PROCEEDINGS OF THE INTERMATIONAL CONFERENCE
ON FIFTH GENERATION COMPUTER SYSTEMS 1982,
edited by ICOT. & ICOT, 1933

931

A WIDE INSTRUCTION WORD ARCHITECTURE FOR PARALLEL EXECUTION OF
LOGIC PROGRAMS CODED IN BSL

Kemal Ebcioflu and Manoj Kumar

IBM Research Division
Thomas J. Watson Research Center
Yorktown Heights, NY 10598, U.S.A.

Abstract

This paper begins by describing BSL, a new logic program-
ming language fundamentally different from Prolog. BSL is
a nondeterministic Algol-class lanpguage whose programs have
a natoral trapslation to first order logic; executing a BSL
program without free variables amounts to proving the cor-
responding first order sentence. A new approach is proposed
for parallel execution of logic programs coded in BSL, that
relies on advanced compilation techniques for extracting fine
grain parallelism from sequential code. We describe a new
“Very Long Instruction Word' (VLIW) architecture for par-
allel execution of BSL programs. The architecture, now being
desigued at the IBM Thomas J. Watson Research Center,
avoids the synchromization and commurnication delays
{normally associated with parallel execution of logic programs
on multiprocessors), by determining data dependences be-
tween operations at compile time, and by coupling the proc-
esging elements wery tightly, via a single central shared
register file. A simulator for the architecture has been im-
plemented and some simulation results are reported in the
paper, which are encouraging.

1. Introduction and motivations

Laogic programming is definitely a desirable-means to imple-
ment large artificial intelligence (A.L) applications. The logic
programming framework provides a well understood re-
lationship between the actual execution of the rules of an ex-
pert system, and the declarative meaning of the same rules
{this relationship is not present in mainy popular expert system
tools; for example, in the OPS family of production systems
[Forgy and McDermott 77], there is no natural formalism that
clarifies the declarative meaning of a rule). Also, since the
knowledge base of an expert system implemented with a logic
programming language consists entirely of logical assertions,
thers is an increased opportunity for imposing a good formal
organization on the knowledge representation. But we feel
that logic programming ressarch should not confine itself to
the versatile but narrow Prolog-and-variants paradigm to
achieve such important benefits of logic programming,

This paper will bEgln by describing the Backtracking Specifi-
cation Language (BSL) [EbeioElu 87b], which is fundamen-
tally different from Prolog, but which nevertheless allows the
benefits of programming with the concepts of first order logic
including universal and existential quantifiers, and which is
capable of achieving very efficient execution. BSL has been

wsed for Implementing & 350-rule expert system for
harmonizing chorales in the style of 1.8, Bach [Ebcioglu 874,
88b, #8c]. BSL is an Algol-class nondeterministic langnage
whose programs have a natural translation to first-order logie:
executing a BSL program without free variables amounts to
proving the corresponding first order sentence. BSL compiles
into efficiznt backtracking programs in C, and has the capa-
bility of taking direct advantage of the native instruction set
of RISC and mainframe architectures, and state-of-the-art
compiler optimizations such as common expression elimi-
nation, code motion, strength reduction, induction variable
elimination, and register allocation. As for the paralle] exe-
cution of BSL, the fact that BSL's backtracking semantics is
defined sequentially does not constitute an impediment to
parallelism, in the view of recent advances in compilation
techniques for exiracting parallelism from ordinary sequential
code. Also, BSL has a single assignment feature (originally
intended to preserve logical soundness) that sets it aside from
ordinary sequential languages and increases the parallelism
that can be extracted from BSL programs via such compila-
tion techniques.

After the.initial exposition about BSL, we discuss how BSL
programs can be executed efficiently using a recent approach
m fine-grain parallelism, namely the Very Long Instruction

ord (VLIW) architccture and compilation techniques for
thzsa architectures [Fisher 79, Ellis 86, MNicolan 85, EhcioEln
87c]. A new VLIW architecture and machine organization is
proposed, which takes advantage of the recent advances in
WLSI technology. In this machine the multiple ALUs are
coupled by shared register [file, which provides very low
latency sharing of intermediate results, and is therefore suit-
able for exploiting fine grained parallelism. Unlike J. Fisher's
previous approach, our VLIW architecturs does not rely on
optimizing a single “most probable” path through the code,
it has the features to perform well on code with unpredictable
conditicnal branches, which are common in AL software. A
novel mechanism that initiates exeeution of operations in
conditional sections before the enclosing condition is known,
accepts,/ discards the results of these operations based on the
condition, and allows multiple way branching base on multi-
ple condition codes, provides the architectural support to ex-
ploit parallelism beyond basic block boundaries. A compiler
is being developed for this machine, and performance meas-
urements obtained from a register-level simulator have
yielded encouraging results.

In Section 2 of this paper we deseribe the BSL language and
briefly indicate how BSL programs are translated into C pro-

932

grams. The VLIW machine architecture and hardware or-
ganization being proposed by us is described in Section 3.
The process of translating BSL programs into VLIW machine
code is outlined in Section 4, and in Section 5 we discuss the
performance of the VLIW machine on AL type application
kernels, based on simulation results, Finally, in Section 6 we
discuss our conclusions and the status of the project.

2. An overview of BSL

BSL (Backtracking Specification Language) is an Alpol-class
nondeterministic language where more than one explicit as-
signment to a variable is forbidden. BSL has a Lisp-like syn-
tax and is -compiled into C wia a Lisp program. We have
provided BSL. with formal semantics, in a style inspired from
[de Bakker 79], and [Harel 79]. The semantics of a BSL
program F is defined via a ternary relation ¥, such that
¥(F, s, o) means program F leads to final state o when
started in initial state o, where a state is a mapping from var-
iable names to elements of a “computer” universe, consisting
of integers, arrays, records, and other aneillary objects, What
makes BSL different from ordinary nondeterministic lan-
guages [Floyd 67, Smith and Enea 73, Cohen 79], and relates

it to logic, is that there is a simple mapping that translates a

BSL program to a formula of a first-order language, such that
if a BSL program terminates in scine state o, then the corre-
sponding first order formula is true in o (where the truth of
2 formulz in a given state ¢ i evaluated in a fixed “computer™
interpretation after replacing any free variables x in the for-
mula by eix}.) A BSL program is very similar in appearance
to the corresponding first order forsula, and for this reason,
we call BSL programs formulas. A formal description of BSL,
and a proof of its soundness can be found in [Ebcioglu 87a].
The description of the language in this paper will be informal,

Here iz an example of a simple BSL program to solve a classic
puzzle, followed by its first order translation: Place § queens
on a chess board, so that no queen takes another (i.e. no two
queens are on the same row, column or diagonal). Assume
that the rows and columns are numbered from O to 7, and that
the array elements p[0], ... p[7] represent the column number
of the queen in row 0,...,7, respectively,

(E ((p (array (B) integer)})
(AnO(=nf) {1+
(EjO(<j8y(1+]
fand (Ak(l-n}(>=k0)(l- k)
(and (1= j(pk))
{I=(-jlpk)) (-nk))
(=c{=(p k) j) (- n k)}Y)
(z=(p) 1))}

First-order translation:

(3p | type(p)="{array (8) integer)™)
(¥n|0<gn<g)
(3j| D=j<R) .
[(¥k|n-1=k=0) [j=plk] &
i-plk]#n-k & plkl-j¥n-k] & pla]=]]

Because of the similarity between a BSL formula and its log-
ical counterpart, & BSL formula is like a specification for its
own self: it describes what it computes, As the reader can
readily see, the BSL formula shown above specifies what a
solation to the eight queens problem should satisly, assuming
we read an assignment symbol as equality, and we translate
the guantifiers to a conventional notation. This BSL formula
compiles into an efficient backtracking program in C that
finds ard prints instantiations for the array p, that would
make the (Ip)-guantified part of the corresponding first order
formula true in the fixed interpeetation. The BSL compiler
presently runs on Lisp/VM and IBM 3090 computers, and
generates code acceptable by the C version of the PL.8 com-
piler [Warren et al. 86], and also the ATET C compiler,

We can observe some examples of BSL language feaiures in
this 8-gueens program: The basic building blocks of BSL are
constanis, that consist of integers, such as -2, 0, 3, and record
tags, which are identifiers such as ssn, salary; and variables,
which are identificrs such as x, p, n, or emp (for convenience,
we assume that variables are distinct from record tags). Each
variable and constant is a BSL fert, and if 4 and & are BSL
terms, and birop is one of the binary operators +,-,%,/ sub,
and dot, then (birep ,) is also a BSL term (sub and dot are
intended to be the subscript and field extraction operators,
respectively). Examples of BSL terms are 0, (+ x 2), or (* 2
(dot emp salary)), The constructs {1+ x), (1-x) may be used
as abbreviations for (+ x 1) and (- x 1), respectively. A BSL
fvalue is either a variable, or a term of the form (f; ... (f_, (f
A})) where each of f.... £, is either sub or dot, and
where x is a variable. Lvalues are terms that can appear as the
left-hand operand of an assignment, and are exemplificd by
%, (dot emp salary), or (sub pn). Lvalues can also be abbre-
viated as long as their normal notation can be inferred from
context, for example the latter two Ivalues can be written as
(salary emp), 2nd (p n), in the proper contexts. A BSL atomic
formula is cither an assignment of the form (:= [&), or a fext
of the form (relop ¢,), where [is an lvalue, ¢,, &, are terms, and
relop is one of == (egual), 1= (ot equal), <, >=, <=, or
2. A BSL atomic formula is a BSL formula. Assuming F; and
F, are BSL formulas, then so are the following: (and F,),
(or Fy F3),' (A x inir cond incr Fy), (B x init cond incr Fy), and
(E ((x typ)) F;), where x is a variabls, inft , incr are terms
where fnir does not contain x, and cond is 3 BSL formula not
containing any eccwrrences of A, B, or 1=, and gp is type.
The BSL types are similar to the type declarations of am
Algol-class language, and allow integer, array and record
declarations. Bxamples of BSL types are integer, (array (3)
integer), and (record (ssn integer) (salary integer)). In gen-
eral, “integer” is a BSL ppe; and if oyp, op,,..., Hip, are BSL

' Inthe eight queens program above the construct {and F; F; Fy) abbreviates (and £, (and £ £)). In general, “and” and “or™ associate
to the right, and thes (and ...) and (or ...) can contain more than two subformulas,

types, k = 1, and ..., ¥ are distinet record tags, 2nd nis a
positive integer, ther (array (#) fyp), and (record (p) ...
(s typ)) are BSL types.

We give here an informal description of the nondeterministic
program semanties of BSL: The variables of BSL can range
over objects, each of which has a corresponding type. Ob-
jects of type integer are constants such as -2, 0, 3, and U
{called the unassigned constant). An object can also be an
array, which is a list of objecis of the same type, or a record,
which is a list of alternating record tags and objects, not nec-
essarily of the same type. Arrays and records are exemplified
by (1 2 U), which is an object of type (array (3) integer), and
(550 999123456 salary 25000), which is an object of type
(record (ssn integer) (salary integer)). The value of a BSL
term, in a particular state dunng execution, is computed by
using the wsual meanings of the binary operators +,-,*,/,sub,
and dot. sub is defined to be the subscript operator which
takes an array object and an integer § and returns the /th ele-
ment of the array object (the array elements are numbered
starting from 0); and dot is defined to be an operator that
extracts a subobject of a piven record object as determined
by a given record tag (it performs a function similar to the dot
within the expression “employee.salary” in PL/I). BSL
atomic formulas, ie. assignments and tests, are executed in
the conventional manner; the lests are executed by perform-
ing the indicated comparison operation after computing the
current valoes of the two terms torbe compared; and the as-
signments are execnled by computing the current value of the
right hand side term, and then destructively changing the
value of the left hand side term to reflect the current value of
the right hand side term. If the comparison operation indi-
cated in a test comes out to be true, the effect of the testis a
no-op. However, if a test does not come out to be true, or if
an assignment is attempied when the current value of the left
hand side is not U, or when the current value of the right hand
side is not an integer, or if an attempt is made to perform an
illegal computation (such as using a variable whose value is
U in an arthmetic operation or comparison, or dividing by
zero), execution does not terminate. (and F, £) is executed
by first executing F), then F (or £, F) is executed by exe-
cuting one of F) or ;. (A x init cond incr F)) is similar to the
C “far™ loop, it is executed by saving the old value of x, set-
ting x to fnif, while cond is true repetitively executing Fy and
setting x to fncr, and restoring the old value of x if and when
cond is finally false. (B x init cond iner F) is executed by
saving the old value of x, setting x to @i, sctting x (o frcr an
arbitrary number of times (possibly zero times), and finally
deciding not to set x to fncr any more, exscuting F; , and then
restoring the old value of x. cond must be tree after x is set to
init and after each time x is set to iner, or else execotion does
not terminate. (B ({x Hy)) F) is similar to a “begin-end”
block with & local variable, it is executed by saving the old
value of x , setting x to an object of type & all of whose scalar
(i.e. integer) subobjects have the value U, execoting F, and
then restoring the old value of x.

The translation of a BSL progeam to the first order assertion
that is true at any of its termination states, is for the most part

933

obvious, as sxemplified by the B-quesns program sbove;
however, both the assignment symbol (:=) and the equality
test (==) of BSL get translated to the equality symbol in the
logical counterpart, that is, the program contains procediral
information not present in its logical connterpart. First, as-
sume that ' denotes the first order translation of a BSL term,
formula or operator F. The translation of BSL terms to first
order logie is straightforward: for example (+ x 2}, (dot {sub
emp i) salary), translate into +(x,2), dot(sub(emp,i),salary)
(which can also be abbreviated as x+2, empl[i].salary). The
first order translation of the comparison operators <, >=,
<=, >, ==, I= are the predicate symbols <, =, <, >, =, #,
respectively. Tests such as (relop f, &), and assignments such
as (:= I ;) translate into the first order atomic formulas ¢,
relop’ (s, and ' =(,, respectively. (and F; F.) transiates into
[F; & F3), (or F, F) translates into [F'2v F,), and (E ((x
tp)) Fy) translates into (3x| type(x)="4yp”)[F',] (which can
be abbreviated as (Jxop)[F,]). For a simple subset of BSL,
where the only allowable looping constructs are of the form
(Axn (s xu)(l+2) F), (Exg (< xg) (1+ x) F), and
variants . thereof, the translation -of these to bounded
quantifiers of first order logic, namely (¥x [, < x < /)[F1,
(3x|F, < x < 3)[F),.. works; where [, ¢, are the first-
order translations of BSL terms n, and ¢, respectively, and
where x does not ocour in cither 4 or 5. However, for the
general case involving arbitrary comd and incr expressions,
which we will not elaborate here, the rigorous translation of
'BSL formulas involves associating a different function symbol
of the first order language with every quantified formula of
BSL, and is less natural ®

