PROCEEDINGS OF THE INTERNATIONAL CONFERENCE
ON FIFTH GEMERATION COMPUTER SYSTEMS 1088,
edited by ICOT. © 1COT, 1988

943

DATA DIFFUSION MACHINE
~A SCALABLE SHARED VIRTUAL MEMGRY MULTIPROCESSOR

David H. D. Warren
Department of Computer Science
University of Bristol
Bristol BS& 1TR, U.K.

ABSTRACT

The Data Diffusion Machine (DDM) is a scalable
shared virtual memory multiprocessor where the loca-
tion of a datum in the machine is completely decon-
pled from its virtual address. In particular, there is no
distinguished home location where a datum must nor-
mally reside. Instead data migrates automatically to
where it is needed, reducing access times and traffic.

The hardware organisation consists of a hierarchy of
buses and data controllers linking an arbitrary num-
ber of processors each having a large set-associative
memory. Each data controller has a set-associative
directory containing status bits for data under its con-
trol. The controller supports remote data access by
“snooping” on the buses above it and below it. The
data access protocol it uses provides for the automatic
migration, duplication and replacement of data while
maintaining data coherency.

The machine is scalable in that there may be any
number of levels in the hierarchy. Only a few levels
are necessary in practice for a very large number of
processors. Most memory requests are satisfied locally.
Requests requiring remote dccess generally cause only
a limited amount of traffic over a limited part of the
machine, and are satisfied within a small time that
ig logarithmie in the number of processors. Although
designed particularly to provide good sepport for the
parallel execution of logic programs, the architecture is
very general in that it does not assume any particular
processor, language or class of application.

1 INTRODUCTION

Inspired partly by the ambitions goal of Japan’s
Fifth Generation project to develop a machine
capable of one billion logical inferences per see-
ond, we and our colleagues have been investigating
models for transparently exploiting parallelism in
logic programs. In particular, we have developed

Seif Haridi

Swedish Institute of Computer Science

Box 1263, 5-164 28 Kista, Sweden

two models: the SRI model [7], which has recently
been implemented in the prototype system Aurora
[5], and & more recent generalisation of it called the
Andorra model [10,2].

In the SRI model, or-parallelism is exploited
through a coordinated exploration of a search tree
by a group of processing agents called workers.
Each worker is equipped with a binding array to
give it fast access to the variable bindings rele-
vant to its current position in the tree, The An-
dorra model generalises the SRI model by allowing
several workers to work in and-parallel on deter-
minate goals arising on one branch of the search
tree, while continuing to support or-parallelism
through different teams of workers exploring dif-
ferent branches. In the SRI model, the parallel
tasks are relatively independent and involve lit-
tle interaction between workers. In contrast, in
the Andorra model, workers working on the same
branch are creating a shared set of variable bind-
ings and will typically have to interact much more
closely.

The SRI, Andorra, and other models (e.g. Pep-
sys [8]) share a common general approach to par-
alle] computation, whose scope is by no means
confined to logic programs. In this approach, the
state of computation is viewed as a single large
data structure. A number of processing agents, or
workers, work in parallel on different parts of the
data structure. The aim is that each worker should
work as fast as if it alone were performing the
computation. Thus inferaction between workers
should be minimised, and what each worker does
should approximate a standard sequential compu-
tation. From this viewpoint, parallel computation
is little different from any other parallel activity
where there is a group of agents operating in par-

044

allel on a shared structure, for example a team of
workmen building a house,

How can hardware best support this view of par-
allel computation? Abstractly, there is a need for
shared data to be accessed freely and uniformly by
multiple processes running on multiple processors,
Each data item needs some unigue name, which is
nothing more than a virtual address. This leads us
to propose that the machine, whatever its precise
hardware organisation, should be a shared wir-
tual memory architecture, that is one which
allows software to access all data uniformly via a
global virtual address space.

