FROCEEDINGS OF THE INTERMATIONAL CONFERENCE
ON FIFTH GENERATION COMPUTER SYSTEMS 198K,
edited by ICOT. © 1COT, 1988

1267

APPLYING EXPLANATION-BASED GENERALIZATION
TO NATURAL-LANGUAGE PROCESSING

Manny Rayner

Swedish Instifute of Computer Science, Box 1263
5-164 28 KISTA, Sweden

ABSTRACT

It is shown how ideas adapted from recent work on
explanation-based generalization can be used to
allow a logic grammar to "learn” useful derived
grammar rules by generalizing them from example
sentences. The method is presented in the form of
a small Prolog meta-interpreter, and its soundness
is formally proved. Examples are given showing
the application of the generalizer, first to a toy
grammar with 40 rules and then to a largish
independantly developed system which involves
non-trivial syntactic and semantic analysis,

1. INTRODUCTION

Everyone who has tried to build a serious natural-
language interface will be aware of a certain
fundamental tradeoff. On the one hand, it is
desirable to implement syntactic and semantic
rules that are as general as possible. This is good for
a multitnde of reasons: it makes for a flexible and
portable system, it gives a clear dedarative reading
of p am code, and it can uncover results which
throw light on theoretical linguistic issues.
However, there is a catch: a system implemented in
this way tends to make exorbitant demands on
time and space resources. Even if the underlying
parsing mechanism is made as efficient as possible,
the grammar ends up running like cold molasses
because so many unlikely dead ends are being
explored.

Let us look at a couple of examples. Conjunction is
a very general phenomenon, and most
theoreticians agree that the best way to deal with it
is by using some sort of treatment which captures
the underlying uniformity of conjunction rules for
various syntactic categories. However, it's usually a
bit of a waste of time to look for a word like
"neither" or "both" when you want to parse an
adverb; very few adverbs are conjoined forms like
"neither slowly nor stupidly” or "both quickly and
cleverly". Similarly, a fronted NT at the begining of
a WH-question is seldom modified by a relative

clause’, as in a question like "Which people you
know would agree to that?; an atternpt to find one
will normally be an expensive failure.,

Moreover, it is a matter of common experience that
different domains make different demands on the
grammar. A construction common in one domain
may hardly exist in another, and ignoring this fact
can also turn out to have expensive consequences.
The outcome of all this is that the interface
implementor is more or less forced to “fune” his
grammar with respect to the practical necessities of
the problem, This can be done in various ways:
rules can be merged together and tests inserted in
strategic places to aid efficiency, or else can simply
be eliminated if the application sublanguage does
not appear to need them (Grishmann et al 84).
People are starting to get some {dea of how to do
this systernatically, but it's still an expensive and
messy process that takes time and specialized
expertise. It would be highly desirable to be able to
perform this task automatically.

A promising first step in this direction is reported
in (Ramsay 85). Working in a GP5G framework,
Ramsay discusses the problem of knowing how far
meta-rules ought to be expanded before they are
used. Not expanding them at all makes it difficult
to parse efficiently, and expanding everything is'
out of the question due to space limitations;
Ramsay's ingenious solution to the dilemma is to
give the grammar a set of example sentences, and
let it learn from these which rule expansions occur
frequently. These can then be added explicilly to the
grammar to give quick recognition of common

types of phrase.

The key operation in Ramsay's idea is that of
constructing a “generalized” version of the specific
rule expansion from the example sentence,
Unfortunately, his description of this step is
extremely sketchy; I quote (p.59):

11 am indebted to Michael MeCord for this
observation. ’

1268

%A Prolog meta-interpreter for Hirsh-style EBG. The predicates operational goal/l,
$insufficiently ingtantiated/]l and built in goal/l are domain-dependant, and
$should be supplied by the user.

generalize (Goal,General goal,Conds) :- generalize 1 (Goal,General goal, [§,Conds) .
generalize 1(true,true,Conds, Conds) :- !.

generalize 1({(H,T), (G_H,G_T},In conds,Out_conds) :- !,
generalize 1(H,¢ H, In conds,Mext conds)],
genaralize 1(T,G_T,Next conds,Out_conds) .

generalize 1({H;T), (G H:G_T),In_conds, Qut_conds) - 1,
(generalize 1(H,G H,In_conds,Cut_conds);
generalize 1(T,G T,In conds,Out_conds)).

