PROCEEDINGS OF THE INTERNATIONAL CONFERENCE
ON FIFTH GENERATION COMPUTER SYSTEMS 1985,
edited by ICOT. © ICOT, 1988

OVERVIEW OF THE CORE LANGUAGE ENGINE

H. Alghawi, D.M. Carter, J. van Eijck, R.C. Moore®, D.B. Moran®

SRI International

Cambridge Computer Science Research Centre,
23 Millers Yard, Cambridge CB2 1RGQ, U.K.

ABSTRACT

The Core Language Engine (CLE) is a domain in-
dependent system for translating natural language (En-
glish) sentences into formal representations of their lit-
eral meanings which are capable of supperting reasen-
ing. It is designed to be used as a2 major component of
interactive advisor systems such as interfaces to data-
base management systems and diagnostic expert sys-
tems. The main contribution of the CLE is intended
to be substantial coverage of English constructions in
both syntax and semantics that is well motivated and
hence extensible. Interactive facilities are provided to
allow users to extend the system vocabulary. The CLE
has a modular architecture with well defined interfaces
between the various stages of linguistic processing. Uni-
fication is used as the mechaniem for rule application
and passing information in each of morphology, pars-
ing, interpretation, and selectional filtering, so the rules
for these components are expressed declaratively. A
compact representation of local ambiguities is applied
systematically in syntax and semantics, allowing us to
adopt the modular staged a.ppr::m:h without sacrificing
computational efficiency.

1 DESIGN GOALS AND ARCHITECTURE

The CLE is a domain independent system for natural
language processing which can be used as the basis for
building natural language applications. It is primarily
aimed at interactive advisor systems such as interfaces
to database management systems and diagnostic expert
systems. English sentences are translated by the CLE
info logical form expressions which represent their Lit-
eral meaning. The motivation for choosing such rep-
resentations as the output of the system is that they
are capable of supporting reasoning which is necessary
both for natiral language disambignation and for the
application task of typical advisor systems,

Meurrent address: Astificial Intelligence Center, SRI Interna-
tional, Menlo Park, California 94025, USA

5.G. Pulman

Cambridge University
Computer Laboratory,
Pembroke Street,
Cambridge CB2 3QG, UK.

The main contribution of the CLE is intended to be
substantial coverage of in both syntax and semantics.
This covarage is achieved by taking advantage of recent
advances in lingnistics giving analyses that are well mo-
tivated and hence extensible. Transportability to new
applications is alse enhanced by providing interactive fa-
cilities to allow users to extend the system vocabulary.
Current CLE coverage of English syntax and semantics
can be summarized roughly as follows:

Major clause types: declaratives, imperatives, wh-
and yes-no questions, relatives, passives, clefts,
there-clanses.

Verb phrases: complement aubcategonzatmn,'cun-
trol verbs, verb-particles, auxiliaries, tense opera-
tors, some adverbials.

MNoun phrases: prenominal and pestnominal med-
ifiers, lexical and phrasal quantifiers/specifiers,
Coordination: conjunctions and disjunctions of a
wide class of noun phrases, verb phrases, and clau-
5047 SOME coinmon comparatives.,

Morphology: inflectional morphnlﬁg}r, simple pro-
ductive cases of derivational meorphalogy.

Core lexicon: 1200 function words and content

word stems, 1800 senses and their selectional re-
strictions.

The CLE has a modular architecture. Sentence pro-
cessing is performed in the following stapes:

— Morphological analysis and sense derivation.

— Syntactic parsing,

- Semantic interpretation and selectional filtering.
— Quantifier scoping.

— Reference resolution.