The most obvious way to implement the ab-
stract requirement of shared virtual memory is
through shared physical memory. Indeed, the
shared virtual memory architectures that exist to-
day are typically shared (physical) memory ma-
chines, e.g. Sequent and Encore. It is on these ma-
chines that the prototypes of our execution models
currently run. However it is important to realise
that shared virtual memory. architecture need not
necessarily be implemented in this way. The pur-
pose of this paper is to deseribe a novel shared
virtual memory architecture, the data diffusion
machine (DDM), which is not based on shared
physical memory. Rather, its hardware organisa-
tion is in many ways closer to & message-passing
machine.

Message passing machines and shared mem-
ory machines are the two main classes of paral-
lel (MIMD) computer, and are generally consid-
ered to be quite distinet. Message passing ma-
chines typically have many processors with large
private memories, linked together by a communi-
cations network. Shared memory machines typ-
ically have only a limited number of processors
with small private memories or caches, connected
by a common bus to a large, physically shared,
memory. Message passing machines usually re-
quire software to view memory access and com-
munication with other processors as quite separate
mechanisms. (Software is often therefore driven to
simulate a form of shared virtual memory by trans-
lating references to remote objects into appropri-
ate messages). Shared memory machines, on the
other hand, usually support shared virtual mem-
ory directly, thereby allowing software to achieve
communication implicitly through memory access,
but require some locking mechanisms to support
this. Message passing machines are generally scal-
able to arbitrary numbers of processors, whereas

in shared memory machines the shared bus and
memory is a bottleneck, placing a limit on the
number of processors that can be attached. How-
ever, message passing machines place a much heav-
ier burden on software to partition the computa-
tion effectively, and so the scalability of the hard-
ware is only useful in so far as the software can
keep communication to a minimum. .

The DDM is like a message passing machine
in that memory is distributed and the machine is
scalable to an arbitrary number of processors. The
DDM is like a shared physical memory machine in
that it supports a shared address space by con-
necting processors via shared buses (using a “data
coherency protocol”). The key idea behind the
DDM, which distinguishes it from both message
passing machines and shared memory machines, is
that the location of a data item in the machine is
completely decoupled from its virtual address.

The design of the DDM is based on the following
considerations. Where a piece of data resides is not
really relevant to the software. Ideally, the phys-
ical location of data should be completely trans-
parent to software, and placement should be con-
trolled automatically by hardware. Thus virtual
addresses should be mapped into physically ad-
dresses in a totally flexible manner. The mapping
should be dynamic, allowing data to migrate to
where it is most needed. It may be desirable to
have multiple copies of a particular data item, but

. they will all share the same virtual address. To

summarise, from a software point of view there will
be of a number of processes sharing data that is
arranged logically in a single virtual address space;
from a hardware point of view, processes will be
mapped into processors and virtual addresses into
physical addresses in such a way that most of a
processor’s memory accesses can be satisfied by its
local memory. In other words, the data structure
that the software sees will distribute itself auto-
matically over the machine in such a way as to
reduce data access times and minimise data traf-
fie.

The DDM was motivated by our work on logic
programming execution models and represents our
ideas on how these models can best be supported
by hardware. However the design is very general
in that it does not assume any particular kind of
processor, language or application. We feel this
is very important if the machine is to gain practi-
cal acceptance, and is an important factor in the
commercial success of machines such as the Se-

9435

Figure 1: Data Diffusion Machine

Bus

Diractory

Controlle

‘ Gnnt@—

Cache

Procaessor

Memory

quent. It should be noted that software designed
for conventional shared memory machines can run
without change on a DDM.

The remainder of the paper is organised as fol-
lows. In the first section we describe the main fea-
tures of the hardware organisation and summarise
the machine’s main principles of operation. The
next section gives the details of the data access
protocols which control the distribution of data.
Next, we analyse the main performance character-
istics of the machine and compare it with other
multiprocessors. In the following section, we dis-
cuss various other issues necessary for a complete
machine. We conclude with a summary of the
main novel features of the design.