generalize 1{Goal,G goal,In conds,Out conds) -
built in goal (Goall,
(insufficiently instantiated(G goal),!, Out_conds = [G_goal|Conds]:
Out_conds = In conds, call(& goalll,
call{Goal) .

generalize 1(Goal,G_goal,In conds, [G_goal|In_conds]) :-
operational goal (Goal),!,call (Goal).

generalize 1{Goal,G_goal,In_conds,Out_conds) =
axpand goal (Goal,G_goal,Body,5_body) ,
generalize 1{Body,G body,In conds,Out conds).

expand_goal (Goal,G goal,Body,G _body) -
TFunctor (Goal P, W), functor (Head,E,n),
clavuse (Head, Body) , copy_term | [Head, Bady], [E_head, G_body]),
Goal = Head, G goal = G head,

Diagram 1

s{np (cat,the, [3, 5], A, (1) The subject is a 3rd-person singular noun-phrase with main noun cat,
sdeterminer the, index A and no modifiers.)
vp {wverb (saa, [3, 5] ,imparfect, pos); The main verb of the verb-phrase is the 3rd-person singular

[virtual np: A simperfect positive form of see. The filler for its agent -;aseis a

np tdog, the, (3, 81,8, [1}] svirtual copy of the subject, and thal for its ob ject case is the

virtual np: A)) moun-phrase np (dog. . .) . The VI is controlled by the subject
Driagram 2a

Zentence [A,B,C,D,E]

has parae-ftroe:

s{npi{F.h, [3.G] B, []] ;The subject is a 3rd-person, number & noun-phrase with main roun F,
sdeterminer A, index B and nio rmodifiers.
vp{verh (I, [3,G],J, pos) ;The main verb of the verb-phrase is the 3rd-person number G ense J
[wirtusl np: H ;positive form of I, The filler for ils agent caseis a virtual copy of
np (K. D, [3,L],4, (1] sthe subiject, and that for its object caseis
virtual np: H)) sthe noun-phrase np (K, D.. .} . The VP is controlled by the subject
IF jassuming the following conditions are fulfilled:
lex (A, dat) sThe first word, A, is a determiner
lex (B, noun (F, 3)) ;The second, B is a form of noun F, number G
lex (G, verh(I,J, 3,5, [agent, object]) };The third, C isa form of verb I, tense J 3rd-G,
taking agent and cbject cases.
lex(D,det) ;The fourth, D, is a determiner
lex (B, noun (B, L) } {The fifth, E, is a form of noun K, number L

Dingram 2b

.« we keep a record of text fragments that we:have
previously managed to analyze. When we make an
entry in this record, we abstract away from the text the
detalls of exactly which words were present, What we
want is a general description of them in terms of their
lexical categories, features such as transitivity, end
endings .. Alongside each of them we keep an
abstracted version of the structure that was found, f.e. of
the parse tree that was constructed to represent the way
we did the analysis. Again, the abstraction is produced
by throwing away the details of the actual words that
were present, replacing them this time by indicators
saying where in the original text they appeared.

What I am going to do here is to rework Eamsay's
idea in the context of a logic grammar. I will show
that it is then possible, using recent ideas from
explanation-based learning theory, to give an exact
and rigorous characterization of the genmeralization
operation. This characterization will moreover
cover not only syntactic, but also semantie

processing.

2, EXPLANATION-BASED GENERALIZATION IN
A LOGIC GRAMMAR

Let's look at Ramsay's idea from the point of view
of logic programming. A loglc grammar is a Prolog
program; at various points, we can make non-
deterministic choices as to which clause to resolve
with next. Some of these cholces correspond to rule
selection in a top-down parser; others might
correspond to (for example) selection of different
scoping orders in the semantic component.

We assume that we have managed to process an
example sentence: that is, we have found a set of
non-deterministic choices which can be used to
construct a proof that the input string is a well-
formed sentence with an assoclated logical form.
Now we want to generalize our result. Following
the ideas described in (Hirsh 87), we start by
dividing the set of predicates in the system into
two subsets, which we refer to as operational and
non-operational respectively; the idea is that we
are going to try and abstract away the information
contributed by the "operational” predicates. Thus if
we are to follow Ramsay's ideas as quoted above,
we might wish to define as operational those
predicates which define the part of speech of a
word, the number and person of a verb, and
whether or not a noun is animate,

Continuing our programme of translating Hirsh's
ideas into a natural-language context, we work
through the parse of the example sentence, keeping
track of all the operational calls. We do this by
performing two computations in parallel, the
second, "generalized” one being "slaved" to the
first in the semse that all rule applications are
decided by it. When an operational predicate is
encountered, the first computation resolves against

1269

it in the normal way; the second one, however,
succeeds without performing any resolution, and
saves the operational call in a list which we will
refer to as the eperational condition stack.