The following trapslation examples should demonstrate the
intuition behind the relationship of a BSL program to its
first-order translation: When cither (:= x 0) is successfully
executed (Le. % is initially 15, or (== x 0) is successfully
executed (ie. x is initially 0), the assertion x=0 is true at the
termination state. When (or (== x 0) (== x 1)) is suec-
cessfully executed, (ie. x is initially 0 or 1, and the proper
subformula of the “or™ is chosen for execation), the assertion
[x=0 % x=1] is true at the termination state. When

(AL0(<i10) (1+1) (E ((j integer))
(and (or (:= jO) (:=j 1)) (:= (suba i})20

is successfully executed (ie. “a” is initially an array object

* whose first ten elements are U),

| (¥1] 0<1<10) (@] | type(i)="integer”)[[j=0 V j=1] & a[i]=]

is true in the termination state. This assertion says that the
first 10 elements of “a™ are an arbitrary sequence of 0's and
1's. To see why this assertion is true at the termination state
of the program, observe that during the execution of the pro-
gram, for each i=0,..,9, the assertion
(3| type(i)="Integer”)[[j==0 V jm1] & ali]=j] was made
troe, by creating (for each i) an integer j equal to O or 1, and
then making afi]=j true by assipning j to afi]. The first order
translation of {and (t= x 0) (= x {1+ x))} is [x=0 &
x=x+1], but such a BSL formula can never reach a termi-

* See [Ebciofln 87a] for details. In practice, the general case is rarely needed, because BSL programs are often first conceived as first

order assertions, rather than, say, while loops.

934

nation state, no matter what the initial value of x is, because
it violates the single assignment rule enforced by the program
semantics of BSL (the single assignment rule is the one that
verifies that the left hand side is U, and the right hand side is
an integer, before each explicit assipnment). The inteitive
purpose of the single assignment rule is to ensure that the
continuation of execution does not destroy the truth of the
assertions that were previously made trze. Top-level formulas
(i.e. complete programs) of the BSL subset we are describing,
such as the B-quesns program given above, do not contain
free variables, 50 the truth of the assertions corresponding to
such formulas is not affected by the value of any variable in
the termination state. Successfully executing such a top-level
BSL formula is equivalent to constructively proving that the
corresponding first-order sentence is true In a fixed interpre-
tation that Involves integers, arrays, records, and operaticns
on such objects (or in all models of a suitably axiomatized
“theory of integers, arrays, and records™).

A BSL program of the form (E ({(x &p)) F} is implemented
on a real, deterministic computer via a modified backiracking
method, which i principle atlempls to simulate all possible
executions of the BSL program, and prints out the valoe of x
just before the end of every cxecution that turns out to be
successinl. Whenever a choice has to be made between exe-
cuting F; and executing F, in the context (or F; F), the cur-
rent state is pushed down to enable restarting by executing
Fy , and F is execoted. Whenever a choice has to be made
between executing F and setting n to incr in the context (E n
init cond ince F), the current state is pushed down to enable
restarting by setting » to incr, and F is executed (pushing
down all variables in the current state would be an inefficient
implementation of this mechanism; in practice, only a few
variables need to be pushed down, by virtue of a compiler
optimization to be described below.) Whenever a test (relop
#; 1) is found to be false, or if cond is found to be falze in the
context (E n init cond incr F), and each time after the top level
(E ({x pw)) ...) is successfully executed and x is printed, the
state that existed at the most recent choice point is popped
from the stack, and execution restarts at that choice point,
Attempting to make more than one explicit assignment to a
sealar variable or to a scalar subpart of an aggregaie variable,
and illegal computations (such as attempting to add a number
to a variable whose value i U) are considered errors and
should never occur during the backtracking execution of a
correct BSL program (however, the run time checks for de-
tecting such errors can be omitted for efficiency reasomns).
Execution begins with an empty choice-point stack and ends
when an attempt is made to pop something from an empty
stack.

A modification is made to this basic backtracking technigue
for the case of assignment-free formulas F, in the context {or

£ F),or (En .. Fy). After a formula F, in such & context is
snccessfolly executed, the most recent choice point on the
stack is discarded (which would be the choice point for re-
starting at Fy, or F, with a dilferent value of n, assuming the
modification is uniformly applied). This convention, similar
to the “cut™ operation of Prolog, serves to prevent duplicate
solutions for x from being printed out (or redondant failures
from occurring) when F, and F, do not express mutually ex-
clusive conditions, or when F, is true for more than one » in
its quantifier range. Here is an example that demonstrates the
motivation behind this modification to backtracking: suppose
that many elements of an array “a" are equal to 0 in 2 par-
ticular state during backiracking execution; if in this state, an
assignment free subformula (E10 (< i N) (14 i} (== (a i)
0)) is executed and succeeds after finding that for a particular
1, alil=0), and immedijately thereafter & failure cccurs (or some
solution is printed), there is no point in backtracking to the
point in the subformula where (== {2 i) 0) is re-executed
with the next higher value of i, and then suceeeding again af-
ter finding another element of *a” that is equal to 0, because
the program will then fail in exactly the same way as before
(or will prisit the same sohition that it printed before). So the
choice point for backtracking to (== (a i) 0) with the next
value of {, is discarded when (E i...) succeeds.

The BSL compiler attempts to produce extremely efficient C
code, rather than to implement the above semantics literally.
For efficiency, the run-time checks for single assignment are
omitted in the present implementation (Le. varables are not
initialized to U upon creation, and the left hand side is not
checked for U before assignments. Some simple coding con-
ventions may be used to help to ensure that the program isin
fact correct in the sense that a variable is not assigned more
than once.) The single assignment nature of BSL allows a
substantial optimization in backtracking. Most variables are
not pushed down at choice points or later restored, for the
following reason: if the variable is already assigned, then it
will not have been assigned apgain and its storage space will
have remained intact when a backtracking return is made to
this choice point; otherwise, if the variable is not yet assigned,
then its old value (conceptually 17) will not be used after
backtracing is'made to this choice point (Le., it is OK if after
backtracking the variable contains garbage resulting from as-
signments in the paths that failed). In either case, there is no
need to save and restore the variable.? This approach tends to
have less overhead than the technique of pushing and restor-
ing the varlables on a special “trail” stack as in Prolog imple-
mentations [Turk 86, Fagin and Dobry 85). Similarly, for the
case of subformulas F, in the context (or F, Fy), or (Em ...
F,), the pushdown of the variables (to backtrack to F, or to
F; with the next value of ») iz not done before executing F,,
as the naive semantics requires; the pushdown of the choice