The current CLE prototype has development ver-
sions of components implementing the first four phases



az well as the various sete of rules and lexical entries en-
coding the linguistic knowledge required by these com-
ponents. Semantic interpretation results in a level of
represeatation we call ‘quasi logical form”. This may be
regarded as the natural level of sentence representation
resulting from linguistic analysis that applies compasi-
tional semantic interpretation rules independently of the
influence of context. It differs from fully specified logi-
cal form in that it will typically contain quantifiers and
operators whose scope has not yet been determined, and
also ‘anaphoric terms” which stand for entities and rela-
tions to be determined by reference resolution. Having
quasi logical form as a well-defined level of representa-
tion allows the problems of compesitional semantics to
be tackled separately fram the problems of scoping and
reference resolution.

There are two important themes that recur through-
out the desipn of the CLE. One is that unification is used
as the mechanism for passing information and rule ap-
plication in each of morphology, parsing, interpretation,
and selectional filtering, allowing the rules for these com-
ponents-to be expressed declaratively. (This reliance on
unification was the main reason for choosing Prolog as
the CLE implementation language.) The other theme is
a technique for compact representation of local ambigu-
ities which is applied in a systematic way to arbitrarily
complex syntactic and semantic struetures. This way of
handling ambiguities means that we can adopt the mod-
ular staged approach without saerificing computaticnal
afficiency.

2 CATEGORY AND FEATURE SYSTEM

Information abont the syntactic and semantic properties
of linguistic constituents is represented in the CLE us-
ing complex categories that include a principal category
symbaol and specifications of constraints en the values of
gyntactic and semantic features —cf. the feature systems
of GPSG (Gazdar, et al, 1985) and PATR-II (Shieber,
1986). Categories appear in syntax rules, semantic in-
terpretation rules, and lexical entries. Two categories
can be unified if the constraints on their feature values
are compatible. Typically, categories appearing in a rule
have shared variables which are used to pase informa-
tion between the categories and other rule components
{Sections 3 and 4).

A category consists of a category symbol and a set
of feature-value pairs {or feature specifications) repre-
gented as a list. Fach pair consists of an atomic feature
name and a value, which can be an arbitrary Prolog
tertn. In particular, feature values may contain lists or

1109

other categories recursively. For example, the category
shown below has category symbol 8, a variable for the
feature type, and a list structure containing the cate-
gory np: [whgap=H] as the vilue of gapsSoughtIn.

g: [type=Type,gapsSoughtIn=[np: [vhgap=W]l],
form=tnsd ,agr=(\{(third/\sing))]

Feature values can also be hoolean combinations of
elements from finite sets; an example shown above is
the value ‘not third person singular’ for the feature agr.
These values are compiled into terms which unify if
and only if the expressions are compatible {see Mel-
lish, 1987). Mare generally, category compilation in the
CLE ensures that category unification is implemented
efficiently as Prolog term unification. The values of fea-
tures not mentioned in a category are compiled accord-
ing to feature defanlt declarations.

3 SYNTACTIC INFORMATION

Lexical entries consist of a word form, optionally fol-
lowed by its stem form (for irregular words), then a list
of syntaciic categories for the word. Regular morpho-
logical variants are computed at parse time and cached.

Syntactic and morphological rules consist of an iden-
tifier, followed by a list of categories or terminals, the
first of which is the mother. Variables gver whole cate-
gories (as well as category valued features) are allowed,
Here is a sample rule:

syn(s_np_vp_Normal,...
[s:[agr=Ag. type=T,...
gapsSoughtIn=G0i, gapsSoughtlut=fc,...],
np: [agr=Ag, type=T, nferm=Sfm,...],
vp: [agr=Ag, subcat=[], subjform=Sfnm,
gapsSoughtIn=Gi,
gapsSoughtlut=Go,...13J.

As can be seen, our formalism is a prototypical uni-
fication grammar consisting of a context-free skeleton
enriched with features.

There are thres noteworthy features of the current
syntactic description.