When the computations terminate, the second one
will be a generalization of the first; it will consist of
a proof that the conjunction of the literals on the
operational condition stack imply the initial goal,
after it has been subjected to the various
substitutions that have been generated in the
course of the proof.

In the interests of providing a runnable
specification of what we have just said, we present
the procedure in the form of a one-page Prolog
meta-interpreter (see diagram 1); if the program we
are optimizing is "clean" (lLe. contains no cuts,
unsound negations as failure, or extra-logical
predicates like “"nonvar"), this is moreover
provably correct. This is a good argument in favour
of clean logic grammars.

Readers concerned with the formal aspects of the
matker are at this point referred to the appendix,
where the generalization process is deseribed in
mathematical terms and its soundness proved.
Others (the majority, I suspect), who are willing to
take soundness on trust, should read on. I start by
giving a couple of examples showing the idea in
action: the grammar used is a toy logic grammar of
about 40 rules, written in XG notation (Pereira 83).
Initally, the only operaticnal predicate is 1ex/2,

. which constitutes the interface to the lexicon.

Example 1

The input sentence we will use in our first example
is

[the, cat, zaw, the, dog)

We can parse the sentence, getting the
syntax-tree in Diagram 2a. The output from
the generalizer is then shown in 2b:

Example 2

This is similar, though slightly more
complicated. The input sentence is

[the,man, that, bought, the, cat, has, a, dog]
the parse-tree for the specific sentence is

s{npi{man, the, [3,8] A,
[#{virtval np: & .
vp{verb (buy, [3, 5], imperfect, pos)
[wirtual np: A
np{cat,the, [3,8],8,[]1}1]
virtual np: A))l1)
vir (verb (have, [3, 5] , present, pos)

[virtual np: A

np {dog,a, [3,8],C, [])]

virtual np: A))

1270

and the output from the generalizer is

Sentence A,B,C,D,E,F,G,H,I]
has parse-tree:

s{np(TA, [3,Kl, L,
[s(virtval np: L
vp {verb (M, [3, 5], N, pos)
[virtuel np: L
np {0, B, [3,P), 0, [1)]
. wvirtual np: L)1)
vp (verb{R, [3,K] .S, pos)
[virtual np: L
i'l-Pl:TrH; larulivr []}]
virtual np: L})

IF

lex (A, det)

lex (B, mooan (T, K})

lex (C,rel_pre) :

lex (D, verb (M, ¥, 3, 5, [agent,cbjeckt]))
lex (B, det)

lex {F,noun {0, B} -

lex (G, verb (R, 5, 3, K, [agent, cbject]))}
lex {H, det)

lex {L,noun (T, U}}

3. VARIANTS ON THE BASIC SCHEME
3.1 GOING BEYOND SYNTAX

We now want to explore the generalization idea
and see what more we can do with it. Note first,
that, in contrast to Ramsay's original formulation,
we are in no way limited to just generalizing over
the syntax. It is quite possible to generalize over the
whole path from input string to logical form, and
indeed beyond; the only limitation comes from the
fact that we have to work with "clean" logic
programs. But for the moment, let's assume that
we want to go no further than to the logical form.

The non-deterministic choice-points in the
semantic phase are primarily going to be the
scoping transformations. In most systems,
including ours, these are driven by determiner and
case information, so generalization preserves a lot.
This is apparent in example 3, below. The only
unclear point arises from the well-known trick by
which A-bound wvariables in the A-calculus are
identified with uninstantiated logical variables
(this is discussed at length in (Warren 83)). Warren
rightly refers to this as "an efficiency hack o use
Prolog's built-in variable-handling facilities to
speed the A-reduction”; there are potential
problems due to the use of the "var" and “identity”
(==) meta-predicates. However, my experimental
findings so far seem to indicate that this is probably
not serious. I it is, it is anyway always possible to
rewrite the grammar cleanly in the way indicated
by Warren, at the cost of a small overhead in
efficiency and perspicuity.