2 HARDWARE ORGANISATION

The machine is hierarchical (see Figure 1). At
the tips of the hierarchy are processors each with
a large local memory (possibly accessed via a con-
ventional cache). The memory contains an image
of some part of the global virtual address space.
The memory is set-associative, and is organised
like a (very large) cache, but it should be empha-
giged that this is the sole form of main memory
in the machine. The memory is connected via a
memory controller to a local bus. The local bus

Controlle

“Bus

Cnntﬂe}—

Cache

Processor

Memory

connects a cluster of similar configurations of pro-
cesgor, cache, memory and controller. The local
bus may itself be connected via a controller to a
higher bus, and so on up the hierarchy. The higher
level controllers each have access to a directory of
status information, and are termed directory com-
trollers. The directory is set-associative, and has
space for status bits for all the data items in the
memories below,

The function of a controller is to mediate be-
tween the bus above it and the subsystem below
it. Its behaviour is a generalisation of the “snoop-
ing” caches in single-bus shared memory proces-
sors. It allows memory requests to be handled as
locally as possible, but where a request cannot be
handled locally, it is responsible for transmitting
that request upward or downward to enable it to
be satisfied. The controller has access to a direc-
tory which tells it which part of the virtual address
space is mapped into the memory of the subsys-
tem below it, and whether any of those virtual
addresses are also mapped into memory outside
the subsystem. Thus for any virtual address, the
controller can answer the questions “Is this datum
below me?™ and “Does this datum occur elsewhere
(not below me)?". '

The behaviour of the controllers is such that a
memory request will not be transmitted outside a

946

subsystem if (1} it is a read of a local datum or (2)
it is a write to an unshared local datum. In par-
ticular, this means that if a processor tries to read
a datum in its local memory or write an unshared
datum in its local memory, no external communi-
cation is required. Normally, this will cover the
vast majority of memory references,

If a subsystem tries to read a non-local datum,
the read request will be transmitted as far as is
necessary to retrieve a copy of the datum, and the
datum will be marked as shared where necessary.
If a subsystem tries to write a shared datum, re-

quests will be propagated to erase all other copies

of the datium, and the datum will then be marked
as unshared. It would of course be possible to up-
date other copies rather than erase them. How-
ever, erasing on write has the advantage of helping
to concentrate data where it is being actively used,
and avoids the overheads of continually updating
“stale” data. If & memory becomes full, data items
that are shared elsewhere can be discarded. The
machine will select items which are least recently
uged, If there is no such item, an exclusive item
that is least recently used will be moved elsewhere.
This is another means by which data tends to re-
side only where it is being actively used. '
The following points should be noted. The data
that & processor creates itself will automatically
reside in its own memory and will not be copied
anywhere else unless another processor requires it.
A processor is likely to spend most of its time ac-
cessing such data. A processor is not obliged to
repeatedly access a datum from a remote memory,
if the data is initially remote. Instead, remote data
tends to migrate to where it is being actively used,
and is not tied to some fixed “home” location.

3 DATA ACCESS PROTOCOLS

In describing in more detail the data access pro-
tocols, the following assumptions are made about
the DDM.

At the lowest Jevel, the system consists of a num-
ber of processors, Each processor is connected via
a memery controller to a memory and a bus. At
higher levels, there is a directory controller for each
subsystem. Each bus is synchronous and has its
own clock. There iz an arbiter on each bus to se-
lect one request. Each virtual address in a memory
is in one of the following states:

invalid (I) The datum is invalid (does not exist)
inside.

exclusive (E) The datum exists inside but not
outside,

shared (S) The datum exists inside and also out-
side.

writing (W) The datum is being written inside
and is waiting for invalidation ountside.

reading (R) The datum is being read inside and
is waiting for a response from outside.

The states R and W are transient and would not
be needed in a single bus multiprocessor.

A memory is N-way set-associative, and stores
data items plus their associated status bits. A di-
rectory is also N-way set-associative but with a
size equal to the total number of entries in the
memories below it. Directories have space to store
only status bits. If the directories were perfectly
associative, there would always be space in the di-
rectory for the items below. However, because the
directories are only set-associative, there can be
situations where a requested data item that has a
space at a lower subsystem cannot be guaranteed
space for its status bits at a higher level directory.
This issue is discussed further in the section con-
cerning the data replacement strategy.