1. Subeategorisation by verbs or adjectives of their
arguments is handled by giving them a lexical entry in
which the value of a subcat feature is a list of the re-
quired complements in the order expected. The word is
then combined into a phrase with its complements by
applications of a rule having roughly the structure:



1110

vp: [subcat=Rast, ...] —-»

. wvp:[subcat=[First|Rest], ...] First

where First is a variable over a whole category, Thus 2
phrase like give a book fo me will have a structure like:

[[[7ive]upla book]apluplto melpplep

2. Syntactically predictable alternations are han-
dled by rules which capture the effect of what in Stan-
dard Theory Transformational Grammar (Chomsky,
1965) were ‘lexically governed’ transformations, Thus
a rule like:

vp: [subcat=[], subjform=it,...] =--»
vpi [subcat=[], extraposes=sy,...]
g:[...]

will allow verbs and adjectives like bother and obuvious
to appear in a frame like it [bothers him / is obvious]
that 5 as well as that § [bothers him / is obrious]. The
existence of the former is predictable from that of the
latter,

3. Unbounded dependency constructions like wh-
questions and relative clauses are treated by list valued
features which ‘thread® the dependency through a tree
{see Pereira and Shieber, 198 7). A rule introducing such
a dependency will ‘push’ a *gap’ onto the head of the
GapsSoughtIn list, and a rule discharging such a depen-
dency will ‘pop” a gap present on the GapsSoughtIn list,
resulting in a GapsSoughtOut list with one fewer gap on
it. All the gaps must be found for the sentence to be
grammatical. For example, in the wh-question Who did
John give a book tof the gap is threaded through the
comstituents in the order shown below with numbered
brackets:

whofydid john[z[agive[sa book]|[sto[s0]]])

The advantage of this treatment is that the same rules
as are used for the normal case can be used to build
phrases with missing constituents.

The current grammar covers most of the subcate-
gorisation types of English, and handles all types of wh-
constructions, (questions, relatives, clefts), passives, ex-
istentials, *transformations’ like Dative, Particle move-
ment, Exiraposition etc, nominal and verbal pre- and
post-modification, and conjunctions, with about 50 rules

4 SEMANTIC INFORMATION

Sense entries, the semantic counterparts to the lexical
enfries in the syntactic component of the CLE, link av-
ery basic word form to a featured category and a logical
form that translates the word. Here is a (considerably
simplified) example:

sense{design,
vp: [arglists[(B,comp: [1)] ,eventvar=E,
subj=d,papValsIn=G, gapVal sOut=G] ,
[designi ,E, A,B]).

Thiz entry shows that the logical form for the verb de-
sign is a funetor with three argument slots, [designl ,E,
A,B]; where E {5 a variable for the event dencted by the
verb, and & and B are variables for the subject and direct
object. The argnment slots are kept track of by means of
verb phrase features. The entry specifies, for instance,
that the object argument slot B is unified with the mean-
ing B of the VP complement. The features gapValsIn
and gapValsOut are used for gap filler threading,

Morphological derivation rules provide senses for reg-
ularly formed combinations of basic word forms and cne
or more affixes. For regular verbs, the basic word form is
the infinitive, and the senses of the other verb forms are
derived. Morphological derivation also deals with sim-
ple cases of agentive er-nominalization. The meaning of
designer is derived from [designi,E, A,E] by filling two
of the argument slots with suitable forms, and leaving
the subject argument slot open.

Semantic interpretation rules provide interpretations
for phrases that are the result of syntactic rule applica-
tions. Ewvery syntax rule has one or more correspond-
ing semantic rules. Each semantic rule gives the name
of the syntax rule that it corresponds to, and speci-
fies how the semantic features and the interpretation of
the mother node depend on features and interpretations
of the daughter nodes, Rather than using lambda ex-
pressions in the way they are traditionally employed in
compositional semantics (Montagee 1974), we normally
employ unification to compress the work of functional
application and lambda reduction into one step. Thus
arguments are immediately plugped into slots in the log-
ical form that are marked by Prolog variables. The fol-
lowing (simplified) rele for the semantics of 5 — NP VP
illustrates this;

sem(s._np_vp_Normal,
[(Vp,s: [gapValsIn=Gin,gapValsOut=Gout]},
(Np,np:[13,
(Vp,vp: [aubj=Np,gapValsIn=Gin,



gapValsDut=Gout])]).