Example 3

This example is considerably more advanced than
the first two, and illustrates generalization owver
semantic processing operations in the Swedish
grammar for comparatives from {Banks & Rayner
87), (Rayner & Banks 88). The grammar had o be
rewritten slightly to make it "clean"; this involved
about a day's work for a system which contains
about 80 XG rules and 140 other clauses. (See

digram 4)

This is as far as I have gone to date in my practical
experimentation. However, in a system with non-
trivial pragmatic processing it may be possible to go
even further; thus a story-understanding system
may well be able to produce generalized versions of
updates from examples showing how a specific
example sentence is used fo update a discourse
structure, if suitable discourse primitives are
deemed to be operational. This seems to me to be
an interesting idea to explore further.

3.2 CHANGING THE "GRAIMN-SIZE"

So far, we have implicitly assumed that
"gperational” predicates are essentially going to be
those that look up words in the lexicon: to express
it in another way, the units we are generalizing
over are going to be words. This is however by no
means necessary, since the scheme will worle just
as well irrespective of which predicates are defined
as operational; one obvious candidate for
operationality is "NP". As can be seen in examples
4 and 5 below, choosing "NP" as operational
produces generalizations where the NIP's are
regarded as primitive objects. One attractive idea is
to use this to produce a "two-layer" grammar; the
"top" or “outer” layer is an NP-primitive grammar,
while the "lower” or “inner” one is a grammar for
NP's produced in exactly the same way. This would
give a system which has certain similarities with
Marcus parsing (Marcus 80). Other variants are
certainly conceivable, and the only way to find the
optimum one is presumably to experiment.

Example 4

We redo example 1, this time with np defined as
operational as well. As before, the input sentence is

[the, cat, 58w, the, dﬂg}

The specific result is the same as in example 1. This
time, however, the oulput from the generalizer is
as shown in diagram 5:

1271

Which kings were-born during the-same century
wh_g{wh_plural (A

. [I'Q‘l_, iﬂ_-&.! A, kl-lﬂg]
ex(B

the (¢
ex (D

ax_event (E
ex_event (F

General result:

wh_g{wh plural (&
[rel,is a,K,J]
ex (T
and{[[rel,is &,T,5]
the (R
ax (U

ex_event (V

ex_event (W

IF

word (A, J, noun (ondet, plur))
guestion article (vilka)

Fits type (J,¥)
word(C, I, preposition)

word{E, 5, noun (0, P))

dif (F, mull)

word (G, Q, nama)

preposition interpretation(Z,L,Al)

fits type(%,nl)

[vilka, kungar, {[ddes, under, samma, }rhundrads, som, Karl XIT]

and{{[rel,is _a,B, }rhundrads)

and([[rel,not_equsl, S, Al
[rel,name_of, C,Karl XII]])

and{[[rel,is a,D, }rhundrade]
[ral, samma,E, D}]}

and([[rel,is_a,E,f|da]

[rel, object, B,)
frel,during,E,D]1}])}])E cccurs during D
and([[rel,is a,F, f|da)

[cel,cbject, F,A]
[rel,during, F,B]1)1)))

Sentence [vilka.r,B.C,D,E,F,G] has logical form:

“and({[[rel,not_egual, R, K], [rel, name_of, R, {11}
and([[rel,is 8,U,S], [rel,M, T, U1])
and([[rel,is a,V,H]
{rel,obiect,V,.R]
[I.'Eljlr‘lr:'u]]} :| 1]‘] j

and{[[rel.is_a,W, H], [rel,cbject, W, K], [ral, L, W, T]11}}))]

word (B, H, verb(passive, T, [agent (X}, object (¥}])) ;Bisa passive form of the transitive verb H, whose

word (D, M, article (comparative, identity, F, 0, B)

Karl XII?

