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ABSTRACT

The abstract data-driven machine model, named
LogDf, is developed for parsllel execution of logic pro-
grame. The exscution scheme supporta OR-parallelism,
Restricted-AMND paralielism and stream parallelism. Mul-
tiple binding cnvironments are represented using stream of
streams structure [E»sl:reatri}. Eager evaluation is per-
formed by pessing binding environment between subgeal
literals as S-streamis, which are formed using non-strict
constructors. The hierarchice] multi-level stream structure
provides a logical framework for distributing the streams
te enhance parallelism in production/consumption as well
as control of parellelism. The scheme for compiling the
dataflow graphs eliminates the necessity of any operand
matching unit in the underlying dynamic dataflow archi-
tecture. The details of binding representation and eflicient
representation fgr structures/lists are also included.

1. INTRODUCTION

Two fundamental problems related to the overhead
of synchronization and latency seem to be unavoidable in
control driven multiprocessing [6). Dataflow exscution
model. provides an efficient alternative, At the abstrast
level dataflow execution model provides the pessibility of
exploiting maximal parallelism, at the finest level of
granalarity. In an implementation of the execubion model
using finite rescurces, the high degree of paraflelism pro-
vide the mnecessary capability for tolerating memory
lateney and delays in the communication network. In
essance, the abstract execution model {not necessarily the
implementation) provides the framework for extracting
maximal inherent parallelism, as well as provide the flexi-
bility of grain size determination for an efficient implemen-
bation |23].

Dataflow execution model is purely functional in
nature and thus has evolved as one of the primary execu-
tion madels for Functional or single assignment languages.
Logic programa, though not functional in naturs, have cer-
tain properties that have attracted researchers to develop
data-driven maodels for parallel execution of legic programs
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[4,9,19,21,2527]. The imherent parallelism in logie ﬁrn—
grams is naturally exploited by the dataflow. execution
mechanism.

~ Typically the clavses in a logic program are viewed

a8 procedures, The variables used -in a clause are local to
the clause and the same variable name is treated as a
different entity in another clause. This noltien of local
seoping particularly makes logic programs amenable to
dataflow model of execution. The clauses in an non-
annotated logic program (when viewed as procedures)
differ from functions in that the inpuk/output relationships
of the arguments are decided at run time. Moreover, the
procedure  invocation  dering  execution i non-
deterministic. These characterisbics make the dataflow
execution schemes for parallel logic programs different
from the execution schemes lor purely Munctional counter-
part.

In this paper we consider the logic program is non-
annokated {i.z., without mode daclarations, read-onky
annotations or any other comtrol pragma). Moreover we
consider it important to implement “don't know®” non-
determinism and assume the top level query may require
all possible solutions.

1.1 Salient Features

Some of the salient features of the LogDi abstract
maching model are summarized below and will be ela-
borated in the remaining sections of the paper, ‘

(1) The execution model sopperts OR-parallelism,
Restricted-AND parallelism and Stream parallelism
in logie programs.

(2} Eager evalvation is supported by representing bind-
ing environment, produced by the solution of a
subgoal, as a non-strict multilevel stream of streams
structure (abbreviated as S-stream).

(3) S-streams allow high degree of parallelism in produe-
tion and consumption of binding environments. The
architecture provides efficient support for parallel
decomposition of the S-streams.

(4} For efficient implementation of OR-paralleliam, it is
imperative to provide an efficient mechanism for
storage and aoccess of multiple binding environments
[11,14,15.26). The hierarchical S-stream structure
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provides a principle for distribution of the binding
enyironments over multiple strueture memories as
the relaticnship between the producer process and
the levels of the stream is explicitly represented in
the structure. The structure alse allows a fairly
straightforward procedure for detecting the end of
stream (‘ecs’) condition, which is extremely impor-
tant for comserving resources in & highly parallet
environment. '

(5) The binding environment associated with a cell of the
S-stream is ‘closed’|14] and thus no dereferencing to
other levels is required. Moreover, the indexed bind-
ing representation provides constant time access to
any variable binding in the frame.

(6] The execution mechanism is based on tagged token
dynamic dataflow prineiple to support multiple
activation of reentrant dataflow graphs and recur-
sion. The principle of compilation in LogDi allows
the elimination of the operand matching unit (a typi-
cal bottleneck in the implementation of the dynamic
‘dataflow prineiple).

(7) The ‘syne’ problem [22] associated with restricted
Cartesian product operation is paturally solved in

this dynamic datallow framework without incurring
any additional overhead.

2. BACKGROUND

In the following discussion, we will view a elause a5 &
procedurs [20]. So a goal statement or the body of clause

=Ay Agy..

would be viewsd as o set of procedure calls constiluting
the body of the procedure represented by the clavse. The
subset of clauses in the program with similar head literals
(i.e., same predicate name and number of argrments) will
be referred to as condidate clanses for a procedure eall. An
entry to a procedure would take place on swcceasful
unification of the goal literal {equivalent to procedure call)
with the head literal of a clavse representing the pro-
cedure.

A pure Horn clavse legic program offers many possi-
bilities for exploiting parallebsm. The twe most common
forms of parallelism inherent in logic programs are OR
parallelism and AND parallelism {13]. Many other forms
of parallelism in execotion have been reported which have
evolved essentially from implementation dependent restric-
tions.

OR-parallel execution implies the execution of all the
clanses whese head literals wnily with the goal AND

parallel execution involves evecution of all the body
literala of a clause in parallel.

