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ABSTRACT

This paper describes the Phoneme-Based Direct Mem-
ory Access Translation System (DMTRANS) which is
a gpeech to speech translation system developed at the
Center for Machine Translation at CMU, DMTRANS
utilizes a phonological amd episodic/ihematic mem-
ary network, and performs spreading activation puided
marker passing which is massively parallel in nature.
DaTraNs handles the problem of multiple hypoth-

" esizations of input phonetic streams through network
memory-based cocoding of knowledge for language-
specific phonelogy and morphophonetics, as well as
episodic/thematic memory that supplies contexual dis-
ambiguations of the input, The architecturs is ideal for
massively paralle] computer systems that are currenily
researched by hardware developers.

1 Introduction

Recently a fow cfforts have been made in the arca of process-
ing speech input to a natural language understanding system.
These include the work of Hayes, er al[1986], Tomita[1986],
PoesioRullent[1987], Saito8Tomita,[1988], Tomabechi&-
Tomita[1988a], and Hauptmann, ef al[1988]. Among them,
Tomabechid Tomita and Hauptmann, ef af use contexual in-
formation for disambiguation of speech inputs and therefore,
gince extra-sentential information is important in the speech
input system, FDMTRANS shares this feature of the two sys-
tems. The uniquencss of FDMTRANS, however, is that:

» it uses a parallel spreading activation network from the
phonetical level,

» morphophonetic and phonological knowledge is dy-
namically utilized during memory activity,

» the morphophonemic, episodic/thematic and pragmatic
levels of processing are fully integrated.

FDMTRANS uses parallel processing, and our exper-
iments with the prototype FDMTRANS at Center for Ma-
chine Translation at the Camegie Mellon University show
that SDMTRANS is o promising framework for translating
speech inpur cross-linguistically in new gencration parallel
COMPULETS,

2 Some Background and History:

2.1 Recognize-and-Record

EDMTRANS is a “Fhoneme-Based Direct Memory Access
Translation™ architecture which represents what we call the
“recognize-and-record” paradigm of natural language pro-
cessing usually grouped as DMA (Direct Memory Access)
models. In this model, natural language understanding is
viewed as a memory activity which identifies input with
what is already known in memory as episodic {experiential}
and thematic knowledge. This is contrasted with the tradi-
tional model of parsing, which we call the “build-and-store™
paradigm, in which a syntactic parser (with the help of se-
mantics) builds up a tree-style representation of an input
sentence, and processing is done sentence by sentence with
litde (if any) interaction berween parses, In other words,
the DMA paradigm models the human mind in the sense
that past linguistic and non-linguistic experiences are being
remembered during the course of understanding the input,
and each sentence recognized records a context that influ-
ences the processing of successive inputs. On the other hand,
in traditional {non-DMA) systems, each input sentence is
parsed ingo syntactic trees, and semantics are used primarily
as a tool for guaranteeing the right configuration of syntactic
trees; nommally, no long-term memory (such as experiential
memory} is involved during the parse. Also, in thess sys-
tems, the result of a parse is lost after the processing of cach
sentence,

2.2 A Brief History

The Direct Memory Access method of parsing originated
in Quillian’s[1968] notion of semantic memory, used in his
TLC {Quillian[19697), which led to further rescarch in se-
mantic network-based processing!. TLC used breadth-first
spreading marker-passing as an intersection search of two
lexieally pointed nodes in a semantic memory, leaving in-
terpretation of text as an intersection of the paths. Thus,
interpretation of input text was directly performed on se-
mantic memory. DMA was not explored as a paradigm for
parsing (except as a scheme for disambignation) until mid
1980"s when DMAFD (RiesbeckdMartin[ 1985]) followed by

IThis Inchudes the work of Fahiman{1579], Hirst&Chamiakl1982],
Small&Reiger[1982], Charndak[1983], Haun&Relmer[1983], Hirsi[1934],
Charnink[1966), Charniak&Santos[1987], Norvig{1987], and recent con-
nectionist and distributed models such as Granger&Fiseli[1984], Waltz8:-
Pallack[1984], Berg[1987], Bookman]1987).