1 In the present implementation, where variobles are allocated in registers or static storape for the BSL subsat we are describing, the variables that need
to be pushed dovwn at a point of nondeterministic choice are precisely these that are both declared in quantifisrs enclosing the cholce point, and that
are also enclosed in o wniversal quantifier. Such variables typically consist of quantifier indicss. For sxample, when the nondeterministie choiss i
being made between exccuting (and (A k..) ..} and incrementing j in (E] ... (zod (A k .} ...} in the cight queensprogram shove, only n and j (but
not the elements of p), need to be pushed down, in order to later backirack to the point where j is incremented and (and (A k..) ...) is executed with
the next value of | n needs to be pushed down sinee it will be incremented during the continuation of execution, and j needs to be pushed down since
the storage (register) aflocated to it will be re-used for a new | during the next iteration of the enclosing wnivessal quantifier (A n ...). But for any |,
pli] does not need o be pushed down, sinee H pfi] is already assigned new, then it will not have changed when backtracking ocours and ite storage
space will have remained intact; and i pli] is not yet assigned now, we will not care about what it contains after backtracking occurs, The required

pushdown and restore aperations are always compiled inline,

point is delayed as long as possible, by emilting compare and
branches, and having the code for the initial part of F, branch
directly to the next alternative when it is found that F; fails.*
If F, is assignment free, no pushdowns are generated at all,
The motivation of this optimization is that F; may fail and
branch directly to the next alternative before a choice point
needs to be pushed down.

The language subset described up to here Is called L*, and
constitubes the “pure’ subset of BSL. The full language has
some more, but not many more features; we tried to keep BSL
small. These featares are mainly user-defined (possibly
recursively defined) predicates that can syntactically replace
<, =, ctc., and that allow Prolog-style backward chaining;
user-defined functions that can syntactically replace + ...
ennmeration types; and macro and constant definitions that
allow access to the full procedural capabilities of Lisp. BSL
predicates are similar to Prolog procedures, but whether a
parameter is an input to the predicate (Le. is used by the
predicate body), or is an output (i.e. is assigned fo by the
predicate body) is determined at program writing time. A
limited but conceplually very useful form of the “not™
connective is defined as a macro, which is expanded by mov-
ing the “not"s in front of the tests via de Morgan-like transf-
ormations, and then eliminating the “not”s by changing ==
to !=, ete.. The language iz also extended with heuristics,
which are BSL formulas themselves, which can guide the
backtracking search in order to enumerate the better solutions
first. A compiler optirization is used to implement intelligent
backtracking with low overhead. The language and its com-
pilation techniques are fully described in [Ebcioflu §7a].

3. A wide instruction word architecture for
executing BSL

This section deseribes the Very Long Instruction Word
(VLIW) architecturs being proposed by us, to execute logic
programs written in BSL and compiled into VLIW machine
language. First we will informally describe the logical strue-
ture of the VLIW instructions and define the machine state

transition produced by these Instructions (Le. the operational

semantics), MNext we will define the encoding of these in-
structions into fixed length bit strings, and we will give a high
level view of the VLIW machine orga.nizati:_m.

Structure of YILIW instructions

Each VLIW instruction is a binary tree like structure (rooted
and oriented). A unigue instruction iabel, which is also the
address of the instruction in the instruction memory, is asso-
ciated with each instruction. Each leaf node in the instruction
tree specifies the address of an instruction which can succesd
this imstruction. The intenal nodes of the instrection tree
specily either an AL operation or test on some condition
code. Imternal nodes that specify ALU/memory operation
have precisely one descendent, while internal nodes that

935

specify & test on some condition code have precisely two
descendents.

Thea proposed architecture is not limited to executing just BSL
programs, it can also execute any algorithm written in a high
level language such as . To describe the operational se-
mantics of the architecture we will use such a traditional al-
gorithm as an example. The inner loop of the merge algorithm
shown below can be coded in 3 VLIW instructions as shown

in Figure 1.

merge (a, b, ¢, 0}
int 3[]. hnn :[Ir n;
i
imt i, j.k;
i=0;]—ﬂ*
for (k=0 ke2%n k++}{
n‘(l::- n|| J{n&&ﬂl]}hull
felk] = blj++]1;}
else
felk] = ali++];}

}

Here, the label of each instruction is shown right above the
root node of the instruction tree. The leafl nodes, which
specify the successor instructions, are shown as squares. The
ALU/memory operations are specified as circles, and the
tests on condition eodes are specified as ellipses. The in-
struction trees can also be encoded in a straightforward way
as Lisp lists {this is how the compiler views them), and under
Figure 1 we give the list represcntation of the example (rea
instructions,

To execute a VLIW instruction, a path from the root to some
eaf node is selected, based on the values of condition codes
available from the previously executed instructions and the
tests specified on these condition codes in the current in-
struction. Since the instruction tree is oriented, the leaf nodes,
can be numbered uniquely starting from the left, and the dif-
ferent paths in the tree starting at the root and ending at a leaf
node, can be identified by the number of the leaf node on the
path. For example, if as a result of executing the instruction
labeled L__ 2 in Figure 1, the values of CC1, CC2, and CC3
ara True, True, and False respectively, then the path from the
root to the third leaf node (from the left) is selected as shown

. in Figure 1.

All ALU/memory operations on the specified path are per-
formed and the operations that are not on the sclected path
arc not performed, The register/memory valees used as input
operands by the ALU/memory operations in the instruction
are those that are available from the previously executed in-
structions (a value generated by some operation in an in-
struction can not be used by any other operation in the same
instruction as an input operand, even when the lirst operation
is modifying a register/memory-location that is being wsed as

4 Forexample, in the sight queens program, no choice points are pushed down before and within (and (A k) (= (pn) D) in{E j .. {(and (A Kk ..) (=
(p o) 1), until just belore the sssipnment to ple]. (A k ...} is compiled into code that, in the case of fxilure, just goes by direct branching to the code

that increments | and tries (and (A k _..) ...} with this next vahoe of J.

936

an input by the second operation, irrespective of the relative
positions of these operands in the instroction).

The register/memory-locations specified as destination for
the. operations on the sclected path are updated. If two or
more operations on the selected path attempt to modify a
common register/ memory-location, then only the elfect of
the operation closest to the leal node is registered. Once the
currént instroction is executed, the next instruction selected
for execution is the instruction specified by the leaf node of
the selected path.

Encoding of the YLIW instructions

The parallel hardware of the VLIW machine can be
parameterized by the following two numbers:

1. N, the number of ALUs in the machine.

2. M, the number of branch targets that can be specified in
the instruction (incloding the sequential successor which
is implicit).

The instruction for an N ALU VLIW machine capable of
doing M way branching comprises of four sets of fields as
shown in Figure 2. The structure of the N ALIT fields, M/2
memory operation fields, X (> M) immediate fields, and M
mask ficlds is described next.

ALU fields: The interruptable bit, when reset, prevents the
operation and operand exceptions (arising from the execution
of this operation) from interropting the VLIW machine.- The
different values for the 2 bit setee field indieate that the con-
dition code register associated with the ALU (discussed later)
should not be Ioaded, or should be loaded with a truth value
indicating that the result of the ALU operation is greatar than,
equal to, or less than zero.