Each datum in a directory is in one of the follow-
ing states according to its status within the sub-
gystem below:

invalid (I) The datum is invalid (does not exist)
inside,

exclusive (E) The datum exists inside but not
outside.

shared (S) The datum exists inside and also out-
side.

writing (W) The datum is being written inside
and is waiting for invalidation outside.

reading (R) The datum is being read inside and
is waiting for a response from outside.

exclusive responding (ER) The datum is ex-
clusive, and responding to a read request
from outside.

shared responding (SR) The datum is shared,
and responding to a read request from out-
side.

047

Figure 2: Memory Controller Protocal

readpg writeg
I H:oread, *3
E = -
s - Wierase 4
W *
R * *

Notes 1: Only if selected by the bus arbiter.

2: Retransmit the ‘read’ request.

Proceed with the ‘write'.

The following transactions may occur on buses:
read(X) A request to read the item X.

erase(X) A request to erased the item X.

datum(X,V) A response to a read request show-
ing item X has value V.

erased(X) A response to an erase request show-
ing item X is erased. :

In addition, the following transactions may be
observed between a processsor and its memory:

read(X) A request to read the item X.
write(X) A request to write the item X.

The above transactions, apart from a read re-
quest on a bus, have only a single phase. A read
request on a bus, however, requires an additional
arbitration phase in case many sibling controllers
are willing to accept the request. We assume that
each controller can observe transactions oceurring
on the bus above and respond if needed with-
ont input buffering. However, input buffering i=
needed for transactions on the bus below, and out-
put buffering is required for transactions on either
bus. The processing of transactions occurring on
the higher bus may require examination of the out-
put buffer above and resetting of some transactions
to eliminate race conditions. One such situation
occurs when erase(X) oceurs on the bus above and
an erase(X) request is stored in the output buffer
above,

read arase 4 datum eragsed 4

S:datumy * * *

S:datumy® I:- - *
I'writeg® - E:writeg?®
Riread4?® S:datumg® Riuread,?

A ‘write” miss is treated as a ‘read’ followed by a ‘write’.
Reperform the *write’ as for a ‘write’ miss.

Proceed to store the ‘datum’ to complete the ‘read’.

3.1 Memory Controller Protocol

The memory controller protocol is summarised
in Figure 2. It shows, for each input transaction
and state of the corresponding datum, the new
state and output transaction. The symbol *-* indi-
cates that no action is required and “*' means that
the situation is impossible. The suffix A indicates
a transaction on the bus above and B indicates a
transaction on the bus below (which, for a memory

" controller, means simply the processor/memory in-

terface). The memory controller performs the fol-

lowing functions.

If 2 read occurs below and the item exists in
memory (a “read hit"), the read is simply allowed
to proceed. Otherwise a “read miss” occurs, in
which case the read request is transmitted to the
bus above and the item is installed in the mem-
ory with status R. The replacement algorithm may
need to be invoked.

If a write occurs below and the item is exclusive,
the write is simply allowed to proceed. If the item
is shared, an erase request is transmitted to the
bus above and the item is marked W. If the item
is invalid, this “write miss" is treated as a read
miss followed by a write; of course this procedure
can be optimised.

If a read requesi appears sbove and the item
exists below with status exclusive or shared, the
controller will respond and will transmit the item’s
value onto the bus above. If many controllers re-
spond, the bus arbiter will select just one of them.

943

Figure 3: Directory Controller Protocol

readg eraseg datump ready erase, datum, erased
I Riread 4 - - - - - -
E = Eerasedg - ER:readg * . "
5 - Wierase, - SRreadg! Ieraseg - *
W - * = R Letaseg® * Eerasedg
R - * = - Rireads4? S:datumpg Riread,?
ER - ER:(erased; S:datum, -* L * voo*

read)g?

SR - Werasey S:datumy -* Leraseg S:-% *
Notes 1: Only if selected by the bus arbiter.

: Retransmit the ‘read’ request.

: Transmit ‘erased’ followed by ‘read’ on bus below.

: Cannot arise if bus arbiter selects ER or SR preferentially.