The major problems associated with AND/OR paral-
lel execution are the issuwes pertaining to management of
binding information and relating variable bindings to
activations of these parallel processes, In this paper we
propose an elegant solution to this problem in the context

of data driven parallel execution of logie programs.
The proposed model has similarities with two models

‘reported earlier [4,21], The basic similarity lies with the

concept of passing binding environments betwesn goal
literals in the form of & structure that is formed. using
non-striet constructors [1,2,3,17].

The model propesed by Amamiya and Hasegawa [4]
is an interpreter for logic programs developed in Valid-E
for dataflow mazchine DFM. The structurs used in this
model i3 a tres structure where binding information is at
the leal cells. The consumer process (the process to solve
a goal [literal] traverses the tree to identily the lsaves
before naing them. Moreover, the tree structure might con-
tain Tail’ cells seattered through out which are not
detected until a process attempls to consume one,

In the other model prepased. by Ite et.al [21], the
structure used is a stream, giobal to a number of OR-
processes. HEach of these processes may append sebs of
bindings te this global strueture or number of processes
may consume the binding envirenment, thereby causing
the usual hottlemeck problems. Due Lo the non hierarehiéal
nature of the structure it is difficult to relate a set of bind-
ings o process activations and establish any priociple of
distributiocn of the stream over multiple . structurae
memories. Moreaver, in & stream oriented processing
medel supporting OR parallel execution, it & extremely
important to detect the end-of stream (eos) information
efficiently. The counter scheme proposed in their report
for determining 'eos' wonld become extremely complex as
it would require propagating eounter updating information
through the levels of the proof tree. The grain of parallel-
iam seems to be too fine to be useful when AND/OR paral-
lel execution tends to be combinatorially explosive in
number of proceases,

3. THE PROPOSED DATA-DRIVEN MODEL

As indicated in the previous section, solving of a
aubgoal 15 viewed as procedure eall, where the procedures
correspond to the candidate elauses. A call corresponds to
an instance of a subgoal, where the subgoal literal is
instantinted with appropriate binding environment. The
dataflow graph for selving an instance of a subgoal literal
for a particular input Dbinding environment {henceforth
referred to as s BE frame®) is shown in figure 1
(SOLVE.LIT). The graph is activated on arrival of an
input BE [rame. The Activate node forms an instance of
the subgoal literal expression unsing the input BE to pro-
duce a goal token (henceforth referred to as o goal frame).
The Activate node is associaled with a literal expression
which is a constant argument of the node. The goal frame
is distributed to the inputs of the dataflow graphs for the
procedures corresponding to the candidate clanses for the
subgoal. All the procedures are invoked in parallel, thus

% The BE [rames &t any level containg the current statud of bindings

far the variables, In the BE frame for the first subgoal in the top-fevel
query, all the variables are unbound.
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achieving OR-parallel execution.

The procedure graph corresponding to a clause is
shown in figure 2. The Unify node corresponds to the
clause head. The literal expression for the head of the
clause is & constant argument associated with this node.
The body-expression block shown in the figure represents
the dataflow graph for the body of the clause. The
dataflow graph for the body of the clause is a SOLVE_LIT
graph connected o & sequence of PROCESS_LIT graphs
#s shown in figere 3. The SOLVE_LIT graph corresponds
to the first subgoal literal in the body of the clause, These
FROCESS_LIT graphs have 1-1 eorrespondence with the
other subgoal literals in the body of the clanse. As indi-
cated in the figure, the BE frames obtained from the solu-
tion of & subgoal literal is passed on to the next subgoal in
the body, in the form of o non-strict structure termed as
an S-stream (stream of streams).

A typical S-stream is shown in figure 4(a), The prin-
ciples underlying the construction of the structure is
clearly explzined in the next section. The strueture con-
sists of two kinds of cells- Beell and Scell. A cell has two
fields (car and cdr) as shown in fig. 4(b). The car field of &
Beell comtains a pointer to BE frame (o list of varisble
bindings). The car field of an Scefl contains a pointer to
another S-stream. The cdr field of both types of cellr con-
tains cither a pointer to the next cell in the same level of
stream or an end of stream {eos) indicator. A cell in the
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bindingenv | bindingenv binding env bindingenv
L=—L3---- '
ne [ Jeos]
binding env binding env
= ne MEH
binding env binding env binding env

Fig.4(a). S-stream Structure

[

Car Fiald : Cdr Field :
S: Seell/Beell Flag R: Ready Flag
P: Pending Flag

Fig.4(b). Cell Format

Fig.5. PROCESS_LIT

stream 18 created only when the car field could be assigned
a non-null value,

In the preposed model, we support eager evalustion,
by lorwarding the poioter to the baginning of an S-stream
to the consumer {unction, whenever the first cell of the
stream gets allocated. The edr field of a cell has a ready
{R} and a peoding [P} bils associated with i6. The R bit
indicates whether the value in the field iz defined or not.
Any operator trying to read the edr field gets suspended if
R bit for the field is not set. The P bit indicates that
there are pending requests for the value of this field.
When the R bit gets set, the value is forwarded to the
suspended operators. 0

A SGLVE_LI'ITE;} graph represents a subgoal literal
Ey. As shown in figure 3, it is sufficient to represent the
firet subgeoal in the body of 2 clause by 3 SOLVE_LIT
graph 28 only one BE frame i5 geoerated by a head
unification. It should be obvious that ecach subsequent
subgoal in the body of a clavse will have to be solved for
multiple BE's returned by the candidate clavses of the pre-
vious subgoal in the sequence, This feature of OR-parallel
execution necessitates the representation of each subse-
quent subgoal literals (&) by  higher order
FROCESS LIT(E;)  graphs. The graph for
PROCESS_LIT(E,) is shown in figure 5. The activating
input of & PROCESS_LIT graph is an S-stream of BE's
produeed by the previeus SOLVE_LIT or PROCESS_LIT
graph in the sequence of subgraphs in the body expression.
The PICK_Beell oparator collects BE's lrom the stream to
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provide one BE per activation for separate activations of
the same SOLVE_LIT graph.