This says that the meaning of the mother is the meaning
of the VI danghter with the NP meaning plugged into
its subject slot.

The application of the semantic interpretation rules
resulte in logical form expressions that are unresolved
as to quantifier scopes and anaphoric possibilities. The
unscoped LF that translates A bishop wanted fo wisit
every college is:

[past,quant{axists A, [avent 4],
[wantl,A,qterm(al B, [bishopl ,B]),
quant(exists,C, [event,C],
[visit1,C,B,
gqterm{everyi,D, [collegel,D]13131)]

The two qterms in this LF appear in argument positions
that in a scoped LF would be occupied by quantified
variables. Note that the qterm variable B occurs not
only inside the gterm but also in the subject slot of
wisiti. Only after scoping will this variable be properly
bound by a quantifier.

In the previons example no reference resolution as
to the subject of wisit had to take place: the subject
of the matrix sentence is the only candidate. LFs for
sentences containing pronouns or definite descriptions,
however, will contain unresolved anaphora. Wren said
that he would design a college will translate into a LF
with

a_term{pro,C,[and, (human,C] , [male,C]])

in the subject slot of design.

The semantics of long distance dependencies is han-
dled by a mechanism analogous to the gap threading in
syntax: the meaning of a displaced constituent is put on
a gap-values list and threaded until the gap component
is encountered. The interpretation rule for the gap pops
this list, as follows:

sam{np_WhGap,
[(Np,np: [gapValsIn=[HNpl|Rest] ,
gapValsDut=Rest])]1).

The rule shows how the meaning of the phrase, Np, is
taken from the top of the list of gap values,

i
5 SORTAL RESTRICTIONS

When a semantic rule or sense entry is wsed during the
semantic interpretation phase, sortal information is in-
traduced into the logical form for the interpretation of
the constituent under analysis. This sortal information
is attached to a component of the logical form with the
operator ;. For example, the logical form expression
[buildl,4,B,trinityl] might become

([(buildl;([event, human,object],
proposition)},
(h;evant),
{B;human},
{trinityl;object)]
;propesition)

where evant, human, and object, are sorts associated
with the arguments of the predicate buildi. T B had
already been given a sort restriction conflicting with
human, e.g., inanimate, then the attempted use of the
semantic rule or sense entry would fail, ruling out the
interpretation with incompatible sorts.

The sort associated with a functoer of arity n is an
ordered pair consisting of a list of sortal restrictiohs on
the arguments and a sort for the expression resulling
from the application of the functor to its arguments:

(C{sorts),... ,{s0rt)] ,{ezpression-sort))

Thus the sort ([event, human,object],proposition)
is associated with the predicate buildl in the example.

Sorts uged in the CLE are in fact more complex than
the atomic ones such as humen shown above, In the
general case, the sort of each argument in a predication

‘must unify (as a Prolog term) with the sortal restric-

tion that the predicate imposes on that argument. The
term for an argument sort is an encoding of the sort of
a class of individuals according to a classification hier-
archy {Mellish 1987).

Mutually exclusive classes are enceded as terms with
different functors, ensuring that they do not unify:

abatract(_) object{_,_,_}

Further instantiation of these terms gives finer degress
of classification: the term for & ‘human animate object’
might be

gbject{animatelhuman, ), ,_).



1112

Functors with more than one argument represent classes
having non-exclusive subclassifications. For example,
objects in the class ‘animate’ can be classified with re-
spect to sex or whether they are human. The two-
argument functor animate has human and animal as
possible values for its first argument, and male and
famale as possible values for its second argument. This
allows the sort for “fernale animate object’ to unify with
the one shown above.