2
3
4: Should preferably be selected by the bus arbiter.
5
5]

: Duiput queune above is examined to remove any conflicting erase.

If an erase request appears above and the item
exists below with status shared, the item is made
invalid. If the itemn has status R, the read request
is retransmitted above. If the item has status W,
the write is reperformed as though a write miss
had oceurred.

If a read response appears above and the item
is in state R, the value is stored in memory.

If an erased response appears above and the item
is in state W, the write is allowed to proceed. I
the item is in state R, the read request is retrans-
mitted.

3.2 The Directory Controller Protocol

The directory controller protocol is summarised
in Figure 3 with the same conventions as for the
memory controller protocol. The directory con-
troller performs the following functions.

If a read request appears below and the item
does not exist within the subsystem (its status is
invalid), the read request is sent up.

If an erase request appears below and the item is
shared or in state SR, the erase request is sent up,
and the item is marked W. If the item is exclusive,
an erased response is sent down. If the item is in
state ER, an erased response is sent down followed
by a repeat of the read request.

If a read response appears below and the item

is in state ER or SR, the response is sent up and
the item is marked as shared.

if a read request appears above and the item
exists below with status exclusive or shared, the
controller will respond and, if selected by the bus
arbiter, will send the request down. The item’s
status is changed to ER or SR according to its
original status, If the original status was ER or
SR, the controller will respond and will be pref-
erentially selected by the bus arbiter; no further
action is required.

If an erase request appears above and the item
exists below.with status shared, W or SR, the erase
request iz sent down and the item is marked as
invalid. Any erase requests in the output gueue
above are removed to prevent race conditions. If
the item is in state R, the read request is sent up
again. : -

If a read response appears above and the item is
in state R, the read response is sent down and the
status is changed to shared. If the item is in state
SR (which can’t arise if the bus arbiter preferen-
tially selects responders in state ER or SR), the
state simply changes to 5.

¥ an erased response appears above and the item
is in state W, the erased response is sent down and
the item is marked as exclusive. If the item is in
state R, the read request is sent up again.

3.3 The Replacement Strategy

A basic philosophy of DDM is the absence of
home address for data items. Instead of send-
ing items to a home address that might be physi-
cally distant, a processor with a data overspill will
tend to use the memories in his physical neigh-
bour. This makes the machine scalable in a wider
sense. In particular we achieve memory scalability,
and locality zones are extended from being a sin-
gle memory to a zone of adjacent memories. One
can, if desired, trade processors for memory. This
of course makes the replacement algorithms a bit
more complicated.

The replacement algorithm consists of three op-
erations: purge-up requests where replaced data
items move up in the hierarchy, injection requests
where purged up data items move down to even-
tually reside in some memory, and finally purge-
down requests which are needed when a directory
has no space for an itemn requested by some proces-
sors in its lower subsystem. The purge-down op-
eration is needed because of the lack of perfect as-
sociativity of the directories. It forces some items
to be removed from a subsystem to create space in
the directory for items coming from outside. A full
account of the replacement strategy can be found
in a separate report [3]. Here we just outline the
strategy, and, for the sake of simplicity, will ignore
the purge-down operation.

Replacement of a data item occurs at the mem-
ory controller level, when a read miss occurs and
the requested data item has no room. In this case,
a purge-up request is made to free space followed
by a read request. Purge-up requests at the mem-
ory level may eventually lead to purge-up requests
at the directory levels.

Each directory controller has associated with it
a small associative memory that is used to store
a few data items that are either being purged up
from the lower subsystem, or injected into it from
the next higher level controller or from a sibling
controller. We call such & memory the level buffer.
A level buffer is used to approximate the degree
of available space of the subsystem rooted at the
current directory controller. This iz indicated by
a threshold Tlevel, which controlsthe number of
itemns in the level buffer, denoted by leount. Items
in a level buffer may reside there, be sent up or
sent down according to the following strategy.

Resident items: items purged up from the lower
subsystem will reside in the level buffer as long as
the number of items in the level buffer is less than

949

Tlevel.

items moving up: whenever Icount exceeds
Tlevel, a number of items in the level buffer are
purged up by requesting purge-up cycles on the
higher bus; this will lead to a deerease of leount.