The only sther node in the Clanse graph is the
Return operator, the Return operator uses the return
environment information (produced by Unify) to extract
the bindings of the output variables in the head of the
clause, from the stream of BE's received by the node.

3.1 An Example (OR-parallel}

Meow we will use an example logic program fo com-
pleta the overview of the execution mechanism.

Ot : P{I,Y_:l - q{xiz'}l R‘{ZJY}'
02 : Qfab).
8 Qla,c).
C4 : Qfb,e).
5 : Rib, ),

: Rie.g).

+ R(Z1,Y1) = §(71,¥1).
- 51:.5}.

1 8(ej).

= Pa,300,

2898

The query literal is P, XX}, There is only one can-
didzte clause [C1) for solving the query subgoal. We show
the clause represemtation graph of C1 in fg. 6(z). The
goal literal is P(a,33) and the head literal is P(X)Y). In
the figure, we show the respective representaztions at the
flow graph level. The goel literal is represented by the
goal frame which contains the bindings of the goal argu-
ments and also o pointer to-the hinding environment of
the query. Similarly, the head literal is represented by the
arguments (ef, section 4 oo binding representation). The
status of the BE corresponding to the body of the clauss,
after head umification is shown at the left output of the
Unily nede. The outputs Pt_Q, PL_R and Pt_C1 shown in
the figure are pointers to streams of BE's produced by the
SOLVE_LIT, PROCESS_LIT blocks and the Return nade

respectively.

In fig. 6{b), we show the internals of the SOLVE_LIT
block for the literal Q(X,Z). There are three alternative
candidate clauses (C2, O3 and C4) for solving the subgoal
Q(¥,Z) and all the three are assertions. The wnification of
Qfa,Z) with Q(b,c) fails and the block returns a null BE.
The BE's returned by the other two assertions are [X/a,
Y/®, E/b] and [X/a, Y/®, Z/c]. The Stream Cons opera-
bor allocates & cell for the new stream {pointed by Pt_Q)
on receipt of 2 non_null input teken. Once the first cell in
the new stream is created the pointer {address Pt_QJ) is
forwarded to the consumer graph (in this ease
PROCESS_LIT graph for R{Z,Y)). When the stream Cons
operator receives additional pon_pull input tokens, it
creates new cells to hold the token value and appends
them to the stream. The single level stream Pt Q iz
shown in fig. 8(b).

The pointer Pt.Q of the stream is inpat to the graph
for PROCESS_LIT R{Z,Y). As shown in fig. 7(a), the
function of PICK Beell operator is to sslect the BE frame

[{axx}, 1

/e

[%7a,¥74,2/41>

SOLYE_LIT Q(®.Z)
PLO]

| PROCESS_LIT R(Z,Y)]

Fi_R

Fig. 6(a). Clause C1
— [X/a,¥/4,274]
Activate

[(2,2), | 1 Qix,2)
X/ Y/4270%
Clause C2||Clause C3||Clause C4
Qfa,b) 0{a,c) alb,c)
y, [X/aY/s,Zic]=+ Mull
[€7a,¥/9,24/0] ¥

GSconsD ptg: Ly [ ——{ [e0s]
" [%/2,¥/8,2/¢] [X72,¥/8.2/b]

Fig. 6(b). SOLVE_LIT Q(X,2)

Fig.7(a). PROCESS_LIT R(Z,Y)

—[X/a,Y/4,2/c]

Activate
R{ZY)

[{e.¥),)
Kia ¥/ Zle
Clause C5||Clause C6|| Clause

R(b,T) Elc,q) C7 -

Mull [¥/a Y9, Z0c) L

.:CUI'IS . =
pt_m/_”_'-’_:lz:fﬁ"“
[%/a¥fg,Z/c] [%/78,¥/5,2/¢]

Fig.7(b). An Instance of SOLVE_LIT R(Z,Y)

pointers (held in the car field of a Beell) from the input
siream and cause two different activations of the
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Fig.8(a). Clause C7

—[21/e,Y174]

Activate
S(Z1.¥1

[{e,¥1 },l 1
Z1/c Y144 )

[Clause C8 : S(c,i)] [Clause C9: S(c,j) |
P ise 19 21760141
Fig.8(b). SOLVE_LIT S(Z1,Y1)

Pt_R1 Pt_R2: [ 4 |
[%/a,Y /9,2 /c] [%/a,¥/12/b]

[X/a,¥/j,2/c] [%/aYH Z/c]
Fig.8(c). Stream Pt_R

Pt.Cr: g 1=— T T3, [eos]

[rgl  DedZf] DAl [exdv]
' Fig.8(d). Stream PL_C1

SOLVE_LIT R({Z,Y) graph. The ountputs from thess two
activations of the SOLVE_LIT R(Z,Y) graph are shown as
Pt_R1 and Pt_R2, the pointers to the stream of BE's pro-
dused by the twa graphs. It should be noted that the
pointer PE_R is forwarded to the return operator (cf., fig.
6{z)) immediztely after the first cell of the S-stream is alle-
cated.

One of the instances of the SOLVE_LIT R(Z,Y) sub-
graph of PROCESS_LIT R{ZY) graph is shown in fig.
7(b). The principle of the construction of the stream
Ft_REl iz similar to the stream Pt Q discussed snrlier.
The second level atream of stream PL_R1 [pointed by
Pe_O7) is produced by clause OF {as shown in fig. 8(z) and
8(b)).