The sortal restriction for a word sense is not entered
directly in the fixed-position format shown abeve, but
rather is compiled from constraints specified for that
word sense in the lexicon. The sort hierarchy used in
this compilation process is generated from declarations
stafing subsumption and disjointness relations between
entity classes,

6 LEXICAL ACQUISITION TOOL

The lexical acquisition tool VEX (Vecabulary EX pander)
allows the creation of CLE lexicon entries by users with

knowledge both of English and of the application do-

main, but not of linguistic theory or of the way lexical

entries are represented in the CLE.

VEX is provided with pointers to entries in a ‘para-
digm’ lexicon for a number of representative word us-
ages, and declarative knowledge of the range of sen-
tential contexts in which these usapes can occur. It
elicits grammaticality judgments from the user to de-
termine which paradigm (or set of paradigms) cccurs in
the same contexts as the word being defined, and then
constructs the new entries by making substitutions in
these paradigm entries.

An alternative to this copy and edit strategy would
be to use knowledge of the function of every feature
and other construct in the representation, but this ap-
proach would Iead to lengthy interaction with the user
and make it more difficult to keep up with developments
in the feature systern. The ‘copy and edit’ approach,
on the other hand, makes VEX independent of most
changes to the representation. Furthermore, the fact
that its knowledge is specified at the level of word be-
haviours, means that as the CLE's coverage increases,
modifications to this knowledge are easy to make. It
also makes robust interaction with the user much easier
to achieve.

The process of defining & new word or phrase spec-
ified by the user is as follows. First, the user is asked
for the gross syntactic category or categories of the new
item (noun, verb, ete; no further grammatical knowl-

edge is assumed). The rest of the definition process
takes place separately for each category.

After eliciting any irregular inflectional forms, VEX
uses its knowledge of the category of the new item and
the number of words it consists of to select a subset
of the sentence patterns it knows about. Redundancy
in this subset is then removed by eliminating patterns
whose grammaticality can be deduced from that of other
patterns in the subset, The remaining sentences, with
forms of the item being defined substituted in, are pre-
sented to the user, who states which of them are gram-
matical,

VEX then tries to find a minimal set of paradigms
which, together, occur in all and only the contexts the
user has marked as grammatical. If no such set exists,
the user is asked to accept one of several additions to, or
deletions from, the grammatical set. Such negotiation
is needed because it is quite common for users to ignore
sentences, to misread them, or simply to have different
intuitions on them from these embodied in the CLEs
data.

Thus if the user asks to define the phrasal verb ‘use
up’, VEX selects the following sentence patterns to be
judged:

The thingummy used up.

The thingummy used the whatsit up.

The whatsit was used up by the thingummy.

The thingummy used the boojum up very good.

The boojum was used up the whatsit by the
thingummy.

The whatsit was used wp for the boojum by
the thingummy.

T The thingummy uszed up existing.

8 The thingummy used up the whatsit that the

boojum existed.
9 The whatsit was used up by the thingummy
to axist,

o s L R e

=]

(Content-free nouns such as ‘thingummy’ are used to
prevent the user being sidetracked into judging seman-
tic acceptability). The user replies that sentences 2, 3
and 9 are grammatical. VEX then asks whether the ‘to’
in @ must mean ‘in order to'; since it must, sentence 9
can be treated merely as sentence 3 with an optional
modifier. This information allows VEX to identify ‘use
up’ as having a single paradigm, that of transitive par-
ticle verb.

When, finally, a paradigm set is established, a num-
ber of senses of the user’s word are derived from them
(typically one per paradigm). The user is asked then to



provide sortal information, appropriate to the domain,
for each such sense.

7T AMBIGUITIES AND PACKING

Local ambiguities arise from prepositional phrases, com-
pound mominals, multiple word senses, and so on, The
CLE ‘packing’ technigue for compact representation of
local ambiguities was used by Tomita (1985) and Is also
implicit in the Earley and CKY parsing algorithms.. We
have generalised it, however, so that it can be used with
categories represented by arbitrary term structures con-
taining variables and we have applied it in the semantic
phases of processing as well as parsing,

Each analysis of 2 constituent can be thought of as
having three components: the segment of input text
spanned by the constituent, a category, and an inter-
nal structure. The basis of the packed representation
is that we can abstract away from alternative internal
structures of constituents that have the same category
because the application of cur syntactic and semantic
rules depends only on the categories of constituents and
not on their internal structures.

