PROCEEDMNGS OF THE INTERMATIONAL COMFERENCE
ON FIFTH GENERATION COMPUTER SYSTEMS 1988,
edited by ICOT. @ 100T, 1988

1051

A PARALLEL IMPLEMENTATION OF GHC

John R. W, Glavert and George A. Papadopoulos

. . Declarative Systems Project,
University of East Anglia, Norwich NR4 7TJ, UK.
{irwg.gp)@sys.nea.ac.uk

ABSTRACT

A parallel implementation of Guarded Hom Clanses
{(GHC) using graph rewriting techniques is described. GHC
programs are mapped to rewriting rules in Dactl, a compiler
target language based on generalised graph rewriting. We
provide a complete translation scheme for unrestricted GHC
programs paying particular atention to the OR-parallelism
involved and show that the mun-time test required in the
presence of user defined calls in the guards can be easily
and efficiently implemented in our el. We show that our
model supports a variety of execution schemes: evaluating
the body of a clacse after commitment to that clause or in
parallel with the evaluation of the guard. We provide a
number of examples throughout o illustrate our techniques.

1 INTRODUCTION

GHC (Upda 1986) belongs to the c]asa of the so called
committed-choice non-determinisric logic hmgua es; other
members of this class are PARLOG fGrc:goq.r 987 and
Concurrent Prolog (Shapire 1983). These languages
support comemifted-choice OR-parallelism and stream AND-
parallelism. In this paper we describe a parallel
implementation of GHC Ease::l on graph rewriting.

According to a graph rewriting model of computation,
programs are represented as labelled directed graphs. A set
of rewriting rules describes transformations which may be
performed on the graph by identifying and . rewriting
reducible expressions, or redexes {Barendrege er al.),
Independent redexes may be rewritten in any order, or
concurrently, so graph rewriting provides a natural model
for expressing parallel computations in which a number of
Processors may cooperale to rewrite a single graph with no
need for centralised control.

We show that GHC programs can be viewed as sets of
rewrite rules to be applied to an initial graph correspondin
to a goal query. On rewriting redexes wuhm this graph l.mtﬁ
none- remain, & final stage will be reached where the
resulting graph represents the answer to the query. GHC
clanses are translated to Dactl (Glavert er al. 1987), a
compiler target language based on graph rewriting intended
to serve as an interface between new generation declarative
langnages and novel computer architectures,

Some of the objectives of such a bridging computational
ang: ’

» to decouple the development of the languages from that of the
architcciures 5o that changes in either level should not

necesearily affect the other;
+ e reduce the number of required implementations;
+ ip provide 3 means of assessing the potential of languages fos

paralle]l exccution and in paricular to allow the testing of
wvarious execution srategics and models so that the most suiable
one for each language can be found;

« toact as a point of reference in comparing the implementation of
a certain language with that of another not belonging necessarily
to the same class;

+ finally, to free the programmer from the burden of considering
low-level and machine-dependent implementaton details,
2 DACTL

A program in Dactl (Declarative Alvey Compiler Target
Language) is a set of rewrite rules specifying a binary
reduction relation whith defines the]:-9351 ble
ransfiormations ut'élmpﬁ objects. Graph rewriting is often
esed to implement functional languages which have a close
resemblance to rerm rewriting systems. Dactl, however, is
fundamentally a language of graph rewriting, and although
it has been proven that certain, regular, classes of term
rewriting systems can be modelled by a graph rewriting
langoage like Dact]l (Kennaway 1988), the manslation of

GHC uses capabilities not found in term rewriting.

In addition to the specification of a reduction relation, &
practical rewriting system must say something about control
of evaluation or reduction straregy: the choice edure for
selecting candidate redexes from thosc available in the
graph. 1 can model very general and potentially
ambiguous rewriting systems for which there may be no
terminating (rormalising) strategy. Since no predefined
strategy is adequate, Dactl employs control markings w
determne the order of reduction.