Az Pt_R1 points to a 2-level stream structare, the
stream pointed by PR (in fig. 7(a))] has § levels” The
structure of the 3-level stream is shown in fig. 8e). The
return operator in Gg. G(a)} decomposes the 3 level stream
atructure to extract the neressary binding information, {as
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prescribed in the Return Environment token) to produce
the single level stream Pt.C1 as shown in fig. 8{d).

3.2 Extensions for RHestricted-AND Parallelism

- The extensions required for supporting Restricted-
AMND-Parallelism (RAP) [16] in the execution scheme will
be briefly discussed here. Details were provided in [24]
The conditional graph expressions [CGE's) representing
the logic program are compiled into dataflow graphs. To
incorporate  the different  types of GCGE's, the
FROCESS_LIT graph is generalized inte PROCESS EXP
graph as shown in figure 9, where SOLVE_EXP could be
any of the fve graphs shown in figures 10(a) through
10{d). The remaining deseriptions in this paper are hased
on the combined OR/RAP model.

Fig.9. PRDCESS_EXP

1at == nth
Candidete Clause | - -| Candidate Clayae

Fig.10(a). SOLYE_LIT

PROCESS.EXP

Fig.10(b). SOLVE_SEDQ

ek
<__PAR_Activate
=

SOLYE_FXP(ET)
<_Cartesian Product__—>
Rl

Fig.10{c). SOLVE_PAR

Fig.10(d). SOLVE_GTEST/SOLVE_ITEST
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{a). ?P(X,Y), GCY.D). 123
w2 P(1,2),002,3). [R1#]4]
Pi-,Rthstsﬁ M(S,T).
= Plano 5 Ll 25,12, .

(b). 2P, %),4(v,2. 1
=7 F(1,1), 0(2,3).

P(R,S) - L(R,S), M(T, U). ﬂ
[#]

=5 P{1,2):- L(1,23, M(3,4)

3
__L‘—I:IF: — ﬂﬂﬂ
< Activate P(1,2) * A-':tiwta P{E__IT:) XY Z
oF:[112[of— ——Ha&:[a]1] EF |1 [1 turl — «—ta:[1]z]
z 3 5345 -Ur-ifu 2
LF:[¢4Te]4 | — +--—.RF; LF: EEﬂﬂﬂ +——RF:
R XY Z Y ToBedy ToReturn X Y Z

To Body To Return
Fig.11. Frame Representations and Relationships

F| [1,1,0F]

[1,b,QF] [2,3, oF]
H LF RE LF RE LF RF
[1 2] 4:";*:*] “‘;UZ.PE [*ibj* ["1 m,ﬂzl &5 ’l*] [q! S12
[1,1]] [4.4.4] -1,02,0% [b,&,4] [b,0203] .44 [01,-1,-1
[1b5]] [b,.4.4] [b,02,035] [#,4,¢] [-1,0203] | [¢44] [Q1-1,b
[2,1]] l2,4.4]  [a,92,03] [b,%,4] [2,92,03 44,4 [91, a
[a,8]] — — [4,4,4]1 [2,02,03 4,41 01,3, b

Q1,02,03 :the Tat, 2nd and 3rd fald value of OF respectively

Fig.12. Local Frames and Return Frames Created by Unification

. REPRESENTATION OF BINDING
ENVIRONMENT

The binding environmment is represented in memory
using a vectorized format, named as a variable frame
(Vframe). The local variables of a clawse are compiled
into seriel indices, where each index corresponds to a eell
in the Virame. For example, let us consider the clause -

P(a,B) = Q(B,C}, R(C,D).
The Virame associated with this clause is -

BCD

[e]#]%]
1 2 3

;where & stands for unbound

The internal representation of the clause would be -

P(a,1) - Q{1,3), R{2,3).
We classify the wvariable frames into three different
categories :

fi.} Query frame (Q-frama)
quiery or goal statement.
Lecal Frame (L-frame) : represents the binding of the
variables of the clause body after successful head
unification. The indiees refer to ecells in the same
frame.

: Virame associated with the

)

(iii) Return f{rame (R-frame) : represents the Heturn
environment. The Return environment stands for
the status of the variable bindings of the parent Q-
frame after unification. A pasitive index refers to the
same frame (ie, R-frame). and 2 pegative index

refers to o céll in the L-frame.
The goal and the head literal are represented as follows :

(1) Goal frame (G-frame) : represents the binding of the
variables of & goel It is represented as an array of

cells, whiere a cell corresponds to an argument in the
goal lteral. An index in a cell refers to the Q-frame,
a pointer to which is part of the G-frame.
(2] Head argument [HA) :
carguments of the head literal of the clause.
indices refer to the Virame =zssociated with
clause.

Figures 11{a) aad 11{(b) are provided to clarify the
representations and relationships between the dilferent
types of frames. Figure 11(b) needs some explanation.
The unification of the goal literal P3LX) and the head
P(R,3) causes K to be bound to 5. The sharing of two
unbound wvariables is represented by creating o G0Lth cell
{f1) in the LF. The negative index in the RF refers to this
new ¢ell 01 in LT,

We do not present the details of the unifieation alge-
rithm in this paper. Figure 12 shows various forms of L-
frame and R-frame that could be created by unification for
diffarent combinations of G-frames and head arguments.

represents the bindings of the
The
the

4.1 Struecture/List Handling

In parallel execution of logic programs, it iz impor-
tant to avoid copying of the whole structure to repressnt
the diferent bindings for the uninstantiated variables in
the original structure. For the ground stroctures [strue-
tures formed by ground terms), the gquestion of multiple
binding conflict does not arise and they can be . ensily
shared. However, for non-ground structures, i.e. strue-
tures containing wnbound variables, the variables may be
instantinted to different bindings at different stages of exe-
eution. In this section, we will present & straightforward
scheme to support structure sharing. .