Items moving down: if an item is accepted from
the higher bus then the item will be temorarily
stored in the level buffer, until it is injected into the
lower subsystem; an injection cycle is requested on
the lower bus,

4 MACHINE BEHAVIOUR

The data that a processor creates itself will au-
tomatically reside in its own memory. So long as
no other processor request the data, the processor
that created it can access it without causing any
bus traffic. This is likely to cover the vast ma-
jority of data accesses. When a datum is created
by one processor and subsequently accessed by an-
other, the datum only needs to be copied over once,
There is no need to repeatedly access a remote da-
tum from its home location, as in most machines.
In particular, once a processor has acquired some
read-only data {(e.g. program code), it can retain
it in its local memory and need never again access
the remote copy. If two nearby processors request
the same remote datum, one of the processors can
obtain it from its neighbour without the need for
fetching it twice from the remote location.

A remote read takes at most 4N-2 bus transac-
tions on an N-level machine (ZN-1 read requests
passing up to the topmost bus and down to the
data, and the same number of read responses pass-
ing in the opposite direction). For example, there
would be at most 10 transactions on a 3-level ma-
chine. To make a datum exclusive (in order to
perform a write) an erase request goes up to the
directory controller level where the item is exclu-
sive; the directory controller acts as an arbiter of
any competing erase requests, and sends an erased
response downward. Thus (provided there is no
competing erase request) the datum becomes ex-
clusive after at most 2N transactions on an N-
level machine (N erase requests passing up and
N erased responses passing down). For example,
there would be at most 6 transactions on a 3-level
machine.

In general, the protocols have a combining ef-
fect for read requests going up, similar to that
provided by the IBM RP3 multiprocessor [6], and
a broadcast-data effect when read responses are

950

going down, thus eliminating the “hot spot” phe-
nomenon of the RP3. Thus in a 3-level machine,
if one processor has a datum and the remaining
processors request the same datum more or less si-

- multanecusly, all processars will get the datum in
no more than 10 bus transactions.

In general remote data accesses only cause traffic
within the subsystem concerned. For a read, only
buses on the path between the source of the request
and the source of the data are involved. For an
erase, only buses on paths from the source of the
write to copies of the data are involved.

The machine is scalable because there can in
principle be-any number of levels in the hierarchy.
Note that the data access protocols are completely
independent of the number of levels in the machine
(and of the number of subsystems per bus). In
practice there can be quite a few subsystems per
bus (e.g. 16), so only a few levels are necessary to
support. a very large number of processors.

The hardware organisation of the DDM was
partly influenced by a proposal of Hermenegildo
{4] to provide an address escaping mechanism in
clustered shared memory architecture (essentially
& hybrid between a shared memory machine and
a message passing machine). The DDM has many
similarities to Wilson’s proposal [9] for a hierarchi-
cal shared memory architecture, and certain sim-
ilarities to the Wisconsin Multicube [1]. However
all of these machines, unlike the DDM, depend on
physically shared memory providing a “home” lo-
cation for data. The Wisconsin Multicube can also
be contrasted with the DDM in that certain re-
quests need to be broadeast througout the entire
machine,

53 OTHER ISSUES

Here we discuss some of the many issues that
must be addressed in order to turn the basic idea
of the DDM into a complete and fully functional
machine.

5.1 Machine Configurations

To get a picture of possible configurations of the
machine, we will make the following assumptions,
which are intended as plausible approximations for
the sake of discussion. We assume there may be
up to 16 processors or subsystems on a bus: each
processor has 1 M words of memory and delivers
250 K lips or 12 mips ; the cost of the machine per

processor is $4,000. The maximum configurations
of the machine for different levels corresponding to
the numbers of levels in the bus hierarchy are then
as follows:

Level CPUs Mwords lips mips §

0 1 1 2B0K 12 4K
1 16 16 aM 200 64K
2 268 266 64M 3K 1M
3 4K 4K iG EOK 16M

Thus, on these assumptions, a 2-level machine
would be all that is needed for most purposes,
while a 3-level machine might be considered to be
the practical limit, supporting up to 4,000 proces-
sors and providing a total of 1 Glips. The physical
memory on the latter machine somewhat exceeds
the size of a 32-bit virtual address space. Any
larger machine would almost certainly require a
bigger address space.