As an example, the following Gragment of Dactl defines
some rules for an append function:

RULE

Appand [Nil y] => #y|

Append([Cons[h t] y] == #Cons[h “*ippend[t ¥]]:
Similar notation is used for rewritable functions, such as
append, and data value constructors, such a&s cons.
However, there will be no rules for rewriting cons nodes,
Eagh node has a symbol and a list of arcs to successor
nodes,

The first rule says that an rppend node with Wil as [irst
argument is to take the value of the second argument. That
argument is activated causing further evaluation if it is a
rewritable function. The second rule aPpI.ies when a Cons
node 15 the first argument. The result is a new Cons node
{bearing the suspension marker, ‘#") whose second
argument is a recursive call to Append. This call is
activated, using the *+" marker, and the notification marker,
«' on the argument, causes the cons nods to be reactivated

1052

when the result has been calculated. Hence the original
caller of Append will be notified of completion enly when
the argument 1o Cons has been evaluated. :

In general, Dact] rules take the form:
Pattern —> Contractum, hotivations, Redirections

The pattern may be marched against any suitable part of the
graph; it can be a simple graph or it can contain parers
operators. In partieular, there are four pattern operators: “+7,
‘=% “g" and any. The intention is that p+g matches anything
matched by p or g (union), p—g matches anything matched
by & but not by g (difference), psg maiches anything
matched by both p and g (intersection) and Any matches
successfully against any node.

The contrachum specifies new graph smuchure which may
contain references to the pattern graph. Afier a successful
matching, a copy of the contractum is buile, adding new
structure to the graph. The redirections part indicates how
the new structare is to be linked into the original graph. A
redirection involves a source node identifier (which nmst be
from the original graph) and a target node identifier {usually
in the new graph). All references to the source node are
changed to become references to the target node, Hence arcs
are redirected away from the source to the target,

The example was given in the shorthand form of Dactl.
The longhand form is as follows:

RULE

a:hppend([n v], n:Nil, y:Any -> Yy, a:=y|
a:Append(c ¥], e:Conalh t], y:Any, h:hny:

t:hny -> d:#Consih *b], b:*Append(t yl, a:=d;
The longhand form gives an explicit tebulation of the graphs
representing pattern and contractum. The components of a
rule are made very visible, including the root redirection
implied by the use of the *=»" separator between pattern and
contractum of rules.

Contractum nodes may be created active, using the *+*
marking, or suspended using a marking of the form “#',
*4#°, ... when rewriting of the node will only be considered
when a number of children bearing the notification marking
» gqual 1o the number of ‘4" markings have responded.
Mote here that the number of *#° is allowed to be less than
the number-of children bearing the notification marking; this
can be used to express non-strictness. The activarions
section allows a rule to make active some nodes in the
original graph which were matched by the pattern.

Only aetivated nodes will be considered for matching; if
a match is found, the corresponding contractum is built and
the redirections and activations are performed. However, if
no rule matches, we notify all nodes suspended on the node
in question by removing a ‘4" annotation, making the nodes
active when the last ‘#" is removed. This principle of
notification on matching failure is rather unfamiliar but
explains why many rules will redirect the root of the
matched graph to an activated constructor node. Since there
are no rules for the constructor, the attempt to match usin
the constructor will fail and hence those nodes suspend
on the constmctor will be notified of the result.,

Redirection has much the same effect as overwriting the
source with the target, and we will often describe the
process as overwriting. Although the most frequent kind of
redirection has a similar effect o the classical root-overwrite
of many graph reduction models, Dact also allows the
effect of overwriting non-root nodes. This is particularly
important for the GHC translation where it is used 1o model
instantiation of logical variables based on the vse of a

symbol var which is neither a constructor (since it can
appear to be overwritten when instantiated) nor a normal
function (since there are no rewrite rules for the symbol).
Symbeols like var are called overwritables, as opposzed to
the creatable constructors and the rewritable functions,

A rule wishing to suspend evaluation vntil a varable is
instantiated creates a suspended node with a noufication
marker on &n are to the varable node, but does not activare
the variable node itself. When another part of the
computation wishes to instantiate the variable, it redirects
arcs to the variable to the value to be given and it activates
the value, If the valoe is a constructor, matching will fail,
and all nodes suspended on the original variable will be
notified. The following fragment is not from the GHC
translation, but illustrates the principles using a logic
programming version of Append:

RULE

Append [Z:Var vy v] => #Append(*x v wl|

hppend [Nil v w:Var] => *Suce, wvi=ty|

hppend[Consih t] v viVar] => *Append(t ¥ n:ivVarl,
’ vi=*Cons[h nl:

Note the presence of the non-root overwrites in the rhs of the

last two rules using °:=' to instantiate the third (outpur)

argument of Append to the appropriaie value,

A form of rule ordering is available: rules separated by a
1" may be tried for matching in any crder whereas rules
following & ;" will only be considered if none of the carlier
rules :Ipﬂly. The sequenced form can be congidered a
shorthand version of an equivalent set of rules using pattern
difference operators instead.

Finally, note that repeated identifiers in the pattern of
Dactl rules are allowed, and they are taken to denote a test
for pointer equality during matching, In the next section we
will see that in the graph rewriting ework as supported
by Dactl, the pointer equality test is all that is nnged to
implement GHC's run-time test.

3 GHC

We agsume familiarity of the reader with GHC; here it
suffices to menton only the rules of suspension and the rule
of commitment:

= Unification invoked directly or indirectly in the guard of a clause
C called by a goal G cannot instaniiate the goal G.

= Unification jnvoked directly or indirectly in the body of a clawse
C called by a goal G cannot instantiate the guard of the clagse C
or the goal G until C iz selected for commitment.

= When some clause C called by a goal G succeeds in solving its

guard, it tries o be s=lected for commitment. To be selected, ©
st ficst confirm that no other clavse in the program has been

selected for G. If confirmed, C is selected indivisibly,
4 IMPLEMENTATION

The first part of this section describes the implementation
of the flat subset of GHC; we then go on to extend this basie
framework to accomodate the full version of the langnage
where calls to user defined predicates are allowed in the
guards. The translation to Dactl illustrated here is
simplified, but captures the essence of cur model.

4.1 Flat GHC

Here we assume that head unification, guard evaluation
and body evaluation (after commitment) are performed in
that order, In addition, repeated occurrences of variables in
the head are not allowed; these are eliminated by means of
extra calls to the unification primitive in the guards. We then
start by noting that the first rule of suspension (see previous
section) suspends any head unification that attempts to

Instantiate a variable in the call to a non-variable term in the
head; in other words all the head arguments that have non-
variable pattems specify conditions that must be satisfied by
input data received from the call. There is therefore an
.implicit input-output moding of the clauses as in the case of
PARLOG. In fact, a clanse does one of three things: it
evaluates the guard if the required input patterns have been
produced, it fails if the produced input patterns are
incompatible with the required ones, and it suspends
otherwise. We therefore translate any GHC clause to three
Dactl rewrite rules that model success, -failure and
suspension of head unification respectively. The GHC

program

ex|[H|T]),x) - gliH) | bL(T,X, ¥).
ex{X, £(Y¥)) :- g2a{¥), g2b(Z) | bBZa(X),

may be translated to Dacil as follows:

{0} Ex[pl p2] => #Search[~#0R[~0l ~62]].
- ol:*Exlipl p2], o2:*ExZ(pl p2l:
Exl[Cons[h t] =]
= ¥#Exl Commit [**GLl[h] t =]:
Exl{pl:Var p2] => ¥Exl[*pl p2):
Exl [Any Any] => *FAIL;
Exl_Commit [SUCCEED & =] =>
“Result [B1[t x y:Vaclls
Exl Commit [FAIL Any Any] => *FRIL;
Ex2[x Tup[®F" ¥]1]
. > fEx2_Commit [“guard x 2],
guard: FAND [“*G2a[y] “*GZb[z:Var]]l:
Exi[pl p2:var] => §Ex2(pl "p2]:
Ex2 [Any Any] = *FRIL;
Ex2_ Cosendt [SUCCEED x z] =5
*Regult [Body [B2a[x) B2b[z1]1]:
{5b} Ex2_Cememit [FATL Any Any] => *FAIL;