Thus the prepositional phrase attachment ambigu-
ity in the sentence Wren designed the lbrary in Trin-
ity yields two analyses for the verh phrase following
Wren. Instead -of building explicit trees for these analy-
ses during parsing, the CLE parser maintaing two types
of record. ‘Constituent” records state that a particu-
lar segment of input has been analysed as a particular
category, whereas ‘analysis” records give possible local
syniactic structures of such constitwents. In the above
example, the verb phrase will have two analysis records
but only one constituent record; this constituent record
is then used to bulld a single analysis record for the
sentence category spanning the whole Input.

Packed syntax records are translated directly into
packed semantic structures using two additional record
types, ‘semantic-constituent’ records and ‘interpretation
records. Interpretation records contain logical form tem-
plates with ‘references’ to daughter constituents so that
completed logical forms can be recovered by selecting
among the interpretation records for the daughter con-
stituents. In the example above, the alternative seman-
tic interpretations of the verb phrase would be expressed
with multiple interpretation records.

In order to handle the more general case of CLE
categories that contain arbitrary terms as feature val-
ues, we can no longer simply check that categories are
identical for packing to take place. Instead, we must

1113

check whether the category in & constituent record sub-
sumes the categories in the corresponding analysis or
interpretation records. The alternative syntactic analy-
ses or logical forms can then be recovered by unification
rather than replacement.

B PARSING AND INTERPRETATION

Morphological processing takes place in three subphases:
word segmentation, word structure analysis, and sense
derivation. Segmentation applies spelling rules to a mor-
phologically complex word so that the stem and affixes
can be identified. Word strueture analysis parses these
word components using a simple left corner parser (see
below) in order to assign a category to the word. Sense
derivation applies another set of rules in érder to derive
new sense entries from the senses of the stem. Word
parsing and sense derivation are similar Lo the processes
of sentence parsing and interpretation, but simpler be-
cauge packlng is not used at the sub-lexical level of anal-
ysis.

The parser in the CLE uses a ‘left-corner’ parsing
strategy with top-down filtering (Rosenkrantz and Lewis
1970). This is primarily a bottom-up strategy, but it
daoes a limited amount of top-down processing in order
to use the left context to decide whether a particular
constituent could oceur at a given peosition in the input.
The idea is that, having parsed a constituent bottom-
up, the system selects a rule in which that constituent
could be the left-most daughter, and it postulates that
this rule provides the analysis of the immediately fol-
lowing input, predicting the remaining danghters in the
rule top-down. In parsing the next segment of the input,
it considers only analyses that are consistent with the
selected rule, by checking that each constituent it builds
bottom-up could be a ‘left corner’ of the next daughter
needed to satisfy the rule. '

Pure top-down parsing has the problem that left-
recursive rules lead to infinite recursion. Pure bottom-
up parsing has the disad vaniage that every possible emp-
ty category (or ‘gap’) has to be proposed at each point
in the input string, since the parser cannot tell from
the input string where gaps exist. A lefi-corner parser
avoids the left-recursion problem becanse it is funda-
mentally bottom-up, and it can be made to solve the
gap-proliferation problem by using the top-down filter-
ing to make sure that gaps are proposed only in places
they can actually oceur.

The information for testing whether one constituent
can be a left corner of another constituent is precom-



1114

puted into the rule tables used in the prediction steps
of the parser. A well-formed substring table is also used
to avoid re-analysis of already parsed constitvents al-
ter backiracking. The implementation of these elabo-
rations of the basic algorithm allows for the possibility
of fully general CLE categories containing variables (see
Alshawi, et al, 1938).