The immediate fields for both fnput operands indicate
whether the input is obtained from the register file (described
latery or from the immediate fields (the source ficld for the
input operands gives the register number or the immediate
field number). When the register transfer enable bit (rte) is
set, the destination field specifies the register which will re-
caive the result of the AL operation,

The transfer enable mask (temask) has M bits. Its purpose Is
to indicate where this ALU operation is located in the the
instruction-tree, A logical true value for the bit indicates
that the ALU operation eccurs on the # path of the instruc-
tion (path from the root to the / leaf node), and that ne other
operation closer to the ™ leaf node overwrites the same des-
tination.

Memory-Operation fields: The memory operation fields indi-
cate whether 3 memory operation request is present, whether
the request is for a read or for & write operation, and the
size,/format of the data item being read/written. For the
memory operation specified by the /* memory operation field,
the left source operand in the 2# ALU field specifies the

memory address, the output of 2§ + 1* ALU provides the
datza to be stored into the specified location (in case of store
operations), and the destination register in the 27 4+ 1" ATU
field specifies the register into which the data being read from
the memory should be placed (for load operations). When the
i* memory operation is a Ioad operation, the 27 + 1% ALU
cannot update any register. Furthermore, the temask of the
2i + 1* ALT operation also serves as the temask for the ™
memory operation,

Imimediate fields: The immediate fields in the instroction are
used to specily immediate operands for ALL operations and
the addresses of branch targets. The address of the branch
target of the i path in the instruction (if the # path exists) is
stored in the # immediate figld.

The Mask flelds: The i mask field specifies the conditions
under which the # path in the instruction iz selected, Bach
mask field comprises of 2N bits, two bits corresponding to
each ALU. The i mask field encodes the condition codes
encountered on the i path, and the values they must have for
the ™ path to be sslected,

The YLIW Hardware

The VLIW machine comprises of the following major hard-
WAre COmponents:

1. Register File

2. Arithmetic and Logic units (ALTUs)
3. Mext address selection logic.

4, Data Memory Subsystem.

5. [Instruction Memory Subsystem.

The high level organization of the VLIW machine is shown in
Figure 3. The register file and has 2N read ports and N write
ports (two read ports and one write port for each ALUD.
Thus, the register file can support 2N reads and N writes &-
multaneously. RISC-like pipelining techniques with bypass
paths are used to reduce cycle time. The number of registers
in the register file is also an architectural parameter, and is
64 in the current design. The AT 1z are combinatorial devices
except that each ALTT has a 2 bit condition code register. The
values of condition code register can be True, False, or
Error.® The dala memory is a multi-ported memory capable
of supporting N/2 read/write operations in each machine
cycle, The instruction memory is a standard wide word RAM,
with the word width being several hundred bits. The next
address selection unit is about six levels of low fap-in combi-
natorial logic.

The VLIW machine executes one instruction normally in a
single cycle. Extra eyeles may be spent for the instruction If
there are long operations sech as multiply or floating add, or
memory bank conflicts. To execute an instruction all
ALU/memory cperations specified in the instricction are ing-
tiated concurrently at the begining of the instruction cycle,
The input operand values are obtained for all operations be-
fore any updates are done by the eurrent instruction. While

. Error results, o.g., when a comparison involves the result of @ division by 2ere 28 ope operand. The machine has a meshanism to trap on anthmetic
errors aid yet be able to exscute operotions abead of time past conditiona] jumps without fear of ineuering an exception which would not have oceurred
in the original sequential program. This mechankm will not be diszussed here,

the operations are performed by the ALUs, the next address
selection unit concurrently determines the path taken in the
VLIW instruction and transmits the M selected path signals
(exactly one of which is logical True to indicate the taken
path) to all ALUs. These signals are compared with the
temask bits in each ALU to determine if the operation being
performed by the ALU is on the selected path, in which case

the results of the ALU operation are allowed to update the

desipnated registers, condition codes and memory locations.
If the cperation heing performed by the ALT is not an the
selected path, the operation s aborted and no updates are
wiade. The sélected path signals are also used to select the
address of the next instruction from the immediate fields,

4. Compiling BSL programs into YLIW
machine code

To transform BSL programs into VLIW machine code, we go
through several steps. First we transform BSL programs into
C language programs using a BSL source to C source trans-
lator discussed in Section 2. € programs are compiled into
assembly code for a RISC like machine, using a standard op-
timizing compiler (currently we hand-compile the C pro-
grams, but we hope to interface to the output of the PL.8
compiler later). These assembly language instructions, each
comprising of a single operation, are packed into multi-
operation VLIW instruction using the percolation scheduling
technigues described by Nicolau [Micolau 85], and enhanced
by us. Percolation scheduling is applied to loop-free sequen-
tinl code, which may otherwise contain arbitrary conditional
jumps. Percolation scheduling consists of a small gef of
semantics-preserving core fransformations, that can move op-
erations or tests from one VLIW instruction to a preceding
one. Operations and tests migrate toward the begining of the
program producing packed trec-insiructions, and the in-
strisctions toward the end of the program eventually become
empty and are deleted, thus reducing path lengths. The single
assignment feature of BSL enhances the parallelism obtaina-
ble from it via percolation scheduling, since it removes anti-
dependences and output dependences. The PIPER compiler
developed by us performs the percolation scheduling and the
pipeline scheduling described next.

To achieve further parzllelism on loops whose bodies have
already been compacted using percolation, we use pipeline
scheduling, which is an extension of the “doacross” and
“dopipe” technigues proposed for multiprocessors by D.
Kuck's group [Davies 81, Cywon 84]. In pipeline scheduled
code, a mew iteration of an inner loop (possibly containing
arbitrary if-then-else statements and conditional exits) can
be initiated on every clock period whenever dependences and
resources permit. In the code generated by our enhanced
pipeline scheduler, iterations can complete out-of-sequence,
and there can be arbitrary pauses between the instructions of
a given iteration; these features increase the throughput rate.
A weaker version of the same pipelining technique is applied
to non-inner loops, which may contain other loops and/or
subroutine calls. An abstract computational model of a
streamlined version of our machine has been formelized using
an approach inspired by denotational semantics, and the cor-

937

reciness and termination properties of the pipeline schedieling
compilation technique have been proved [Ebcioglu 87¢].