Tomabechi[1987a,b] developed the DMA paradige into the-
ories of parsing and anslation respectively. These projects
were part of the Yale Al Project and were aimed at building
a DMA natural language system to be integrated with case-
based reasoning systems developed under the XP (eXplana-
tion Patterns) theory of Schank[1986]. Since DMA parsers
waork directly on memory through spreading activation, in-
tegration of natural language understanding with the expe-
ricntial memory of the case-based system became possible.
These DMA systems nsed a guided marker-passing algo-
rithm to avoid the problem of an explosion of search paths,
from which a dumb?® (not guided) marker passing mecha-
nism inherently suffers. P-markers (Prediction markers) and
A-markers (Activation markers) are markers passed around
in memory, adopting the notion of concept sequence which
guides marker passing along the known ordering of concepis,
Recently, the paradigm was adopred as a scheme for a natu-
ral langoage interface for development of knowledge-based
systems (Tomabechif Tomita[ 1988h]).

3 Problems in Speech Input

3.1 Phonetics, Phonology and Mm*phulagy

The difficolty of parsing speech input is that unlike written
text input, a parser receives multiple hypotheses as input for
a particular voice input. This is partly due to current limita-
tions cn speech recognition systems, which are incapable of
determining specific phonemes for each input and generally
produce several possible segmentations of the hypothesized
phonetc stream. It is not rare that a speech parser ourputs 30
to 50 well-formed, semantically acceptable parse results for
each independent sentence of a speech recognition device
output,

For example, when testing the CMU-CMT speech
parser (3 phoneme-based Generalized-LR parser ($#GLR,
Saito&Tomita[ 1988])), the Japanese input “atamagaitai™ ("1
have a headache") was spoken into a speech recognition
system” (under ordinary office environment) and accepted
by the integrated? parser with 57 ambiguous interpretations.
Each of the ambiguous interpretations are semantically legit-
imats, meeting the local restrictions set forth by case-fiame
instantiation restrictions. Below are some of the highly
scored interpretations:
atamagaitai (I have a headache.)
kazokuwaitai ((The) families want to stay.)
kazokuheitai ((My) family 1z seldier(s).)
kazokudeitai (I want to stay as (a) family.)

asabanaisow (Love (make love) [every)
morning and night.)

asakaraikon (Go (come) (fromp tomorrow
morning. ) )

We call it "dumb’ when markers are passed everywhere (rough all
links} from a node, In a *goided” scheme, markers are passed throngh
specific links only,

I0faizushita Research Institte’s speech recogmition: hardware, The
specch recopniton system and the gpeech input enhanced LR parser are
described in detail in Saito& Tomita 1988], _

*By “integraied”, we mean concurrent processing of syntax and seman-
tics during parsing as opposed to some parsing mathods where synta and
semantics are separilely processed.
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kazokuwailkou ({The) families go.)

asamadeikou (Go before morning, Come until
MOLning. )

ckosanaika (Bhall we wake {(one) up?)
ckosumaika ($hall we not wake (one) up?)
kazokuhaikon ((The) family is disappointed.)
kazekudeikou (Go with the family.)

gohunai sou (Love (make love) for five
minutes.}

ugokumaika {5hall I not mowva?)

atukunaika (Iz it not hot?)

dokoeikou {Where shall we go?)
dokodeikou  (Where shall we come?)

koupumadeikon {(go to  (the) cup.)

These are just some of the 57 disambiguations that were
produced as acceptable readings by the speech understand-
ing system given the input “atamagaitai”. One problem that
is typified here by the FGLE speech parser, and commonly
shared by most existing speech understanding systems, is
that these systems do nor sufficiendy utilize morphopho-
netic and phonological knowledge during recognition and
onderstanding. We will be discussing soch knowledge in
Section 4, but to be precize, it is the kind of knowledge that,
for example, dictates what type of phonetic and phonologi-
cal variations are possible for each type of phonetic features
specific to Japanese, Humans apparently utilize such knowl-
edge in processing a sequence of phones, and we would Iike
to model such processing, since speech input is not a se-
quence of independent]ly-determined phones but a connected
string of successive phones.