Another parser based on Prolog unification and a
bottom-up strategy is the BUP system {Matsumoto, et
al, 1983). Our parser is an extension of this in that its
top-down filtering uses feature valuss as well as major
categories, and its well-formed substring table constroc.
tion is sound since it is based on subsumption checking.

The process of applying semantic interpretation rules
to produce unscoped logical forms is much simpler than
parsing. The system merely traces the syntactic analy-
gis records down from the start symbal to look up the
word senses of all the lexical items and apply the seman-
tic interpretation rules to all the complex constituents
that appear in complete sentence analyses.

To process a constituent, the system finds a syntac-
tic analysis record for the constituent and recursively
computes an interpretation for all the daughter con-
stituents in that analysis. Tt then locks for a semantic
rule that corresponds to the syntax rule for the anal-
ysie and is compatible with the interpretations chosen
for the daughter constituents. After unification, the rel-
evant instance of the mother logical form is extracted
from the rule and a sorted version of the form s built,
making sure that it does not violate any sortal restric-
tiona.

9 QUANTIFIER SCOPING

An algorithm for generating the possible quantifier scop-
ings for a sentence, in order of preference, has been
developed and implemented (Moran, 1888). Quanti-
fier scoping generates the two possible readings for A
bishop wanled to wvisit every college from the unscoped
LF {given in Section 4 above) by replacing the qterms
with quant expressions corresponding to generalized
guantifiers. In this case, the preferred scoping preserves
surface order: ’

quant(exists,A, [bishopl,Al,
quant{forall,B,[collegel,E],
[past,quant(exista ,C, [event,C],
[want1,C,4,
quant(exists,D, [event,D],
[vieit1,D,4,B101310).

The scoping assigned to a quantifier is determined by
itz interactions with other quantifiers, logical operators
{e.g., modals and negation}, and boundaries of certain

- gyntactic constituents {e.g., major clauses and relative

clauses). When a potential scoping is logically equiva-
lent to another, one is discarded.

The algorithm is intended as the first stage of a two-
gtage process for determining the preferred quantifier
scoping for a sentence. The first stage penerates the
scopings and orders them using lnguistic criteria; the
gecond stage (future work) would use pragmatic infor-
mation (e.g., functional dependencies and discourse cri-
teria.]_ to modify the initial ordering. The motivation
for this division can be seen in the two closely related
sentences Jofin vistled every house on a street and John
vigited every house on a square; both have a preferred
quantifier scoping of on a particular street /square. How-
ever, the latter has a secondary scoping (eny house on
any sguare) which iz very hard to get for the former. We
attribute this difference to an application of pragmatic
information: the typical house is on a street, but not on
a SqTaTe.

Our algorithm, which is an extension of the one de-
scribed by Hobbs and Shieber (1987), traverses the un-
scoped logical form, collecting the quantifier terms into
a ‘store’; then as the scoping for each quantifier term
is determined, it is ‘pulled’ out of the store, producing
a scoped logical form. Unlike the flat stores of Cooper
{1983) and the LUNAR system (Woods, 1977), our algo-
rithm uses a store in which the strueture of the quanti-
fier terms reflects their relative positions in the unscoped
logical form, so we can apply order-dependent linguistic
preferences.

The zelection of a preferred quantifier scoping for the
whole sentence is the result of a sequence of pairwise
comparisons between the individual guantifier terms,
logical operators, and constituent boundaries. The rela-
tive scoping preferences of the individuval quantifiers are
not embedded in the algorithm, but are specified by a set
of rules. Many of these rules have appeared in the lin-
guistics literature and have been used in various natural
language processing systems. However, the coordination
of these rules and the resulting coverage represents a
significant eontribution. Because experimental data on
human quantifier-scoping preferences are still fragmen-
tary, we chose to design a system in which the set of
preference rules could be easily modified and expanded.