Aisaking
B isa century

Cwh
;€' name is “Karl X11"

;B isa century
- B is the same as D

sevent E is of ype "be. born™
ihe objectof Eis C

®mvent F is of type "be born"
jthe object of 7 is 1
F occurs during B

i is the undetermined plural form of he noun J
;rilka lea question article (this could be removed)

;agent and object fillers have selectional
restrictions o types X and ¥

I is of semantic type ¥

iC is a form of the preposition 2

iD is & form of the identty-comparing determiner M,
swhiose associated lementizer is F and whose
mumber and determination are O and ©

;E isa form of the noun 5 ,whose number and
Aetemination are 0 and B

sthe complementizer F is non-null

3G is & form of the name .

ithe prepesition 2 can be interpreted as marking the
scase L iF it occurs with an NP with semantic type Al
;5 fs of semantic fype Al

5 SUMMARY

I have described an implementation of Hirsh's
work on explanation-based generalization in the
form of a small Prolog meta-interpreter, and
proved its correctness. I have then applied this to
the problem of finding "generalized" versions of
interpretations of natural-language sentences, and
shown that the method is practically usable in non-
trivial contexts.

Diggram 4

Having worked for some time on a project aimed
at the construction of a large-scale natural-1 age
interface (Rayner & Banks 88), (Rayner & Banks
88b), it seems to me the ideas described here have a
very promising future. Although we have no
statistical evidence to support our claim, our
experience from demonstrating the system is that
the same sort of questions turn up time and time

1272

Sentence A has parse-—Ltres:
g{np(B,C, [D,E],F.H

vp (verb (H, [D.E], I, pos}
[virtual np: H

The subject is a Dth-person, number E noun-phrase with main noun B,

;determiner C, index F and modifiers H.
{The main verb of the verb-phrase is the
;Dth-person number E tense I positive form of 5. The filler for its

wvirtual np: H))

IF

np {J, L, [0..01. (1)

rule :

J] ;agent case is a virtual copy of the subject, and thal for its
;object case is the noun-phrase J.
;The ¥P is controlled by the subject

np (np (B, C, [D,E],F,G) A, [EIL], [], []);Wecan parse np (B, C, [D,E].F, G,
;starting with & and ending with [E|L].
lex (K,verb(H,I,D, B, [agent, obiject])); Kis a formof verb H, tense T, agr [0, ED,
staking agent and ob ject cases.
JWe can parse the WP J, starting with L and ending with [].

It is easier to see what this means if we write it down in XG notation as the derived grammar

s(np(8,C, [D,E],F,G),vpiverb(H, [D,E], I, pos), (virtuel npiF,J],virtval np: F)) -——>
ﬂp [I‘lp IEJ E'r [DiE] pFrG. P [K] r [:I-'E-lt {-Kr verb{Hl IrDr Ef [ﬂgﬂ'ﬂt-r Dbje':t] :l] }J nFtJ} L

Diggram 5

again; I can easily believe that the fifty most
common question types could account for more
than 95% of all queries submitted to a given
database. The generalization method, which can
automatically identify and “compile” these
common gquestion-types, would thus promise
enormous efficiency gains at a negligable cost.

In conclusion, and at risk of straying a little too far
from the subject in hand, I wish to state my
conviction that most natural-language researchers
have so far paid far too little attention to machine-
learning. WL is an area where the effects of the
"knowledge acquisition bottleneck” are close to
being omnipresent; in the long run, I do not think
that an NL system with human competence can be
constructed in any other way than by letting it infer
rules from examples according to very general
schemas. Whether or not the ideas presented here
will play any part in the development of such a
system is, of course, a question for the future.

ACKNOWLEDGEMENTS

I would like to thank Lars Asker, Amelie Banks,
Goran Hagert and Annika Weern for useful
comments and criticism.

REFEREMCES

& Rayrmer 87) Banks, A. and Rayner, M.,
(Banks Y Comparatives in Logic Grammars - Two
Viewpoints, pp. 153-169, ‘\I’,ID&hI & P,
St.Dizler (eds.) Natural ~Language
Understanding and Logic Programming

11, Morth-Holland 1987

{Grishman-et al 84)

(Hirsh 87}

(Marcus 80}

(Pereira 83)

(Ramsay 85)

(Rayner & Banks 85)

(Rayner & Banks 88)

(Rayner & Banks 88b)

Crishman, R., Nhan, N.T., Marsh, E.
and Hirschmann, L., Automated
Determination of Sublanguage Usage,
pp. 96-100, Proc. 22Zmd COLING,
Stanford, 1984

Hirsh, H., .Explanation-Based
Generalization in a Logic-Progranmi
Environment, pp. 221-227, Proc. 10
IJCAI pp. 221-227, Milano, 1987
Marcus, M., A Theory of Nafural
Language Parsing, PhD. thesis, MIT,
1980