In this scheme, a structure is represented as an
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(b). uuznv:-Pt [Hg|Tql ) HEAD: P(X)

aF: ﬂmﬂ
swls]

b.1.e.n1

n

4 Tq Z
Fi|-4]sm |-3]
¥ v nln?Z
LF: [5r2] ¢
st2| 3[4
2

.b.1.c.nil

2

Fig.13. Frame Relationships Before and After Unification
{sharing of sublists is indicated by the portions underlined)

Sframe which contsins & pointer to a structure templats,
Stemp, and a variable frame, SVirame. In the Stemp,
each element is either a constant term, a variable or a
pointer to & nested substructure (an Sframe). The
SVirame, represented as a vectorized formab, contains the
bindings of the variables which appear in the Stemp. Each
distinct variable in the Stemp is assigned & unique number
and this numhber iz wuwsed as anm index to access the
corresponding cell of the SVirame, For example, assuming
the hinding environment represented by Virome-1 s—

WX Y -

: [B[e19]
1 2 3

Virame-1 ,where @ stands for unbound,

and we want to represent the structure g{X,Y). First of
all, the variables X and Y in g{X,Y) are pumbered 1 and 2
respectively, and the Stemp for the sbrocture g{XY) is
represented as g{1,2). The SVirame is .

EIEX

becanse the bindings of variables X and Y are respectively
in the second and the third cells of Virame-1. If ptl is the
pointer to the Stemp g{1,2} the structure g{,¥Y) can be
represented as
Strame-gi : [pt1 [2]3]
For nested struetures (structures eontaining substrue-
tures) the same principle helds, However, the cells of the
SVirame in a substructure contain indices to the cells of
the immediate higher level SVirame instead of the cells of
the corrent Vitame. For example, we want to raprasent
the structure g(h{W),Y {2, W)} and the bindings environ-
ment is the same Virame-1. If hpt and [pt are pointers to
the templates h(1) and [{1,2) respectively, the lowest lavel
struetures h{'W) and {2, W} will be represented as

[Bpt [T] and [Tpe [S]T)

where 1 and 3 are indiees to the SVicame of higher level
structure g{..}. If sh and sf are poinker to the structures
(W} and X, W)} respectively, the Stemp gish,2,sl),
potnted Lo by gpt, will be the template for the Sframe-g2.

Hence, the Sframe-g2 will be represented as

Strame-g2 : [gpt [T]37]

- where the numbers are indices to the ¥irame-1.

Rapresentation of lists follows similar principles. But
it is important to appreciate the efficiency of the scheme
{or representing and sharing in the context of "unification’
and *return’ operations. In figure 13, we show two exam-
ples of unification that are general enough to illustrate the
principle.

In figure 13{a), it is assumed that the variable X in
P(X) is bound te a list [(2.Y.nilj(b.Z.nil)), where ¥ and Z
are unbound in QF. In this figure we show the relation-
ships between the frames before and after unification. The
Local frame (LF) for the clause (assuming twe variables in
the elause) is appended with two new cells to represant the
imported unbound variables (corresponding to Y and Z).
The negative indices in the Return frame {RI') are (as
explained before) offsets in the LF. The repressntation
scheme shows that the sublists (a. ¥ .nil) and (b.Z.nil} need
not be copied though they contain unbound variahbles.
The importent point to note is that for lists-of arbitrary
length, number of additional cells created after unification
depends on the number of unbound wariables in the list
before unification and is independent of the length of the
list.

In figure 13(b), we illustrate ancther case of
unifieation. The number of additional cells created for
representing the bindings for the local frame is propor-
tional to number of unbound variables in the concerned
ligt. The list b.Z.c.nil is shared between the local frame
and query [rame. Il the output logical variable Ho gets
bound later during the processing of the clause, the only
cell that gets affected ia the fourth cell in LF and the list
{3t2) remains unaffected.

In figure 14, we show the list, bound to the output
variable R, alter the Return operator completes execution.
Though the list (Sfa.5Mb.nil) contains uabound variables,
reprasantation of the list (shown boxed within dotted lines)
ig shared and eppropriste modifications are reflected
through the corresponding Sframe.
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lists is indicated by the portions boxed)

-

5. THE ABSTRACT ARCHITECTURE
(LogDf)

The dynamic dataflow execution model [7,18] allows
multiple tokens to be present on an arc of 4 graph and
thuz allows multiple parallel activations of the same
dataflow graph.  This allows multiple activations of a pro-
cedure, recursion or iterafion. For example, in the
PROCESS_EXP graph, multiple activations of the same
SOLVE_EXP(E,) graph is required for different BE frames
and these activations are overlapped in time. Each token
flowing on the are of a dataflow graph typically contains
an identification of the destination node. In dynamic
dataflow execution, the tokens related to differept activa-
tiona are identified by an additional pises of information
attached o them, known as tag or color [7]. So a node in
the datafllow graph fires [or becomes executable) when all
the inputs receive tokens with the same color or tag.

In & typical single ring struature that implements the
dynamie dataflow execution scheme [7,18] the tokens of
the same color and same destination are matohed in the
matehing unit to determine the fring condition of the
node specified ab the destination. The color of a foken is
changed® by an Entry unit associated with the input of
the reentrant graph, The Entry unit stores the color of
the input tokem and provides a new color. The
corresponding Exit unit at the exit point of the graph
restores the color stored by the Entry unit.