5.2 Size and Overheads of Memories and
Directories

An important question is whether it is feasible
to store in the higher directories the exact status
of all the words below, or whether the higher di-
rectories should maintain only lower resolution in-
formation based on blocks of words. It appears to
be feasible to store exact information. Assuming
that memories and directories are 4-way set asso-
ciative, the item size is one word, and that each
level-1 memory contains 1 M words, each memory
or directory at a given level contains the following;

Level 1: 1 M items with 3-bit status, 12-bit key,
32-bit value,

Level 2: 168 M items with 3-bit status, 8-bit key,
Level 3: 2566 M items with 3-bit status, 4-bit key.

where the keys are the high-order address bits that
must be stored to support set-associativity. Thus
in a 3-level machine, the overhead per 32-bit word
of storing the extra status information and address
keys in both memory and the higher directories
is 34+1243+8+3+4 = 33 bits. Effectively we are
doubling the memory requirement in order to pro-
vide the DDM’s complete flexibility of virtual to
physical address mapping. This seems a tolerable
price to pay.

Figure 4: Splitting Higher Buses

5.3 Sparse Arrays and Null Values

Because all memory is associative, the program-
mer has complete freedom in how to use the vir-
tual address space. In particular, there is no space
penalty for sparse arrays. Only those items which
are in actual use consume storage. To get maxi-
mum benefit from this effect, a certain value (e.g.
zero} should be treated as ‘null’. Writing null to
an address will cause that item to disappear from
memory. BReading a non-existent item will yield
the dull value.

Sparge arrays will be particularly useful for the
SRI and Andorra models, since they are just what
are required for binding arrays. The present ver-
sions of these models go to some lengths to avoid
unused locations in the binding array. Implemen-
tation would be considerably simplified if the bind-
ing arrays were exact shadows of the corresponding
shared areas, without regard for which locations
were variables, or whether those variables were un-
conditionally bound.

5.4 Locking

Some operations, depending on the nature of the
processor, need to be performed atomically. For
example if the processor provides a test-and-set
instruction this will lead to a read-modify transac-
tion being performed by the memory controller. A
read-modify behaves like a write except that before
the data item is overwritten the original value of
the item is fed back to the processor. With such
an implementation of read-modify, together with
the general behaviour of the machine, it is possible
to perform spin-locking locally without generating
any traffic, as shown below:

951

Lock(X):
Start: Flag := Test&Set I;
if Flag = 0 then Exit;

Loop: if X=1 them gote Loop
slae goto Start;
Exit:
Unlock(X): X := 0;

where Flag is a machine register and Loop causes
local spinning until X is modified.

5.5 Broadening Higher Buses

Although most memory accesses will tend to be
localised within the machine, the higher level buses
may nevertheless become a bottleneck. However it
is possible to make the higher level buses effectively
as wide as is needed by duplicating higher level
buses and controllers to deal with different parts of
the address space, splitting first on odd and even
addresses, and then on successively higher order
bits of the address, as illustrated in Figure 4.

5.6 Offsetting Latency

The delay for remote memory accesses may sig-
nificantly degrade performance in larger machines.
A possible means to offset such latency is to use
a processor which can switch very rapidly be-
tween several “lightweight” processes. Although
not taken into account in the data coherence pro-
tocols presented in this paper, it seems feasible
to modify the protocols so that a processor will
perform a process-switch when it issues a remote
memory access, in order to be kept busy. For this
approach to be effective, more parallelism is re-
quired in the application. For example, if the pro-
cessors would otherwise spend half their time wait-
ing for remote memory accesses, twice the normal
parallelism is required to keep the machine busy.
The machine behaves as though it has twice as
many processors of only half the normal speed.