An improved scoping algorithm has recently been
included into the CLE by Fernando Perelra. The for-
mat of binding operators can now be specified declar-
atively, and cases not handled in previous work, such



as conjoined quantified noun phrases, are now treated,
For example, for sentences invnIvin,g noun phrases such
ag most doclors and some engineers the algorithm pro-
duces distributive readings which respeet the constraint
that both quantifiers must have ‘parallel’ scopes.

10 FURTHER RESEARCH

We intend to extend the treatment of temse, aspect,
events and temporal reference, and of collective read-
ings of noun phrases. Work has started on the design
of the reference resolution component and on a more
detailed treatment of noun subcategorization, including
acquisition of words formed by nonproductive deriva-
tions. In the longer term, we would like to develop the
CLE in a number of directions including the provision
ol capabilities for langnage generation, for the interpre-
tation of abbreviated and elliptical expressions, and for
using reasoning to aid interpretation and application in-
terfacing,

ACKNOWLEDGEMENTS

Development of the CLE has been carried out as part
of a research programme in natural language process-
ing supported by the UK Department of Trade and In-
dustry under an Alvey grant and by members of the
NATTIE consortium {British Aerospace, British Tele-
com, Hewlett Packard, ICL, Olivetti, Philips, Shell Re-
search, and SRI). We would like to thank the Alvey
Directorate and the consortium members for this fund-
ing, and Fernando Pereira for valuable criticisms and
suggestions while guiding the research.

REFERENCES

Alshawi, H., D. M. Carter, I, van Eijck, R. C. Moore,
D. B. Moran, F. C. N. Pereira, 5. G. Pulman and
A. G. Smith. (1988) Interim Report on the SRI Core
Language Fngine. Technical Report CCSRC-5, Cam-
bridge Computer Science Research Centre, SRI Inter-
national, Cambridge, England.

Chomsky, N. (1965} Aspects of the Theory af Syntaz.
MIT Press, Cambridge, Massachusetts.

Cooper, R. (1983) Quantification and Syntactic Theory.
D. Reidel, Dordrecht, Holland.

Gazdar, G., E. Klein, G. K. Pullum, and I. A. Sag (1985)
G‘:nemfrse:d Phrase Structure Grammar. Blackwell,
Oxford,

1115

‘Hobbs, J. K., and 5. M, Shieber (1887) An Algorithm

for Generating Quantifier Scopings. Computational
Linguistics, Vol. 13, no-1-2.

Matsumoto, Y., H. Tanaka, H. Hirakawa, H. Miyoshi,
and H. Yasukawa (1983) BUP: a bottom-up parser
embedded in Prolog. MNew Generalion Computing,
Vol. 1, nio 2, pp. 145~158.

Mellish, C. 5. (1987} Implementing Systemic Classifica-
tion by Unification. Compulational Linguistics, Vol.
14, no 1, pp. 40-51.

Mentague, B, (1974) Formal Philosophy: Selecied Pa-
pers of Richard Montague. Ed. by Richmond Thoma-
son, Yale University Press, New Haven.

Moran, D. B. (1988) Quantifier Scoping in the SRI Core
Langnage Engine. Proceedings of the 26th Annual
Meeting of the Associalion for Computational Lin-
guistics, Buffalo, New York.

Pereira, F. C. N., and 5. M. Shieber (1987) Prolog and
Natural-Language Analysiz. Center for the Study of
Language and Information, Stanford.

Rosenkrantz, D. J., and P. M. Lewis (1970} Determin-
istic Left Corner Parsing. Conference Record of the
11th Annual Symposium on Switching and Aufomata
Theory, IEEE, pp. 139-152. .

Tomita, M. (1985) An Efficient Context-Free Parsing
Algorithm for Natural Languapges. Proceedings of the
Ninth International Joint Conference on Artificial In-
tellipence, Los Angeles, California, pp. 756-T64.

Woods, W. A, (1977) Semantics and Quantification in
Natural Language Question Answering. In: Advances
i Compulers, Volume 17, Academic Press, New York,
New York: 1-8T.