One of the major bottlenecks in the above mentioned
structure 15 the matching unit. We will show in the fol-
lowing paragraphs how we eliminated the matehing unit in
the proposed sbstract dynamie dataflow architecture for
the parallel execution of logic programs.

From the graphs (shown in figures 2, 9, 10(a)-(d)], the
following Entry-Exit pairs conld easily be identified. The
pairs are— Unify and Return, PICK _Beell and Scons
[level 1}, Activate and Seons {level 2], PAR_Activate
and Cartesian Produect. Moreover, it shonld be noted
that none of the Entry-type operators requires more than
cne inpuf to be activated (another input, if any, is a con-
stant). All the Exit-type operators require operands of
mn.h:h.ing eolor. In other words, all the Exit-Lype opera-
tors need to mateh operands corresponding to the same

3 The description is intenticnally kept ab a nonspecific and abstract
Lewel.

DSP.uu :[%input DSP/tail] RF |
DSP.ac :[Minput DSP/tail[Counter]
DSP_pb :[%4input DSP/tail|Counter|Next_Expr|
DSP_pa :[%{input DSP/tail[Counter| Streams |

Fig.15. Descriptor Format

getivation of the graph. The important characteristic of
these graphs which may be noted iz that ome of the two
operands for the Exit-type operators is produced by the
corresponding Entry-type operator. For example, one of
the operands for Return operator is the Return [rame
(RF) produced by the corresponding Unify operator.
Moreover, only a single instance of this operand {RF)
matches with a sst of operands (of same color) provided as
an S-stream of BE's ab the other input. Similar property
holds for all the other Exit-type of operators. For the
Seons operator or the Cartesian Product operator the
operand produced by the corresponding Entry-type opers-
tor is an S-alream deseriptor.

The properties of the dataflow graphs menticned
above ellow us to eliminate the matching unit. To elim-
inate the malching unit operetion, the Entry-type opera-
tor allocates a descriptor in a descriptor store to held one
of the operands for the Exit-type operator. ‘“The address
of the deseriptor serves as the color for a particular inve-
cation of a graph.

Twao other characteristics related te the BExit-type
operators are—

{1). Destination of the result packet is a prespecified
operabor type or may be determined from the color
of the input token.

(2). MNone of the aperators require & constant inpuk.

The above characteristics of the Exit-type operator indi-
cate that there is no need for an entry [or Lhe correspond-
ing nods in the node store. This property allows the result
tokens out of the Exit-type operators to bypass the node
store and reduce token traffic on the ring, The color of
the input token is deposited in a specific field ("input
DISP ftail’ in figure 15) of the deseriptor. The descriptor
types created /used by ench pair of the operators are as
Tollows—

{1). DSPuu (Unify—Return)

(#). DSPac [ActivateScons)

(3). DSPpb (PICK _Bceell—Scons)

{4). DSPpa (PAR_Activate —Cartesian Product)
The formats and the Relds of these descriptors are shown
in the figure 15. When an Exit-type operator receives an
input token, the operator uses the color information in the
token (ie., the address of the descriptor) Lo retrieve tha
second operand from descriptor memory. Similarly the
color of the output token and the destination of the result
is obtained from the descriptor.

The basic atructure of one of the rings of the abstract
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Fig.16. One Ring of the LogDf Abstract
Architecture (Details of Arbitra-

tion/Distribution are not shown)

dataflow architecture (LogDf) for the proposed execution
model is shown in figure 16. As the atructure shows, the
straam memory i spread over multipls banks and the con-
troller is similar to an lstructure Memory controtler[7) for
dealing with non-strict operations. The distribution
mechanism of 3-streams over the banks and tokens over
multiple rings play a significant role in the performance of
thiz architecture. The mechanisms developed will be
reported in a Mubure paper,

The strecture shown in figure 16 is self-explanatory.
Mode store representation of 8-queens program is shown in
figure 17. Basically there are two types of instructions in
the node store, namely, Activats and Pick_Beell. We will
explain the representation lor ome of these instructions.
The operation code is shown in column #2. In the case of
Activate, the enbry in column # 3 represents the goal tem-
plate associnted with the Activate nade {of. fOgure 1)
Entry in column #4 is a pointer to a linked list of candi-
date elanses. The count of exndidate elavses is indicated
in column #5.

We will only explain how resalt packeta as well as
execution packets are produced by the function units. The
‘function  unit - actually  produces result  packets
[ < eolor,destination value =), but when the destination is
an Exit-type operator, the destination is not in the node
store. In such cases, the packet produced by the function
unit is directly lorwarded as an execution packet
" «eolor,opeode,value > to the execution packet queue.

The descriptor based execution mechanism is
explained using one of the relatively complex functions.
Let ua consider the PROCESS_EXIF pgraph with
PICK_Beell as the Entry-type operator and Scons as
the Exit-type operator. When the PICK_Beell receives a
stream pointer as input, it creates a descriptor DSPpb as
shown in figure 15. The color of the input token (eg. an
address of DSPuu) is deposited in the “input DSP’ Beld of
D¥SPpb and the address of this DSPpb becomes the new
calor of the result tokens produced by the operator.

Following the principles of operation deseribed ear-
lier, the eontents of the various fields of the first input
token (execution packet) received by a Scona function unit
could be s follows— color: +DSPph; value: pointer to & 2-
level stream produced by one of the SOLVE_EXP graph;
opeoade: Beons. The Seons function will use the contents
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Source Qode (S-queen) <

O1 & queen([],Y,]).

C2 : queen([X| L1,Y,[C] Z]) - select{C,[X] L], RC) sale{C,Y 1),
queen{RC,[C] Y],Z).

03 & select (3020 Y1,Y).