Pereira, F.N.C. Logic for Natural
Language Analysis, SEI Technical
MNote Mo 275, 1983

Ramsay, A., Effective parsing with
Generalized Thrase-Structure
Grammar, pp. 57-61, Proe. 2nd
Enropoan ACL, Geneva 1985

Rayner, M. & Banks, A. Temporal
Relations and Logic Grammars, pp.&-
14, Vol. 2, Proc. 7th ECAL 1985

Rayner, M. & Banks, A., Parsing and
Interpreting Comparatives, to appear
in Proc. 26th ACL, Buffalo, 1988

Rayner, M. & Banks, A., An Overview
of SNACK-85, 5IC5 research report,
1988

(Eobinson 79) Robinson, J.A. - Logic - Form and
Function, Edinburgh University Press,
1979 :

{Warren 83}

Warren, D.5., Using A-Calculus to
Represent Meanings in Logic Grammars,
pp- 51-56, Proc. 21st ACL, MIT, 1983

APPENDIX: SOUNDNESS ©OF THE

GENERALIZATION OPERATION
We need the following preliminary definitions:

Definition 1
A goal-identifier is a finite sequence of non-
negative integers.

We will use . to signify the concatenation of two
sequences, thus e.g. <1,3>.<456> is <1,34,65>. ¢

will represent the empty sequence, and 1 the trivial
substitution.

Definition 2 : :
A goal-literal is a pair <G,I>, where G is a literal
and I a goal-identifier.

Definition 3
A goal-set is a finite set of goal-literals.

Definition 4

If G and G' are goal-sets, and T is a set of Horn
clauses, then a labelled one-step SLD derivation of

G’ from G using I, with associated substitution 8 is
defined as follows:

I G =G, then Null is a labelled one-step SLD
derivation of G from G' using I', with associated
substtution .

ii} If the following holds:

al<LI=e .

b) C = (H«B1...Bn) € I such that L and H are
unifiable with mgu 6.

¢) G'is the set 8(C - <L,I>) U B{<Bq, l.<1>>, <Bs,
L<Z>>.. <By, Lanss)

then <LC> is a labelled one-step SLD derivation of
G’ from G using T, with associated substtution 8.
We will call <L,I> the selected goal-literal, L the
selected literal, and the predicate symbol in the
head of L the selected predicate for <I,C>. It will
also be useful to refer to the greatest common
instance of two literals 5 and T as S+T.

Definition 5

If G and G" are goal-sets, and T is a set of Horn
clauses, then a labelled SLD derivation of G'* from

G using I, with associated substitution 6is
recursively defined as follows:

D If G =G", then g is a labelled 5LD derivation of G
from G" using I', with associated substtution 1.
ii) If the following holds:

1273

a) I is a one-step labelled SLD derivation of G'
from G using I" with associated substitution .

b) A is a labelled SLD proof of G" from G' using T’
with associated substitution ¢.

then <E>.A (the sequence formed by adding I to
the front of A) is a labelled SLD proof of G" from G
using T, with associated substitution ¢8.

Definition 6
If G, G' are goal-sets, then the formula associated

with «G,G'> is defined to be the formula Vx1...xy
{(0—%), where @ is the conjunction of the literals

occuring in G, ¥ is the conjuncton of the literals
occurting in Y, and x]...xp are the variables which

occur free in @, ¥,

The following is a trivial consequence of the
soundness of resolution [Robinson 79]:

Theorem 1

Let & and G" be goal-sets, and I a logic program, If
there is a labelled SLD derivation of G" from G

using I" with associated substitution 8, and @ is the
formula associated with <G", 8G)>, then [= &,

Definition 7

Let T be a logic program, and A be a labelled SLD
derivation from @ using T. Suppose further that IT
is the set of predicates in T, and that A is a subset of

1. Then gen(A,A), the generalization of A over A, is

recursively defined as follows:

i) If A = g, then gen(AA) = £

i) If A = <Null>+A' for some A, then gen(A,A) =
<Null>+gen(A',A)

iii) If A = <[,C>+A' for some IC,A', and the selectad
predicate for <IC»> is an element of A, then
gen(a,A) = <Null>+gen(A',A)

iv) If A = <I,C>+A' for some I,C,A", and the selected
predicate for <I,C> is not an element of A, then
gen(A,A) = <L C>+gen(A',A).