The top level rule {0} activates a set of paralle]
computations, one to evaloate the guard of each clause of the
GHC predicate. Each guard computation will either fail,
succeed, or suspend awaiting instatiation of goal variables.
Clauses whose guards succced must not proceed to evaluate
the corresponding body goals immediately, since there may
be multiple successful guards. Successful gnards therefore
build a closure Result [body], where mesult is a
constructor, and the argument bedy will evaluate the
appropriate body if activated. :

The search node and the tree of suspended or nodes
ensure committment of no more than one clause. The or
nodes will be notified on completion of the guard
computations, becoming active when the first notification
signal arrives since there is only one suspension marker, As
so0n as one guard succeeds, the orR node propagates the
closure for the corresponding body up the wee to the seazch
node. If failure reaches the search node then all guards
have failed and search reporis failure of the goal. The
definition of search and or is given by:

CR[FATL FAIL] => *FAIL|
OR[zes:Result [Any] Any] => *res|
OR[Any res:Result [Any]] => *res;
OR{FAIL p] => p|

OR[p FAIL] => p;

Search [p:FAIL] => *p|

Search [Result [body]] => *body;

The computaticen for the guard of each clanse uses a separate
set of three rules: The first rule {1a, k) models suecessful
head unification when all the required patterns are available,
The function then attempts to solve the corresponding guard
by activating a Dact] graph of the form:
#Clausenams_Commit [*guard conj enwv]

where guard_eseni is either a single eall or a conjunction of

b2b{z) .

{laj

{2a}
{3a}
{4a}

{5a}
{1k}

{2%)
{3k}
{db}

1053

such calls as described below. env is the set of variables
imporied by the body from the head or geard. New GHC
variables in the guand or body of a clause appear as new
Dactl nodes with the pattern var. If clavsename _Commit
succeeds in solving its guard, it overwrites itself to the code
for the respective clanse body which is wrapped in the
constructor Result {4a,b). Otherwise the result FATL is
returned {5a, bl

The second rule {2a,b)] models suspension if some
arguments are not sofficienty instantiated, leaving the
clanse to be retried when the arguoments become more
defined, The final rule {3a.b) detects failure to match,
passing FAIL to the of node, The Clausename_cCommit
rules will be extended in the next section where we
EIE%&“E the implemenzation of the run-time test for full

A GHC predicate with n clauses is translated by this
scheme into Sn+l simple Dactl rules: 1 for the top level
rule, 3 per clause for head unification, and two for guard
evaluation and committment. Many optimisations which
uswally reduce the number of Dactl rules are possible and
some will be illustrared later. Empty guards or bodies are
replaced by the value SUCCEED,

A guard is either a single call or a conjunction
represented using the ano function which can-be used with
any arity. A body can also be either a single call or a
conjunction. A single call is represented explicitly, while a
conjunction of calls is represented as Body (b1 B2 . bal
with one b for each body call. When fired it rewrites to the
same form as a guard:

Body[bl b2 .. bn] => KAND["~*bl ~*b2 _. “~*bn];

MND [SUCCEED SUCCEED .. SUCCEED] => *SUCCEED;
CAND[(Any=FRIL) {(Any=FAIL} .. (Any-FAIL)] —> #z;
AND [Any Ry .. Any] => *FAIL; '

The anp function monitors its children processes; if any of
the goals fails it terminates with Fatn; if they all suceeed it
terminates with svccesn; if the arguments are a mixture of
uncompleted goal computation and svccren for completed
goals, then the special form used on the right-hand side of
the middle rule indicates that the node should be suspended
as it is, to be re-awoken when any goal completes.