OA = select[CJX1 Y], X RO)) - select{C,YRO).

05 : safe{U1[], W)

B : safe{U,[F] R],N) - nodiag{U,P N}, M is M1, safe{UR,M).

07 : nodiag(UP,N) = T1 is P+N, T2 is P-N, I"n=T1, Ih=T4%.

=~ queen{[1,2,3,4,5,6,7 8],[1.Q2).

Node Store Repra tion -
#1 #2 #3 #4 #5

1. Shv_Qun0 : Activate | (STO[I,V1) | Cl.Qun ]2
2. Exp_Sel 1 : Pick_Beell | Shv_Sel1 Exp_Saf_1

3. Sl Sel 1l Activate | (V4,5T1,V6) | C1_Sel |2
4. Bxp_Saf ! : Pick_Beell | Slv Saf 1 Exp Qun_1

5. Shv_Saf 1 : Activate | [V4,V3,1) C1_5af | 2
6. Exp.Qun.l : Pick Beell | Shv_CQun_1 Fotn

7. Slv_Qun_l : Activate | (VBST3,V5) | CLQun | 2
B. Exp Sel 2 : Pick Beell | Shv_Scl2 Kin

0. S 8«2 : Activate | (VL,VEV4) | ClSel | 2
10, Exp_Ndg : Pick_Beell | Slv_Ndg Exp_Add_1

11. 8lv_Mdg @ Activate | (V1,V2V4) | Cl_Ndg |1
12. Exp Add_1 : Pick Beell | Sl Addl | Exp.Saf 2

15. Blv_Add_1 : Add - i [1,V4,V5)

14. Exp_Sal 2 : Pick Beell | Slv Saf 2 | Rta _
16, Slv Saf 2 : Aetivate | (VL,V3V5) | ClSaf | 2
16. Exp- Add_2 : Pick _Beell | Sv_Add_2 | Exp_Sub

17. Slv_Add_2 : Add [V2,v3,V4)

18. Exp_Sub  : Pick Beell | Slv_Sub | Exp_MNeq_1

19, Slv_Sub : Sub {V2,Vi,V3)

20. Bxp Meq 1 : Pick _Beall | Slv_Meg 1 | Exp_Meq 2

21, Slv_Meq_l : Moeg WENEY

22, Exp_Neq ® : Pick_Beell | Siv_Neg 2 | Rin

23, Slv_Meq 2 : Moog (V1,V5)
24. Cl_Qun ¢ Cl | o1 c2
5. ClSel HE | | 3| C4
26. Ol_Safl : Q1 | O8] Co
ar, Ol MNdg | | ¢r

HEAD H_irg Mo ClArg Ne BODY

28, C1 : (VLD is | 1 | mull
20. C2 : (ST1,V3,5T2) | 3 | & | ExpSel_1
30, C3 : (VL,ETeVva) | 3 | 2 | null
31. C4 : [VI,STSSTE) | 2 | 4 Exp_Sel 2
32. C5 : (VL] v2) | & | 2 | null
3306 - (VISTIV4) | 8 | & | Exp_Mdg
34.07 : [(VLVEZVY) |8 | & | Exp_Add.2
Stemp Mem ;

1. 570 : [1,2,3,4,58,7.8] 2. 5T1 : [V1] Ve

3,572 : [Val V5] 48T : V4| V3] 5. 5T4 : [Vi]Va
8. 5T5 : [Voi V3| 7.5T6 : [ve|ve] 8 8T7 : {vzVa

Fig.17. Node Store Representation (8-gqueen)

of the ‘input DSP' field of the DSPpb as the second
operand. In any case, the Scons function creates s new
cell to store the frst operand (the "value" in the input
token) in the car field of the cell. Then retrieves the con-
tent of the second operand {*DSPuu, in this case) and uses
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- — Descriptor
L ) | Store
1 [ | - | [Controller
er Return Node [ Pick_Beenl || Scons I-Smns '
Gframe Node Contreller | Fetch| Cantroller (2) (1)
Fetch 1T TTT
RBC| PBC1 EXEC-0
Unity | *1 [Pigicer| [T *! [Fickter] Foteh
J A nl RB[” . o u.l I PBD1
& r 1 Pick_Cdr
t;ntm]ler niroller .;2 1 ”:j l
Virame Sframe/ i ¢
Hem Stemp L | N EXEC-Q
T Mam Controller /&1ocator
1 5-stream Mem to function Units
EXEC-0 #] 1 83 ; e3

Fig.18. Function Unit Organization for a Ring of LogDf

it as the color of the cutput token. The result packet (a
pointer to the new S-stream) is forwarded to the address
obtained from the ‘Next_Expr' field of the DSPphb.

Now we will consider the ease when the input token
received by the Scons function is nob the first one of this
color (identification is made by examining the flag in the
firat field of DSPpb.) In this case, a new cell will be created
a8 before and appended to the “tail’ available from the
DEPpb and the address of the new cell will be used to
update the ‘tail’ field. No result token will be generated.
The descriptor based techmique helps in reducing token
traffic on the ring significantiy.

6. ORGANIZATION OF THE
FUNOTION UNITS

The organization of the function units and various
memories for one ring of the LogDl is shown in fAgore 18,
We show one function unit of each type and their logical
relationships with the memery components. The simulator
uses varying number of these units. Due to brevity of
pressntation, the details of the operation of all the func-
tion units eculd not be included in this paper. The units
cperate in asynchronous fashion, The bold lines in the
disgram indicate buses similar to Common Data Buses
(CDB) in IBM 360/91. Read requests to any of these
memories are tagged with an identifier for the destination
and the tag is returned with the resalt.

