedings of 1987 International
Machine Learning Workshop, 1987.

Kolodner, J., "Retrieving Events from a
Case Memory: A Parallel Implement-
ation" Proceedings of the DARPA
Workshop on Case-Based Reasoning,
May 1988.

Erumme, [, and D. Ackley, "A Practical
Method for Code Generation Based on
Exhaustive Search” Procesdings of the
ACM SIGPLAN, pp 185-196, June 1982.

Kucera, H., and W. Prancis, Frequency
Analvsi ngli a Houghton
Mifflin Company, Boston, 1982.

Lenat, G., M. Prakash, and M. Shepherd,
"CYC: Using Common Sense Know-
ledge to Overcome Brittleness and
Knowledge Acquisition Bottlenecks™ Al
Magazine, 4, pp 65-85, Winter 1986.

Massalin, H., "Superoptimizer - a Look
at the Smallest Program” Proceedings of
the Second International Conference on
Architectural Support for Programming
Langunges and Operating Systems, pp
122-126, 1987.

Morris, P, and R. Nado, "Representing
Actions With an Assumption-Based
Truth Maintenance System” Proceed-

3.

37.

39.

41.

1023

ings of the National Conference on
Artificial Intelligence, Seattle, WA, July
1987,

Rumelhart, D., G. Hinton, and kK.
Williams, et al., "Learning Internal
Representations by Error Propagaton”,
chapter in llel Digtri Proc-
essing, Vol. I, pp 318-362, MIT Press,
Cambridge, MA, 1986. -

Rumetlhart, D., and J. McClelland, et al.,
lel Distri ocessing, MIT
Press, Cambridge, MA, 1986.

Salton, G., personal communications,
1988,

Salton, G. The SMART Retrieval

: Experiment i tomakc Doc-
t Processing, Prentice-Hall, Engle-
wood Cliffs, NJ, 1971, ‘

Sejnowski, T., and C. Rosenberg,
"METtalk: A Parallel Network That
Learns to Read Aloud" Electrical Engi-
neering and Computer Science Depart-
ment,. Johns HMopkins University
Technical Report # JHU/EECS 86/01,
1386.

Shinn, H., "Abstractional Analogy: A
Model of Analogical Reasoning” Pro-—
ceeding of the DARPA Workshop on
Case-Based Rengsoming, 1988,

Stanfill, C., "Parallel Computing for
Information Retrieval: Recent Devel-
opments" Thinking Machines Corp-
oration Technical Report # DRBS-I,
1988, :

Stanfill, C., "Memory-Based Reasoning
Applied to English Pronunciation” Proc-
eedings of the Sixth National Conf-
erence on Artificial Intelligence, pp 577-
581, Seattle, WA, 1987.

Stanfill, C., and B. Kahle, "Parallel Free
Text Search on the Connection Machine
System" Communications of the ACM,
Vol. 29, No. 12, December 1986,

Stanfill, C., and D. Waltz, "Artificial
Intelligence on the Connection Machine
System: A Snapshot” Thinking Mach-
ines Corporation Technical Report #
GBB-1, 1988.

024

47,

48.

49,

50,

52

Stanfill, C., and D. Waltz, "Toward
Memory-Based Reasoning” Communi-
cations of the ACM, Vol. 29, No. 12, pp
1213-1228, 1986.

Stiller, L., "Parallel Analysis of Certain
Endgames" Boston Univérsity Depart-
ment of Mathematics Manuscript,

September 1988.

Thau, B., "Details of an Implementation
of a Frame System on the Connection
Machine” Supplement to Kolodner, J.
"Retrieving Events from a Case Mem-
ory: A Parallel Implementation”, 1988,

Tennant, H. "Menu-Based Natural
Language Understanding” Proceedings
of the National Computer Conference,
1984, -

Thinking Machines Corporation,
“Connection Machine® Model CM-2
Technical Summary” Technical report #
HAB7-4, 1987,

Thompson, K., "Retrograde Analysis of
Certain Endgames" Proceedings of the
International Joint Conference on
Artificial Intelligence, Vol. 9, No. 3,
1986.

Tucker, L., "Data Parallelism “and
Computer Vision Using the Connection
Machine” Proceedings of the Third
International Supercomputing Conf-
erence, Boston, MA, 1988,

Tucker, L, C. Feynman, M. Drumheller,
D. Fritzsche, and D. Waltz, "Model-
Based Object Recognition Using the
Connection Machine” Proceedings of th
SPIE Conference on Intelligent Robots
and Computer Vision, 1988.

Waltz, D. and J. Feldman, eds.
c ionist Model { Their Imple-
mentations, Ablex Publishing, Nor-
wood, NJ, 1988

Zabih, R., and D. McAllester, "A
Rearrangements Search Strategy for
Determining Propositional Satisfia-
bility" Proceedings of the National
Conference on Artificial Intelligence, St
Paul, MN, August 1938.