3.2 Need for Contextual Knowledge

As we have seen in the preceding subsection, even with the
semantic restrictions set forth by a syntax/semantics parser,
we suffer from the problem of ambiguities that do not arise
when the complete text is considered (Le., 57 interpreta-
tions of “atamagaitai” in the preceding subscction were all
acceptable syntactically and semantically only when not con-
gidering the context). Thiz problem increases when the vo-
cabulary of the speech understanding system enlarges and
the variety of sentences that are accepied by the system ex-
pands. Although possible morphophonemic analyses of the
speech input may be narrowed with the use of phonetic and
phonological knowledge during speech understanding, we
will still have large nomber of ambiguities- for a specific
phonetic stream. i

In other words, local semantic resiriction checks and
phonetic/phonological narrowings are not sufficient for dis-
ambignating continuous speech input, since an interpreta-
ton can be totally legitimate phonologically, syntactically,
and semantically, but can mean something drastically dif-
ferent from what has been input into the speech recognition
system (as well as being contexmally inappropriate). The
speech understanding system needs extra-sentzntial knowl-
edge to choose an appropriate hypothesis for grouping pho-
netic segments and for selecting the appropriate word-sense
of lexical entries. That is to say that the need for contexmal
knowledge in speech understanding systems is even more
urgent than in text input understanding systems; in a speech
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understanding system, the input can be interpreted in a way
that is not possible in wext inpot systems, and the input can
siill be acceptable to the local semantic restriction checks
that integrated parsers perform within 4 sentence (such as
slot-filler restriction checks of case-frame parsers).

4 Phonological Knowledge in
PDMTRANS

Fhonological knowledge is represented in FDMTRANS as
weighted links connecting phonetic and phonemic nodes and
fimctions stored in phonetic nodes capmring the physical
and acoustic properties of sounds in a language (distinctive
features) as well as environments that dynamically affect
phonetic alterations. Phonological knowledge is used for
providing the information to identify physical properties of
articulated sounds instead of mental representations of each
segments of words. Speakers have mental representation
of sound systems, which are different from acteal physical
properties. Speakers of English feel fp/f in ‘pin’ and “spin’
are identical {and spelled the same in text inputs), but phys-
ically they are different sounds. /p/ in “pin’ is aspirated,
représented in [ph], whereas fpf in *spin’ is not aspirated
represented in [p]. Both aspirated and unsspirated sounds
do not differentiate the meaning in English, and they are
predictable from a given environment. These units of pho-
netic segments are called phones. Thus, there are two levels
of sound representation: a phonological level and a phonetic
level,

Phonological miles convert ical sentations
into phomﬁ[tj:p:nm. They can Eﬁﬁlcm add seg-
ments, can also coalesce or permutate segments,
Japanesa, high vowels become voiceless between voiceless

consonants or after a voiceless consonant in the word final

position,
Vo =» [-wveice] / C T e T
[+high] § [=volce] | [=wolice] |

1 |
i_ & _|
Phonological rules® apply to classes of phonetically re-
lated segments. In order to capture the common features that
certain phonological segments have, phonologists use dis-
tinctive features to represent them (JTakobsond: MHalle[1956];
Chomskv&Halle[1968]). For example, Japanese vowels are
represented using the SPE system (Chomskyd&Halle) in the
following matrix.

i e a o u
high + - - - *
back = = + + +
low e

The five vowels can be distinguished by using three kinds of
featurés, and the mauix shows the phonemic relatdons. We
can see the phonemic distance by counting the differences
which are representable as weights:

SPhonological reles that dynamically affect processing due to phonologi-
cal enviromments ang captured via memory BebAOTE representaion (utilizing
depmons in our system in ‘FrameKit" (Myherg[1988]) system) stored locally
10 each phones which was wansformed from declarative description of roles
criginally supplied a5 phonological Imowledge.

i = a [n] u
i 1] 1 3 2 1
= ] 2 1 2
a 0 1 2
] 0 1
u 0

We can assume that lower distance numbers have higher con-
fusion probabilities (i.e., higher weights). Therefore, when
the input phone is [a], we can test from the scgment which
has a lower distance number, such as [a], then [o], and so
on. With this matrix we can limit the test to close segments
instead of testing all the segments® and group close sounds
in the network with cenain thresholds. For consonants, dis-
tinctive feature matrix is more complex than our example of
vowels and is provided in the Appendix 2 which is used as
a base for encoding weights of the links.