5.7 Secondary Memory

A data diffusion machine may have one or more
disks attached to it. Disks behave as secondary
memory subsystems which can hold overflow data.
Each disk will be dedicated to hold some portion
of the virtnal address space. It will have associ-
ated with it a directory containing those addresses
within its scope which are invalid, i.e. those which

952

have been written to externally and where up-to-
date copies have not yet percolated back to disk.
The disk manager aggregates data into pages, and
keeps recently accessed pages in a buffer. It re-
spomds to read request for data within its scope
that are not invalid, but it is given lowest prefer-
, ence by the bus arbiter. If selected, it will fetch the
relevant page from disk if necessary., In a similar
way, it can also respond to purge requests, accept-
ing data within its scope, fetching and eventually
writing back the relevant page as necessary. It
may use a packing algorithm to condense sparsely
populated pages when they are stored on disk.

6 CONCLUSION

The Data Diffusion Machine (DDM) is a scal-
able shared virtual memory multiprocessor where
the location of & datum in the machine is com-
pletely decoupled from its virtual address. In par-
ticular, there is no distinguished home location
where a datum must normally reside. Instead data
migrates automatically to where it is needed, re-
ducing access times and traffic.

The machine is scalable in that there may be any
number of levels in the hierarchy, Only & few levels
are necessary in practice for a very large number
of processors. Most memory requests are satisfied
locally. Requests requiring remote access generally
cause only a limited amount of traffic over a lim-
ited part of the machine, and are satisfied within
a small time that is logarithmic in the number
of processors, Although designed particularly to
provide good support for the parallel execution of
logic programs, the architecture is very general in
that it does not assume any particular processor,
language or class of application.

In future work, we plan to refine the design of
the machine to a lower level and to carry out de-
tailed simulations to verify its behaviour both in
general and particularly on the SRI and Andorra
execution models,

7T ACKNOWLEDGEMENTS

This work forms part of an informal collaboration
known as the Gigalips project. We thank the many
colleagues involved in or associated with the project,
for helping to contribute to these ideas, The work was
supported in part by the U.K. Science and Engineering
Research Council, under grant GR/D97757.

[1]

[2]

[4]

[5]

[6]

(]

(9]

[10]

References

J. Goodman and P. Woest. The Wis-
consin Multicube: a new large-seale cache-
coherent multiprocessor. In Proceedings of
the 15th Annual International Symposium
on Computer Archilecture, Honolulu, Hawaii,
pages 442-431, IEEE, 1988.

8. Haridi and P. Brand. Andorra Prolog-an
integration of Prolog and committed choice
languages. In [niernational Conference on
Fifth Generation Compuler Sysiems 1988,
ICOT, 1988,

5. Haridi and D. H. D. Warren. The Data
Diffusion Machine data access protocols and
replacement strategy. 1988. Internal Report,
Gigalips Project.

M. Hermenegildo and P. McGehearty. Ad-
dress Escaping and Reference Classification
in the Design of a Cached, Multiple Clus-
ter, Shared-Memory Archilecture, PP-SRS-
Technical Memo 12, MCC, 1987.

E. Lusk,'D. H. D. Warren, S. Haridi, et al.
The Aurora or-parallel Prolog system. In In-
lernational Conference on Fifth Generation
Compuier Sysfems 1988, ICOT, 1988,

G. Pfister et al. The IBM Research Parallel
Processor Prototype (RP3). In Proceedings of
the 1985 Iniernational Conference on Parallel
Processing, Chigago, IEEE, 1985,

D. H. D. Warren. The SRI model for or-
parallel execution of Prolog—abstract design
and implementation issues. In Proceedings of
the 1987 Symposium on Logic Programming,
pages 92-102, 1987,

H. Wesiphal, P. Robert, J. Chassin, and
J. Syre. The PEPSys model: combining back-
tracking, and- and or-parallelism. In The
1987 Symposium on Logic Programming, San
Francizeo, California, IEEE, 10987,

A. Wilson. Hierarchical cache/bus architec-
ture for shared memory mulliprocessor. Tech-
nical report ETR 86-006, Encore Computer
Corporation, 1986,

R. Yang. Programming in Andorra-1. August
1988. Internal Report, Gigalips Project.