A full deseription of the compilation techniques is beyond the
scope of this paper, and can be found in [Ebciogh 87¢c,
Ebcioglu §8a, Nicolau 85]. We will just give an example in
ihe Appendix A to demonstrate what the compilation tech-
niques can do: suppose we are given the code fragment (A k
(1-) (== k@) (1- k) (and ...)) in the S-queens program.
According to the execution semantics of the universal
quantifier and the and connective of BSL, this fragment can
be compiled into a simple loop of C instructions and subse-
quently into a simple loop of RISC instructions, on which
standard code motion and strength reduction optimizations
can be applied, resulting in a code fragment such as the one
given in Appendix A. (Compilation of arbitrary BSL code,
and the delaying of the emission of the pushdown operations,
however, is subile and the algorithms are described in
[Ebcioglu 87a]). The result of applying percolation schedul-
ing to the RISC code, is shown after the RISC code (where
the list notation is used for the instruction trees), The result
of percolation scheduling on the loop body executes all oper-
ation on all paths as soon as they can be executed: In in-
struction 1, k is compared against 0, plk] is feiched, n-k is
computed, and k and the pointer pk to p(k] are incremented.
In instruction 2, p[k]-j, and j-p[k] are computed, j is compared
against p[k], and the loop is exited if k (with guccess) was less
than wero as a result of the comparison in the previous in-
struction. In instruction 3, plk]-j and j-plk] are compared
against n-k, and the loop is exited (with failure) if j was equal
to plk] during the comparison of instruction 2. In Instruction
4, control branches back to the beginning of the loop if plkl
and j-plk] were both unequal to n-k, depending on the com-
parisons of the previous instruction 3. The result of applying
the pipeline scheduling technigue to the compacted loop body
is shown next. The resulting code initiates & new iteration of
the loop on every cycle. So, in the first cycle, iteration 1 exe-
cutes instruction 1, in the second cycle iteration 1 executes
instruction 2 and iteration 2 executes instruction 1, ete.. The
throughput of the final code is one iteration per cycle, with 3
eyeles to fill the pipeline. Note that, because of the condi-
ticmal jumps and conditional exits in the loop body, this loop
would be difficult to vectorize on a supercomputer, also, it
would not be worthwhile to allocate the different iterations
of the loop to different processers in a multiprocessor con-
figuration, because of the small number of times the loop is
iterated, So the VLIW architecture and compilation tech-
niques seem to be a good mateh for parallelizing this kind of
nonnumerical code.

5. Performance results

To increase our confidence in the performance of the pro-
posed VLIW machine, we developed a register transfer level
simulator for the machine. The simulator was exercised by
four artificial intelligence type search problem kernels, which
are listed in Appendix B, together with their description as
first order logic formulas.

The BSL programs were converted to C programs automat-
ically by the translator described in Section 2. The C pro-

038

grams were hand-coded into sequential assembly langoage,
and these assembly language programs were again automat-
ically translated to compacted VLIW machine code by the
PIPER compiler mentioned in Section 4. This compacted
code was used to exercise the simulator. To estimate the ad-
vantages of the compaction process, we also generated VEIW
code from the assembly code and exercised the simulator with
this uncompacted code. When executing the uncompacted
code, the VLIW machine behaves like a RISC (Reduced In-
struction Set Compuler) machine. In Table 1 we show the
mumber of VLIW machine cycles required to execute the

" compacted/uncompacted versions of the VLIW code for the
problems listed in Appendix B. The speedup obtained by the
compaction process, which is the ratio of these two columns
1z also shown in column 3. The speedup obtained'is in the
range of 2.5 to 5.5. (The compiler is unable to pipeline the
inner loop of “triangle™ due to the lack of a renaming opti-
mization. But we hope to fix this problem in a future version
of the compiler).

The C programs obtained from the BSL programs mentioned
in Appendix B were compiled and executed on an [BM 3000
(model 200) mainframe under VM/CMS. The command
cxecution times, 25 reported by VM, are listed in Table 2.
These figures are representative of the infinite cache per-
formance of the 3090 since the BSL programs repeatedly ac-
cess the same small data structures. WNext the same algorithms
were coded in PROLOG (with the static clause optimization
for each program} and were executed using the
VM/PROLOG interpreter on the same mainframe, and the
execution times are reported in column 2 of Table 2. Finally,
assuming that we can prototype a VLIW machine with a
50 ns. worst case cycle time in a conservative CMOS tech-
nology (as planred), the time required to execute these
problems on the VLIW machine (estimate) is given in
column 3 (based on eycle count obtained from simulation).

While the results of Table 2 are preliminary and are not suf-
ficicnt to draw definitive conclusions, the following indi-
cations are obvious. Generate-and-test type secarch
algorithms, when coded in BSL, tend to execute mech more
efficiently than when coded in PROLOG, The speedup is
usually around 20 for these particular implementations of
BSL and PROLOG.% Furthermore, the proposed VLIW ma-
chine appears to be faster than the IBM 3090 mainframe by
a factor of roughly 3 on the programs listed in Appendix B,

6. Discussion

In this paper, we have described a logie programming lan-
puapge called BSL, and 2 practical method of extracting
parallelism from BSL programs via a new wide instruction
word architecture and related compilation techniques.

We wish to remark briefly on how our approach differs from
the present paraile]l execution paradigms for Prolog-like lan-

guages. The present parallel execution paradigms for crdinary
Prolog and the variants of Prolog desipned explicitly for
parzllelism (e.g. Concurrent Prolog, GHC), typically assume
an MIMD multiprocessor system, or an architecture inspired
from data flow approaches [Conery 83, Usda 85, Onai ef al.
85, Kalé 87). In such paradigms, there are overhead issues
such as schedoling the processes on the available processors
at rum time, load balancing, synchronization between
processors when one needs & valee produced by the other,
memory contention when processors share data, and com-
munication delays between processors. As a result of such
overhead issues, exploiting parallelism at the finest grain has
been considered inadvisable [Maruyama et al. 85]. Ouwr
VLIW approach is able to achieve fine grain parallelism and
to tolerate very low degrees of problem parallelism, since
run-time scheduling and synchronization delays are elimi-
nated by resolving all data dependences and performing
scheduling at compile time, and communication delays be-
tween processing elements are greatly reduced by virtue of
very tight coupling via a shared register file. The parallelism
in BSL is mainly fine-grain and-parallelism, with some fine-
grain or-parallelism. The cr-parallelism is implemented as
follows: when the current alternative is being executed, op-
erations from the remaining alternatives start executing be-
fore it is known that the current alternative is going to fail or
succeed, and if the current aliernative fails before a choice
point is pushed down (the compiler optimizations greatly in-
crease this possibility) some headway will have been made for
the next alternatives. We should remark that the fact that we
are presently concentrating on fine grain parallelism does not
impiy that our approach excludes coarse grain parallelism or
denies its utility; for example, higher degrees of or-parallelism
in BSL could certainly be exploited by conneeling a number
of VLIW processors with shared memory.

The language BSL also has some desirable features. Formulag
in BSL are not limited to Homm-clawse or clavsal form, and
alfow direct coding of universal and existential quantifiers.
Such guantifiers are often compiled into loops, thus making
it possible to take advantage of sequential and paralle]l com-
piler optimizations for loops. BSL avoids unification: the
choice between making equality (BSL assignment - analopous
te unifying a bound and an unbound variable in Prolog) and
checking for equality (BSL equality test - analogous to uni-
fying two already bound variables in Prolog) is made at pro-
gram writing time, While the removal of unification and other
simplifications result in loss of versatility (e.g., relational
programming is pot possible in BSL), an efficient implemen-
tation becomes possible, which enables the programmer to
use the concepts of first order logic offered by BSL in
computation-intensive Al applications.