Intuitively, gen(A,A) "misses out" all the steps in
which a goal is resolved against a clause whose

head is in A. The point of "labelling” SLD
derivations is to be able to specify what this means
in formal terms.

Definition 8
Let G and G' be goal-sets, and let A be as in the
previous definition. Then G <4 G' (pronounced: G

is less instantiated than G' discounting A) iff there
exist a substituion o and a goal-set L such that:

1274

i) The predicate symbol of each literal in L is a
member of A
olG-1)=GC

It is now possible to state the result we wish to
prove:

Theorem 2: (Soundness of generalization)
Let " be a logic program and G a goal-set, and Abea
labelled SLD derivation of G from & using I’ with

associated substtution ¢. Let A and gen({A,A) be as in
definition 7 above. Then given any goal-set G' such
that G =4 G', there i5 a goal-set L which satisfy the
following conditions:

i} gen{A,A} is a labelled SLD derivation of G from L
using I'.

ii) The predicate symbol in each goal of L is a
member of A

Proof

We use induction on the length of A. Suppose first
that A = e. Then gen{A,A) = £ as well, so we can take
0 =tand L =@ to conclude the proof.

Suppose now that A = <E»A' and assume that the
hypothesis holds for all derivations shorter than A,
and thus In particular for A" There are three cases:

i) Z = Null. Then gen{A,A) = <Null>.gen(A'A). A is

shorter than A, and is also a derivation of G. So by
the induction hypothesis gen{A',A) is a suitable

derivation for G', and thus gen(A,A) is also a
suitable derivation for G'.

i) £ = <LC> for some LG, and the selected predicate
for <I,C> is an_element of A, Then gen(A,A) =

<Null>.gen(A'A); we know that there are some
and L such that G = o(G' - L). Let 5 be the selected
goal-literal in G, and 8 the assoclated substitution
for <1C>. Then A' is a labelled SLD derivation for
B(G - {S}). We have that 8(G - {5]) = 8c(G" - (L v
{81)), and thus 8(G - {S}} <p G' since the predicate
symbol of § is in A. By the induction hypothesis,
gen{A',A) is a suitable labelled SLD-derivation of G,
and so gen(AA) is one too. '

iii) Z= <I.C> for some IC, and the selected
predicate for <I.C> js not an element of A, This is

the non-trivial case. We have gen(A,A) =
<<[,C>>.gen(A"A); as in ii) above, let ¢ and L be
such that G = o(G' - L), S be the selected goal-literal

in G, and © the associated substituton for <I,C>. Let
I and B be the head and body of C, let H' and B' be
copies related by a variable-renaming substitution ¢
with inverse t', and let 5" be the goal-literal in G' .
whose 1dent1f‘er is I Assume further that variables

in C and its copy are "unique”, i.e. do not occur in
GorG.

We have that S = 5. We know that 5 and H are
unifiable with mgu 8; thus ' and H' must also be
unifiable. Call the mgu of §' and H ©'. Since there
are substitutions 80:5'=5+H and 81:H'=254+H,
there is a o' such that the following diagram

commutest:
o

ci\s e

N

We know that A' is a labelled SLD derivation for
the goal-set resulting from the application of <L,C>

to G, which by definition 4 above is G1 = 8(G - [S))
U B{<Bq, IL<l>>, <Bp, L<Z>>.. <Bp, Le<n>z], Bj
being the literals in B. The result of applying <LC>
to G'is G1' = 0'(G - (5] v &'(<B'1, L<l>>, <B'y,
L<2>>... <B'p, L<n>>}]. We now define the
substitution " as follows (since wvariables are
unique, " is well defined):

i} 6"(x) = o'{x) if x is a variable which occurs in 5
or H'.

iy o"(x) = oix} if x is a variable which occurs in G'
but not in 5.

iii) o"(x) = 7{x) if » is a variable which occurs in B
but not in H'.

Since & and 8" only affect variables in 8, §', H and
H', we have G1' = ¢'"{G1 - L), and thus G1' <4 G71.
So by the induction hypothesis, gen(A’,A)is a
labelled SLD derivation for Gi1' from a goal-set
whose predicate symbols are in A, and thus
gen(A,A) is one too. This concludes the proof.

1The reader should note the simflarity to the "lifting
lemma” ([Robinson 79], p213).