The utilization of distinctive featme matrices described
above; however, is a static knowledge that are encoded
initially to the network (before parsing). We also need a
scheme to dynamically assess the confusion of phones de-
pending upon the phonetic environments that appear in the
input speech. In Japanese, some speakers produce a glot-

*tal stop in a word initially before a vowel. In some speech

recognition systems, the glottel stop may be interpreted as
some voiceless stops, most likely /k/ because it is closer than
others. The example of voiceless high vowel (specifically
[u] and [i] in Japanese)} between two voiceless consonants
(or word final after voiceless consonant) is cne case that we
have seen in the phonological rule above, The methed of
capturing these types of phonological rules in our system
is that we initially provide phonological environments and
rules in a declarative form and the system precompiles the
knowledge into functions stored in the phonetic nodes lo-
cally that are assessed every time the node is activated” so
that the phonemic activations are dynamically modified de-
pending upon the phonetic environments on the speech input
independent of the confusion matrices described above. This
kind of phonological knowledge is thus encoded in the net-
work for the dynamic phonetic activation changes, as well
as the static confesion matrices that are pre-supplied and
encoded as weighted links of the network along with the
phonemic distances.

SSince we use Matsusita Research Instimite’s Speech Recognition hard-
ware, we adopt the phonemic system that the hardware recognizes. How-
éver, we have o note that some segments are not phonemes but are allo-
phonic varianes, .

TThe functions are stoced as daemons in the nodes that sre implementsd
via ‘FrameKit" repressntations. For example, with the voicelass vowel be-
tereen voiceless consonanis example, the nule is originally sopplied declar-
atively and then the declarative male is precompiled as functions to be
evalwated and stored locaily in the phonetic node representing the voiceless

-vowel, Al parsing time, when the volceless vowel is hypothesized by the

speech recognition hardware, i.e., receives the activation (A-Marker), then
the functions stored in the node as the daemons are wiggered and checks
the enviranment (a lazy evaluation is used to attsin the evalaation for both
preceding and following nodes) and if the environment matches the pre-
compiled knowledgs for the voiceless vowel hetween voiceless consonants,
then the voiced vowel phooetic nodes (ie., Ji] and [u] for Tapanese) get
activated and send activation to their phonemic nodes instead of sctivating
the phofemic node for voiceless vowel.



3 Contexual Knowledge in
PDMTRANS

PDMTRANS uses an episodic/thematic memory network,
similar to the cnes described in Schank[1982] and Schank-
[1986], which is capable of dynamic modifications, inference
and learning. Context in such a conceptual memory network
can be represented as a grouping of concepts that are asso-
ciated in a certain manner, i.e. an activation of one concept
in memory triggers (or can potentially trigger) some other
concepts in the memory network. To put it in another way,
there is a relatdonship between concepts in which activation
(recognition) of one concept reminds some other concept
that it is related in a certain way. As we will see in de-
tail in the following section, FDMTRANS uses the lexically-
guided spreading activation mechanism for parsing. Context
in this scheme is represented as what has been activated so
far as 1) accepted concepts representing the previous sen-
tences and 2) the concepts in the currently active concept
sequences. These activations represent the recognition of
what 15 being said so far and also represents whar is likely
to be heard under the current context. Readers may find our
scheme of spreading activations similar to those researched
by connectionists. However, we have not adopted connec-
tipnist associative arcIutr.cm and back-propagation in our
thematic conceprual clusters. Our spreading activations are
guided and we do not spread everywhere.

6 Understanding in 2DMTRANS

6.1 Phone Level Activity

FDMTRANS is the first DMA parser that works at the
phonetic Jevel. We will discuss the scheme of phonetic
and phonological recognition in this subsection. First,
SDMTRANS has as its nodes in the memory network nodes
for phones and phonemes in each language. A phoneme
may be realized as different phones in- different phonetic
environments. Several different phones may represent the
same phoneme, for example phone [e] after dental and alve-
olar stops and. affricates may represent phoneme /a/, in ad-
diion to phone [a] representing the phoneme /fa/ in ordi-
nary environments. In our memory network, each phone is
connected to phonemes they represent via abstraction links,
Also, each phoneme is connected by weighted phonological
relation links to other phonemes. The weights of the links
are determined by the strength of phonemic closeness based
upon phonological distinctive feature thresholds as described
in Section 4.