The status of the architecture /compiler effort for the VLIW
machine described in this paper is as follows: We presently
have a preliminary working version of a VLIW compiler that
takes RISC-like intermediate code as fmput and produces
VLIW tree-instructions, a microassembler that compiles the

L] Hete that VM/PROLOG is an interpreted language, while BSL ic a compiled language. Using a Prolog compiler (none were available to us) rather
than an imterpreter would of courss reduce the performance differances between BSL and Probog, but would probably mot eliminate them, since
VM/PROLOG alrsady has a very efficisit implementation invalving clavse indexing and statle claoses (partial compdlation). A bigh performance,
optimizing Prolog compiber for the IBM 5/370 (1.42 megnlips on append on a 30940) that also compiles into PL.&, was reported in [Karokawa et al,
86], which is {on the basic of code examples and timiogs given in that paper) about 4.6-6.2 times faster than VM/PROLOG with stalic clanses,

treg-instructions into binary machine code, and a register
transfer level simulator that accepts binary VLIW code, sim-
ulates it, and provides detafled timing information about pro-
pram execution. Gate level logic schematics have been
completed for an 8-ALU desipn for the machine, The
planned technology for the prototype 15 1.5 micron CMOS
VLSL An cffort is presently underway at the IBM T.J.
Watson Research Center to build a prototype of this machine,
and we will réport on our progress in future papers.

Acknowledgements

We would like to thank Fram Allen, Mauvricio Breternitz,
Micheal Burke, John Cocke, Ron Cyiron, Dave George,
Jean-Louis Lassez, George Radin, for their comments on the
architecture, compilation techniques and parallelism issues
discussed in the paper.

References

Cohen, 1. (79) “Non-deterministic algorithms® Computing
Surveys Vol. 11, No. 2, June 1979,

Conery, 1.5, (83) “The AND/OR Process Model for Parallel
Interpretation of Logic Programs™ Phd thesis and techni-
cal report 204, The University of California at Irvine,
1983,)

Cyiron, .. {84} “Compile-time Scheduling and Optimiza-
tion for Asynchronowns Machines” Report no.
UIUCDCS-R-84-1177, Dept. of Computer Science, Uni-
versity of llinois at Urbana-Champaign, October 1954,

Date, C.J. “Introduction to Database Systems” Addison-
Wesley, 1977.

Davies, . TR.B.(81) *“Parallel Loop Constructs For
Multiprocessors™ Report no. UTUDCS-R-81-1070, Dept.
of Computer Selence, University of Illinois at Urbana-
Champaign, May 1981.

de Bakker, J. (79) “Mathematical Theory of Program
Correciness” North Holland, 1979,

Ehniugln K. (B7a) "Report on the CHORAL project: An
Expert System for Harmontzing Four-part Chorales' re-
search report RC 12628, IBM Thomas J. Watson Research
Center, Yorktown Heights, March 1987. (This is & re-
vised version of the author's PhDD. dissertation, “An Ex-
pert System for Harmonization of Chorales in the Style
of 1.5, Bach," technical report TR 36-09, Dept. of Com-
puter Science, 3.U.N.Y. at Buffalo, March 1986.)

Ebeicgiu, K. (87b) “An Efficient Logic Programming Lan-
guage and its Application to Music” Proc. 4th ICLP, May
1987.

Ebciofiln, K. (87¢) “A Compilation Technique for Software
Pipelining of Loops with Conditional Jumps' Proe. 20th
Annual Workshop on Microprogramming (MICRO-20),
December 1987.)

Ebcioflu, K. (88a) “Some Design Ideas for a VLIW Archi-
tecture for Sequential-Matured Software™ Proc, IFIP
Working Conference on Parallel Processing, Pisa, Italy,
April 1988,

Ebeioflu, K. (88b) “An Expert System for Harmonizing
Chorales in the Style of J.5. Bach” Special Issoe of the

939

Journal of Logic Programming on Applications of Logic
Programming, to appear, 1988,

Ebcioflu, K. (88c) “An Expert System for Harmonizing
Four-part Chorgles” Computer Music Journal, Vel 12,
no. 3, Fall 1988.

Elliz, JR. (86) “Bulldop A Compiler for
Architectures™ MIT Press, 1986,

Fagin, B. and Dobry, T. (85) “The Berkeley PLM Instruction
Set: An Instruction Set for Prolog” Report no. UCB/CSD
86,257, Computer Science Division (EECS), University
of California at Berkeley, September 1985,

Floyd, R. (87} “Nondeterministic Algorithms™ Journal of the
Asgociation for Computing Machinery, Vol 14, no. 4,
October 1967,

Forgy, C. and McDermott, J. (77) “OPS: A Domain Inde-
pendent Production System Language' Proceedings of the
fifth International Joint Conference in Artificial Intelli-
gence, 1977,

Harel, D. (79) “First Order Dynamic Logic™ Lecture Notes
In Computer Science, Goos and Hartmanis (eds.),
Springer-Verlag 19759,

Kalé, L.V. (E7) “The REDUCE-OR Process Model for Par-
allel Evaluation of Logic Programs™ Proc. 4th Interna-
tional Conference on Logic Programming, 1987.

Kurckawa, T., Tamura, M., Asakawa, Y., and Komatsu, H.
(86) *A Very Fast Prolog Compiler on Multiple
Architectures” Proc. FICC 1986,

Maruyama, T., Hirata, K., Tanaka, H., and Moto-Oka, T
{85) “A Note on the Elementary Execution Unit in a
Parallel Inference Machine™ Proc. 4th Conference on
Laogie Programming, Tokyo, 1985,

Micolau, A. (85) “Percolation Scheduling: A Parallel Compi-
lation Technigue™ TR 85-578, Dept. of Computer Sci-
ence, Cornell University, May 1983,

Onai, R., Shimizu, H., Maseda, K., Matsumoto, A., Aso, M.,
(85) *Architecturs and Evaluation of a Redoction-based
Paralle] Infereince Machine: PIM-R" Proc. 4th Confer-
ence on Logic Programming, Tokyo, 1983,

Robinson, I.A. (65) “A Machine Oriented Logie Based on
the Resolution Principle™ Journal of the Association for
Computing Machinery 12, 1965,

Smith, [0.C. and Enea, H.I. (73) “Backtracking in Mlisp2"
Proceedings of the third International Joint Conference in
Artificial Intelligence, 1973,

Turk, AW, (86) “Compiler Optimizations for the WAM™
Proc, 3rd ICLP, 1986.

Ueda, K. (85) “Guarded Horn Clauses™ Technical report
TR-103, ICOT, 1985, Tokyo.

Warren, 5.H., Auvslander, M.A., Chaitin, G.J., Chibib, A.C,,
Hopkins, M.E., and MacKay, AL, (86} “Final Code
Generation in the PL.8 Compiler” report no. RC 11974,
IBM T.J. Watson Research Center, 1986,

VLIW

APPENDIX A

RISC-like intermediate code for inner loop of an B-gueens frag-
ment. (The destination register occurs last in the following inter-
mediate code instruetions, so (LT K 0 CC1) means CC1:=(K<0}).