A logie program is compiled into set of macro-] evel
operations (a8 shown in the node store representation in
figure 17) corresponding to the operators described in the
previous sections, Additional parzllelism is provided at the
level of microoperations executed in each of the aute-
nomous lunction unitz. The antoromous nature of the
function units and elimination of the Bxit-type operators
from the node store reduces the peossibility of quening at
the node store. :

Three of the most important funetions related to the
Sestream based execution are the Pick Beell, 3Cons and
the Return functions. We will provide a briel description
of these functions in the following paragraphs.

{i) PICK_Beell : The input of the funciion i & pointer to
an S-stream. The Mmetion eould be deseribed as & recur-
stve composition of multiple ‘Pick’ functions, Pick Tune-
tions are assigned to traverse the S-stream recursively to
search for Beells. The traversal is performed using the car
and edr pointera simultansously. The oparator is nonstrict
and eager, as it starts performing the traversal sven if
only the car field of the cell is defined and the cdr field is
undefined. The output of the PICK_Beell operator is a
sequenee of pointers, each pointing to a Virame (the
pointers are obtained from the car fields of B-cills). A
counter is associgted with this operator.. The counter is
incremented every time the function outputs a pointer to a
Yirame. The counter carresponds to the 'count’ feld of the
associated DSPph. '

The function unit corresponding to this function con-
tains & number of Pick_Car and Pick_Cdr modules that
operate in asynchronons Tashion, These modules perform
the recursive decomposition of the S-stream to provide the
B-cell outputs.

The register PTemp has a count field which keepa
track of the number of independent stream traversal
cperations on the S-stream in progress. The count feld is
ingremented by the Pick_Car module when it finds an S-
cell. The counter is deoremented on completion of the
traversal of a branch (i.c., Pick-Cdr hits 'sos’). When the
count feld in PTemp becomes zero, it indicates the com-
pletion of the PICIK_Beell operation. The completion of
the funetion is indieated by decrementing the count field in
the deseriptor by one. The rogisters PBC and PBD shown
in the figure receive the data forwarded by the S-memory
coniroller using the common data bus,



(ii] Stream Cons (Scons] : There is a deseriptor
(DSPac/DSPph) associated with each Scoms. The- input!
of Seons is a sequence of pointers, to streams or Virames,
or noll' values (fail). The function performed by the opera-
tor depends on whether the input is null or not. IF the
input is non-null, ie. & pointer, a new cell is alloeated.
‘The pointer. is written into the car part of the cell and the
address of the cell ia written into the cdr part of the
current tail (if any) as well as the ‘tail’ Geld of the
corresponding descriptor. The count Beld of the deseriptor
is also decremented. If the input is null, the only opera-
tion performed by the operator is to decrement the eount
field.

The anly output of this sperator is the pointer (o the
first generated cell when the first noo-null input is
received. Amother important lunction performed by Ghis
operator is the generstion of end-of-stream ['m’] indica-
tor for the stream under constraction, The ‘eos’ indicator
is written in the edr part of o cell. The count field in the
deseriptor is used to determine ‘eos’ condition.

(iii} Return : The two inputs to this functicn are a
pointer to the R-frame (created by Unify) and & poinber
to an S-stream produced by the last body literal. The
principle of cperation is similar to the PICK_Beell opera-
tor in the sense that it decomposes an input S-stream to
select the Beells, The additional functions performed by
this aperator are to create new Virames for each Virame
selected and append the pointers (to the new frames) to
create a single level stream. A new Virame has the same
content as the R-frame, except the cells with negative
indices are updated to the bindings of the indexed cells in
the received Virame. As in the Scons function, the
pointer to the stream i cutput once the first cell of the
oubput stream is produced.

7. CONCLUSION

In this paper we have systematically developed the
principle underlying the S-stream based data-driven model
for parallel execution of logic programs. The S-stream
structure introduced in thizs paper provides parallelism in
construction/consumption of multiple binding enviren-
ments in & non-strict eager (ashion. The eager evaluation
scheme is conservative compared to Amamiya's proposal
[4] in the sense that a cell in the stream i3 not constructed
prior o receiving o binding for the car field of the cell.
This is particularly useful in conserving processing
resources and improve processor ubilizetion. The relation-
ghips between the descriptors, the levels of the S-siream
and the processes provide a logical framework for control-
ling explosive parallelism which might result in an unres-
tricted AND/OR paralle]l execution of logie programs.

Optimal grain of parallelism is alse a major conesrn
in this project. Preliminary studies of a fine-grained

4 To simplily the Ggures, the symbal of Seons shown repressnts mul-
tiple instances of the Scons operation using & single stream desoripior.
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model (similar to the one proposed by Ito et.al. [21] ) indi-
cated that it was desirable to use macro operators at the
dataflow graph level and provide parallelism within these
aperators using sutonomous function units eapable of
exploiting microoperation level parallelism.

A simulator and a compiler for an earlier version
{OR-parallel} was designed for an architecture similar to
the Manchester-dabaflow machine. Performance evaluation
was done for & number of programs |10]. The operand
matching unit and the distribution scheme were found o
be the bottlenscks, The lessons learnt from that experience
led to this eurrent LogDl medel. The sirulator for & sin-
gle ring of LogDf is just ready at the time of this report-
ing. It proves the correctness of the execution scheme.
The performance results could not be included at this
time, We hope to report the results in the near futurs.

The ultimate goal of this project is to design a
multi-ring  architecture to solve a number of top-level
queries in parallel. We are studying the effect of different
distribution strategies for S-streams and deseriptors on a
multi-ring structure. Developments of technigues for con-
trolling parallelism and dynamic load balancing are also in
Progress,
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