Above the phonemic nodes in the abstraction hierarchy
are the lexical nodes, representing words. We have cach lex-
ical nodes in the memory network containing the phonemic
sequence realizing the lexical entry in the given language.
For example, in Japancse the lexical node “atama™ (head)

The connectionist associative model still lacks abilldes (o express com-
plex relations between concepts and to perform variable binding {marker
passing algorithm with structured markers can handle (his) which are es-
scntial 1o handle linguistic phenomena such a5 metonymy 88 explained in
Touretzky[1988].
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has the list <a t a m a> atteched to it. So the strocture
linking phonetic node to lexical node is like this:

"atama" < lexical node
<a t ama>*» < phonemic sequence

J attached to "atama™
/
| =5==/uf < phonological rel link with
I/ distinctive feature weight
|/
faf < phoneme node
I

[a] < phone node

We have two types of markers (stuctured objects)
passed around in memory. One is called P-Marker {for
Prediction-Marker) and the other is called A-Marker (for
Activation-Marker). P-Markers are passed along the phone-
mic sequences and A-Markers are passed above in the ab-
straction hierarchy (i.c., from phone to phoneme). Both
markers contain information about which node originated the
marker passing. P-Markers also contain information about
which was the immediately preceding node in the sequence,
The algorithm for phonetic recogniton is as follows. At
the beginning of recognition, all the first elements of the
phonemic sequences (such as faf) are P-Marked by lexical
nodes.

1. when the first input phone comes in (with this example,
[a]) we put an A-Marker on (A-Mark) the phone node
representing the phone (the node [a]).

. when a node receives an A-Marker (i.e., if A-Marked)
it sends an activation to {A-Marks) the node in its ab-
straction (i.e., phoneme fa/).

. when an A-Marker and P-Marker meet, send a P-
Marker to the next element of the sequence (i.e., since
faf was P-Marked by the lexical nods “atama”, it sends
a P-Marker in tum w /).

. when the whole sequence is activated, then activate the
root of the sequence (ie., by repeating from 1. for [1],
[a], [m], [a], the phonemic sequence <atam &= gots ac-
cepted and then we activate the lexdcal node “atama™).

This is the basic cycle that is used in PDMTRANS. ‘In the
next subsection we discuss how the same alporithm is wsed
for further processing at the sentential level, activating the
episodic/thematic memory network. One thing we omited
in the above algorithm (for the sake of mmphmt:,r} is the way
the phonological relation link is utilized in the activation nf
phones. Let us examine how this works:

When a certain phone (such as [t]) is activated, it
not only activates its abstraction (such as the phoneme /i)
but also activates other phonemes that are related by the
weighted links exceeding the given threshold. The weight
of the phonological relation link is, based upon distinctive
feature stody of each phone in the given language. For ex-
ample, in Japanese the phoneme /i/ has the distinctive fea-.
tures ‘alveolar” and ‘stop® shared with the phoneme /df, and
link weight of 8 between them. So, if the threshold is given
to be 5, when phone [t] is activated, both phonemes /tf and
fdf are activated. This way, the phonological knowledge is



1104

encoded in the memory network as weighted links and is wt-
lized during the spreading activation. Also, if the activated
node containg the phonological rule application functons
(i, stored as daemons, see foomote 73, and if the eval-
vation applics the rule and perform the dynamic alteration
of the currently active phonetic node, then the phonemic
nodes of the altered phone is activated capturing the phonetic
changes in different environments which arc not expressed
in the statc weighted links. Of course, because we have
many lexical entries that share similarity in attached phone-
mic scquences, and also because of activation of allophones
(i.e., as we have sesn both [a), and [e] may be under fafy,
we have quite a significant number of simultaneously active
phonemic sequences for a given stream of phones. This is
where the strength of the parallel nature of our spreading
activadon mechanizm is demonstrated. Since our memory
network is a massively parallél network, the spreading ac-
tivations for each concurrently active phonemic sequences
will be parallelly performed.

6.2 Word Level and Sentential Level Activity

After a lexical node is actvated throngh the acceptance of
& whole phonemic sequence attached to a lexical node, we
have similar spreading activations at the word level. We will
not inclede the detnils of this processing in this paper be-
cause it is described in detail elsewhere (Tomabechi[1987h]
and Tomabechi& Tomita[ 1988b]). A brief example would be
the processing of the sentence “atamagaitai™, which we saw
before as a problematic input to other speech undersianding
systems. We use basieally the same algorithm as we saw
in the processing at phonetic level, except that each urit in
the sequence is not a phoneme but a lexical node or a con-
cept node and we call the sequece of such nodes concept
sequences. An example of a concept sequence is <*BODY-
LOCATION *PP[GA] *PAIN-SPEC> representing the sequence
of concepts appear in “atamagaitai”, The concept sequence
can be regarded as a kind of subcategorization list (as in
HPSG, Pollard&:Sag[1987]) or as a generalized version of &
phrasal lexicon (Becker[1975]) except that the sequence can
be at higher levels in abstraction hierarchy as well as being
gpisodic and thematic such as in MOPS and EXPLANATION
PATTERNS c&mggsz&maa; enood.ing the koowledge
for contexeal processing.