940

(Ak(1-n) (>= k) (1- k)
(and (1= j (p K))
(1= {-j(p E)) (- n k})
(e (- (P K)) (-2 D)D)

Percolation scheduling result:

{9 F
TILT E 0 cCh) {LoAR P PE PSUBR) {508 M K T2)
B K 1K) (S0 PK & PR) (GaTa _7s) 11

(_15
~t {EQ J PEUBK ©C2) [SU8 J PSUBK T1) PEUBE J T3}
{1F oo ({oomo L_ IILT ELSE EEWTU s."?:I]- N s
(_te [{eqg Tn T2 ©C3) {EQ 7% T2 co4l ﬂIF IC! “EEITD L 11‘.|H

'FI!IF CC3 [{&0Te L_10}) ELSE ({IF cCh ({GOTO L I{I?!
ELSE ({soto L_1E)1 R0

Hhﬂwmhﬁﬁwum#

L
T [LT I. L'I CCOD (LOAD B PR PSIK] (508 M X T2)
1®) (508 PE &k PRY (ROTR ['.I'F L_lzhh 1)

{« ?
EEE_ &ﬁsﬁ:ﬂr_ti} {Elﬂ 4 PSUBK T1F {518 PSUBK J T3)

ELSE [[COPY T2 T2 F 1:.1 K ncr;u [LO&E P PE PEwb)
SUB MK TIT '|_Sl!!PKiPI
GOTO {7 :rsl. |zm]
{7 i 75 L 120}
TE[q“r%T!P £c3) IB}HHPEH]
IF Lc2 [Tooto
ELST# g J HM CE2) (SuR 0 PSUSK TV) (W8 PSUBK J T1)
IF CE] [u.umint,n I'
ELSE [E‘u EP'T!LTKDJDE'_IPTLD.IBF FEUER)

ug & M
IWTU [TR TS L lI?]H‘ 0nnh
[i_73 L m}
TUIF Tey ((GoTo L_tod) ELSE {[IF I:I:ﬁ {[mm L
[{oama L_ ITH;J]]}

il IE (L ?'Em_ll._ 121}

)
T 1iFce BL_lody
o=y o %)t aa 73 Ta P ek
!IFI‘.EE ({GaTl L |3]1 " !
ELSE ((EQ J PEOBK CC2) (SU3 4 PSUBK T1)
(5l FSUBE J 11%-
(IF €01 §dooTa (73 L 110}
ELSE [(EOPY TZ™T2 PT (LT K 0 CC1)
Laan @ P FSUBK) (SUB W K T2)
Ig_lmﬁﬂi,';*{‘ﬂ' -y F'Iz:I:IH- HH]
et !'.l')|
APPENDIX B

Examples used (o estimate the perfformance of the VLITW machine,
The assignment statements of the BSL programs have been kept
intact in their logical translations given here, so that the original
BSL programs can be inferred.

trimngle: enamerate all triples of integers x,.2, D<x<y<2<60, such

that x**2+y**2=z**2 (Pythagorean numbers).

(B, zinteger) (3 | 1 <i<t58)3 | i+15j<590(3k | j4+1 <k<E0)
[*i+i*i=k*k & x=i & 7o e 2 =k].

permute: enumerate all permuatations of the digits 0,1,...,6
(3p:iarray (7) integer))
{¥n | O0=n<T)
(3| 0=j<T)
[(Vk | a-1zk=0)[j=plk]]
& pln]:=j).

queens: find zll solutions to the 8-gquesns problem. The rows and
columns are numbered as 0,1,...7, and the array elements
pl[03,....p[7] represent the column no. of the gueen on row 0,....7,
Tespectively.

{3p: (array (8) integer))

{¥n|D<n<R)
{3Fil0=j<8)
[(¥kIn-Izkz0)
Liz=plk] &j-plk]wn-k & plk]-jzn-k]
& plnl:=jl.

dslalpha: enumerate the names of the suppliers who supply all parts.
Taken from a DEL ALPHA query for the suppliers-parts database
in [Date 77].
(35,p.5p)
[s="" ({s__ status 20
§__city LONDaON) ...)" &
p="{(p__pno P1 p_ pname NUT p__color RED
p__weight 12 p__city LONDON) ...)" &
spe="{{sp_ snoS1sp_ pnoPlsp gty 300)..)" &
(Sans:snumetype)
{3n|0=n<S_ SIZE}
[{vi]0<i<P_SIZEH)
(3j| 0gj<SP__SIZE)
[spljl=p__sno=s[nl.s_ sno
& spljlsp__pno=plil.p__pno]
& ans:=s[n).s__sname]].

sno 51

5__sname SMITH s__:

TABLE 1
Programs Compact. Un—comp. Ratio
Queens 145568 677950 4.66
Permute 671868 2575107 3.83
Triangle 181557 450288 2.48
Dslalphao 187 1034 5.53

*

Table 2
Programs PROLOG BSL VLIW
Quesens 600 26 7.3
Permute 8937 a7 33.6
Triangle B17 24 g
Dslalpha 19 021 0083

= all times are in miliseconds

941

{chk<limii=ccl

taleiimi)+ce2

(bjelim]l+ee3
alail+12
blbjI+t3

‘GoTal2
L3
t2+elekd t3+clckd
gied+ni bj=4+b
chdaek) chedrck

GoTo L4 GoTo 1

Lt
TILT CK LIHK €E1) (LT &I LIM1 ©CZ) (LT BJ LIMJ CC3) (LODAD A Al T2)
(LoAD B BJ T3} (GOTO L_2) 1}

L2
TUIF {NOT ce1) ((e0TD £))
ELSE ((IF (NOT CCZ)
{(STORE C T3 CE C) {ADD BJ & BJ) (ADD CK &4 CK) (GOTD L_1})
ELSE { (IF (WOT CC3
{[STORE € T2 CK €) {ABD A) & A1) (ADD CK 4 Cx) (GOTO L_1))
ELSE ((GT T2 T3 €C4) {ooTo L_3MD 0D 1) M

L
t Tle (HOT cch) ((STORE € T2 €k C) (ADD A &b A1} [ADD CK & fééro Y
ELSE [(STORE C T3 CX C} (ADD 8J & BJ) (ADD CK & CK) (GOTO L_13)T)}

Figure 1: VLIW Instroctions

042

Figure 2: Encoding of a VLIW Instruction.

Instruction Register

ALU ops. Memory ops. Imm. fields Mask fields
T ¥ T T L T lz T T T L] 13 T T T
. | IR Y | o |
el illoi—) | Y |HEY =) llei= Hi
P RN
] S 1 LY
] "\.‘ 1 ",_
1 hat | %
i S 1 %
L] "'-.‘1 : 1\.
: ""*.. | T
| 'Lh__ : \‘
I . E“-._‘_ I y
I T T B
L L] |l|l| l | | | {format
OFwilgas &1 § za
T3 aga i ags o se
om T+~ 0 3 =1
0= O == I o o<
a2”14383 % @ 2
5 3Io03c S -3
I T =
a 35 o5 o
o "o @3
o L1}

]

iﬂlp&mndeestinutiﬂn selection

Register File

?

address

i
==

Data Memory

oo o ﬁ

N/2-1

[
L llf %
g
Next @))
Address) l ‘L
Select \/
R
iiIL'ﬂ' ﬁﬂ% fi:l:‘. .'_'_'.II - I_ _______ j
TTTTTT T4 Condition codes
E:‘sr =] t _
! ' d
F’ori‘|_ﬂ_ﬂ_|__L__
Inst. o
Memory
1

Figure 3: Overview of the VLIW Machine Hardware.