- We have nodes such ag "‘HAVE—A PATN (representing
the concept having a pain) and concept sequence soch as
<*BODY-LOCATION *PP[GA] *PAN-SPEC> atfached to the
node {we call it root node if a concept sequence is amached
to if). The elements of the sequence are the nodes in the
memory network representing certain concepis®.

Below is our algorithm for word and sentential level
activity:

1. initially predict (put P-Marker on) all the first elements
of concept sequences in memory.

2. when & whole phonemic sequence is accepted (ie., a

FEPPIGA] 15 4 synlactic categary reprasenting the post-pasition “ga®,
This way, we can integrate syniactic knowledge as in subcategorization
lists in syntsetic theories a3 well. "** preceding a mptmmlndmtes
Ut it is represemed using our frame language *Framekit',

word is recognized), we activate (put an A-Marker on)
the lexical node, ie., activate the node with the ac-
cepted phonemic sequence attached to i, and activate
the comesponding concepiual node.

3. when a node receives an A-Marker it sends an activa-
ton to (A-Marks) the node in its abstraction.

4, when- an A-Marker and P-Marker meet, send a P-
Marker to the next element of the concept sequence.

5. when the whole concept sequence is activated, then
activate the root of the sequence and perform concept
refinement.

Coneept refinement is an activity to locate the most specific
node in memory, below the activated root node, which rep-
resents the specific instance of the input text. Such a node
must have links to all the specializations (or instances) of the
nodes that appeared in the concept sequence with relations
that are equivalent to (or subclasses of) the relation links
from the root node to the packaged nodes in the accepled
concept sequence. The search for such a node underneath
the root node is called concept refinement. This activity,
which Iocates the concept that is identified with the specific
input speech, is central to the understanding in the DMA
parsing.

Processing of the example sentence “atamagaitai” is as
follows: when the lexical node “atama™ is activated afier
the acceptance of the phonemic sequence <a t a m a>, then
we activate the comesponding conceptual node “*HEAD" and
spread the activation upward in the abstraction hierarchy.
One of the abstractions is the concept “*BODY-LOCATION".
At the beginning of understanding, we have all first ele-
ments of the concept sequences P-Marked (just as we did
0 with first elements of phonemic sequences). So “*BODY-
LOCATION" was P-Marked by the root node “*HAVE-A-PAIN",
Therefore, when “*BODY-LOCATION™ is activated from be-
low, we have a collision of A-Marker and P-Marker. When
the collision happens, we send a P-Marker to the next el-
ement of the concept sequence (Le., “*pP[GA]™). This is
continued and the last element “*PAIN-SPEC" gets accepted
after acceptance of <l t a i>. So we activate the root node
“SHAVE-A-PAIN". One thmg that happens (that we did not
have at phonetic level) is that we perform the ° concept
refinement™™®, which is essentially what understanding in
DMA means. It involves identifying the specific instance
of the accepted root concept that represents the input to the
understanding system. In our case, the memory searches for
the node “*HAVE-A-HEADACHE" (or creates it if non-existent
yet), that is undemeath “*HAVE-A-PAIN" and packages the
nodes “#HEAD™, “*Pp[GA]", “*PAIN-SPEC[UNSPEC]” that are
specific to the current inpot. Since concept sequences arc
generic and attached to relatively higher nodes in abstrac-
tion hierarchy, it is this concept refinernent that specifies (or
identifies) the specific input to the system. Afier concept
refinement, we now have the node "“#*HAVE-A-HEADACHE"
activated, and that is the result of the understanding. Of
course, in the acmal system, the spreading activation con-

W yiinen[1984] and Tomabechi[1987h] heve detailed discussions of
‘concept refinement’.



tinves in a parallel manner because the concepts “*BEODY-
LOCATION" and “*HAVE-A-HEADACHE" (and the concepts in
between them) may be a part of some other higher level con-
cept sequences in abstractions such as scriptal and episodic
memory packets.

6.3 Contexual Activity

We have two types of contexual activity in SDMTRANS:
1) C-Marker based activity; and 2) episodic/thematic based
activity,. C-Marker passing is an algorithm introduced
in Tomabech[1987a] in which text input based DMTRANS
passed C-Maker .(for Contexual-Marker) around in mem-
ory every time a contexusl (thematic) rcot node was ac-
tivated. The contexval {thematic) root nodes are the nodes
that increases the potential activides of the nodes that ane
likely to be heard under the given context and the Dm-
TRANS paper contalns an example handling the seman-
tic ambiguity of “paper™ for ‘physical object paper’ and
for ‘thesis” wnder different contexts uwsing the C-Marker
passing. Tomabechi& Tomita[1988a] has a similar themaric
marker passing which integrates memory-based pragmatics
into unification-based syntax and semantics,

The episodic/thematic based activity is triggered by the
concept sequences that are with normally extra-sentential
span. These include scriptal knowledges and explanation
patterns that are triggered by acceptance of series of concepts
that constitute such sequences. These episodic and thematic
predictions are utilized becauss P-Markers are passed around
at these abstract levels just as in the phrasal levels. This way,
strong predictions are always active as part of higher level
(episodic/thematic) concept sequences as well as increases
in potential'! contexual activities through C-Marker passing.

7 Other Components of diDM'I‘ﬁANS

We have focused our discussion in this paper on the method
our system uses to handle the phonetic input stream as part
of an understanding system. #DMTRANS is a machine trans-
lation system that works on speech inputs and we will briefly
describe other parts of the system. In essence, oor system
consists of three parts:

» Speech recognition hardware and control programs

¢ An understanding module wtlizing the spreading acti-
vation mechanism

* A peneration module thar utilizes explanatory genera-
ton. ]

The Speech recognition hardware is supplied through
the coortesy of Matsushita Research Institute, and provides
high-speed speaker-independent speech recognition. The de-
tails of this hardware are described in Mordi, er ol[1985] and
Hiracka, et al[1986]). The understanding module that we
have described in this paper receives a hypothetical stream of

N7 45 pential in the sense tet C-Markers do not activate the node di-
rectly but will activate the node, when the node gers ambiguous aclivations
in the fore, by chesing the node over other candidate nude: that did mot
recelve previous C-Marker passing.
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phones and performs the spreading activation marker pass-
ing memory activity as an understanding of the input. The
result of the understanding is what is left in memory after
the activation of memory stablizes. Generation is performed
directly from the state of the memory after the naderstand-
ing. In essence, generation is performed to cutput the sen-
tences in the target language that are identified by what is
left afier understanding. Interested readers may want to refer
to the explanatory generation section of Tomabechi]1987h]
that describes DMTRANS, which manslates a written text in-
put. Through explanatory generation, DMTRANS translates
“Gionshoja no kane no koe shogyomuje no hibiki ard" into
“Sound of bell ar Gionshoja has the wne of “shogyomujo™
{impermanence of all phenomena in world). The concept
“shogyomujo”, which does not have lexical entry in En-
glish, was explanatorily translated as “impermanence of all
phenomena in world”. The generation mechanism outputs
the original word in double quotes and generates an explana-
tion of the source lexical entry in parenthesis in the output.
FOMTRANS utilizes the same explanatory generation mech-
anigm 25 DMTRANS, and is capable of performing the same
type of generation.

8 Future Possibilities

We have seen the parser part of $DMTRANS in detail which
essentially is a DMA parser that performs spreading activa-
tion guided marker passing from the phonetic level. Com-
bined with the DMTRANS generator, FDMTRANS is a transla-
tion system and with the appropriate speech synthesis hard-
ware added (we utilize DECtalk'® at CMT), the system is a
speech o speech translation system with strong contexnal
understanding capability. Machine translation; however, is
not the sole viable area of adopting $DMTRANS architecture
for speech understanding. For example, CMT has developed
a natural lJanguage interface system based on DMA architec-
tare (DM-CoMMAND, Tomabechid Tomita[1988b]), which
@FDMTRANS can replace its parser to make it a speech com-
mand and query system. With the fast processing through
the spreading activation algorithm and the strong contextual
understanding capability, the system is a viable alternative
to existing speech understanding systems particularly under
noisy environment and for pragmatically difficult inputs.
As we have seen, the spreading activation guided
marker passing algorithm is massively parallel in nawre. It
leads to cur understanding that FOMTRANS is ideal for the
new generation computer architectures where massively par-
allel processings are supported from the hardware level. We
currently have a version of FDMTRANS on MULTILISP paral-
lel lisp environment; however, we would like to see the sys-
tem to run on much more massively paralie]l architecture!®
which can support the parallelism of every phonemic and
concept sequence recognitions performed concurrently at all
levels of abstractions and triggered by multiple morphopho-
netic, phonclogical and semantic hypothesizations of con-

BnEClk Model DTCO1-AA by Digital Bquipment Corparation,
3%uch as meurc-computer type architectures and coomection machine
(Hillis[1985]) type architectunes
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tinuous speech inpots.

9 Conclusion

We have reported an integration of phonological and contex-
ual knowledge in speech understanding in a massively paral-
lel spreading activation marker passing network, As we have
sean, the-method of marker passing spreading activation is
uniform from the phone level up to absmract thematic struc-
tures. Becanse a phonetic input stream can be hypothesized
in multiple ambiguous and semantically acceptable ways,
we have seen the necessity of both phonelogical imowledge
and contexnal knowledge participating during the course of
direct memory access translation. Parallel processing of con-
currently active phonemic and conceptual sequences seems
solely attainable in a DMA style spreading activation archi-
tecture. In the traditional build-and-store model, since the
result of parsing iz lost after the processing of each sen-
tence, the context for subsequent translations is hardly ever
established, whereas in our DMA mode!, context is namrally
recorded as what is left in memory after understanding pre-
vious sentences as well as what is being recognized as parts
of currently active concept sequences. With the explana-
tory generation mechanism added, the FDMTRANS model of
translating a speech input is an extremely viable option for
future parallel (fifth generation) computers, in which mas-
sively parallel processing activity is hardware-supported®®.
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APPENDIX 1: Implementation

Speech recognition hardware was by Matsushita Research
Instinmte and is wsed in our system by the courtesy of the
Institute. In addition to the firmware written control codes,
the low-level control program is written in *C” for the de-
vice hardware, Current implementation of $#DMTRANS runs
real-time’® on HPO00O Al Workstations and is written in
HP CommonLisp. The object-code of the spesch recop-
nition control programs is directly called from inside the
CommonLisp code. Also, non-real-time'® versions are im-
plemented on IBM-RTs using CMU-CommonLisp and MuL-
TILISP. The parallelism of spreading activation is simulated
using lazy evaluations in CommonLisp versions. Parallelism
in the MULTILISF version is supported at the operating sys-
tem level on *Mach® (Rashid, er al[19871) at CMU, MULTI-
LIsP is described in Halstead[1983], which is a parallel lisp
developed at MIT for Concert multi-processors and is now
implemented on the distributed operating system “Mach® at
CMU. Becanse MULTILISP is a true parallel lisp, the MuUL-
TILISP version of $DMTRANS tuns on any paralle] hardware
that supports MULTILISP. MULTILIS? has already been im-
plemenied on several types of parallel computers including
Concert, Multi-vaxens and Encores. '

APPENDIX 2: Distinctive Feature
Matrix Using SPE

Below is the distinctive feature matrix used

in our system for Japanese:

p tif{e) k B d gi(*) 8 £ r
cons +F £ + 4+ + o+ o+ O+ 4+ o+ 4
8yll - = = = = = = = = & =
son - = = = = = = 4 - - %
high - = 4+ 4+ = = 4+ F = = =
back = = = + = = & F = = =
Llow - = = = = s - - = = -
cor - 4 - = + = = & &
volce - = = = 4 4+ o+ o+ =
cont I . . e
nasal - = = = = = + = =

m n = w 35 h i & a o u
COns + 4 4 - = = = = = = =
syll = = # = = - + 4+ 4+ + +
QN t + + + + = + + + + *
high - = + + + = & = = = %
back - = % F = = o= + + +
Low - = = = = = = ¥ - =
cor - = = e e om om o= = -
voloe + ok 4+ 4+ + = + o+ o+ o+ o+
cont - = = % % O+ o+ 4+ o+
nasal + + + = = = = = = =

Ry ‘real-time’ we mean that what is spoken into the microphone is
translated into seniences in the target language with a negligivle delay.

YiMon-real-time on IBM-RTs simply because hardware connections -be-
tween RTs and the gpeech recognition hardware are not currently supported
andl fherefore, processings are done via netwark,