The above example belongs to the most general case
where the clauses have overlapping patterns as well as
guards. For the other three cases {unguarded clapses with
overlapping patterns, and clauses with non-overlapping
patterns with and without guards) a more direct translation to
a Dactl rewrite rule system is possible. An optimised
translation including use of some primitive m£:Mc: is
illusmated by the fcllguwing example:

primes (Max,Ps} :- true | gen(2, Max Ma),
aift (Ns,Ps) .
gen (N, Max,Ha) := Ne<Max | Na=|[N|Nsl), Hl:=i+l,
. gan (N1, Max, Nal) .
gen (N, Max, Ns) - HrMax | Ha=[].
sift ([FIXs],28) := true | Es=[P|2al],
filter(P,Xs,¥s), sift(¥s,2s1).
sift([], 2s) :- trua | Zs=([]. '
filter (P, [X|Xs1,¥s) := X mod P=:=0
| filter(P,Xs,;¥s).

filter (P, [X|X2],Y8) := X mod P=\=(
. | ¥s=[X|¥sl], filter(P,¥s,¥sl).
filtar(F,[]1,¥s) :- true | ¥s=[].

The equivalent Dactl program is shown below:

Primes[max ps]. => §AND([“0l ~a2],
ol:*Gen[2 max na:Varl, o2:*5ift[ns ps];

1054

Gan[n max ns] =* #§Search[*§FOR[*o0ol "oZ]],
ol:#Genl Cemmit [**Lesseq(n max] n max ns],
o2 :#GenZ_Commit [**Greater[n max] ns]:
Genl_ Commit [SUCCEED n max ns] =>
*Result [Body[bl b2 bB3]1,
bl:Unifyins Consa[nm nsl:varll,
b2 :Evall(nl:Var Plua[mn 1]],
bi;Gen[nl max nsl]|
Genl_Commit [FAIL Any Any Any] => $FATL;
Gen2 Commit [SUCCEED ns] =>
*Rasult [Unify[ns Will)|
Gen2_ Commit [FAIL Any] => *FAIL;
5ifr[Cona[p xs] z=] =» #AND[~bl ~bZ “~bi],
bl:*Unify[=za Cons(p zsl:Vaz]),
bZ:*Filter[p ns ys:Var],
. b3:*5ift([ys zs1]|
Slft [Mil ze] => *Unify(zs Wil] |
Sift[pl:Var p2] => #5ift("pl p2lr
Sifk [Aay Rny] => *FAIL;
Filter[p Cons[x xs] yal i
=> §S5earch[*#0R["el *eZ]].:
- ol:éFilterl Commit[“guardl p xs ys]
guardl: *Eval? [Mod[x p] 01,
o2: #Filter? Commit[*guard? p x xs ys),
guard?;*Not_ewval?[Mod[x p] 0]
Filter[p Mil ys] => "Uinify(ys Nil]|
Filter([pl p2:Var pi] =» §Filter(pl “p2 p3);
Filter [Any Any Any] => *FAIL;
Filterl Commit [SUCCEED p xs ys] =>
*Rasulb [Filter(p x& walll
Filterl Comemit [FAIL Any Any RAay] => *PAIL;
FilterZ Commit [SUCCEED p x x5 ys] =>
*Result [Bady (bl bZ]1,
- bl:Unify[ys Cons(x ysl:Var]],
bZ:Filter[p xs vsl]|
Filter2 Commit [FAIL Any Any Any Any] => *FAIL;
Primes needs no head unification, nor has it a guard, so we
execcute the body directly., Gen also needs no head
unification so we go directly to guard evaluation. sise has
non-overlapping patierns 50 no Search is required. Filter
has idenfical patterns, so the code for head unification is
shared, Many more optimisations are possible (some of
them particilar to Dactl) and these are described in Glanernt
and Papadopoulos (1988).

The unification primitive may be implemented as
follows:

Unify[x x] => *=S5UCCEED;

Unify[vl:Var wv2:Var] =» *50CCEED, wli=viZ|
Unify[v:Var t:(Any=-Var)] =» *SUCCEED, wi=*f|
Unify[t: (Any-Var) v:Var] => *SUCCEED, wv:=*t;

plus appropriare rules for decomposing structures and
comparin nd terms. The first rule is used when a term
attempts %og:::ify with itself. The next one unifies two
variables using the non-root overwriting facility of Dact] to
perform the assignment of one variable to the other. We do
not use activation markings in the redirection so any nodes
suspended on these variables will not be awakéned just to
suspend again. The last two rales assign a variable to a non-
variable term. Here, the use of the activation ing will
awike any nodes waiting for the result of this unification.
This definition of unification suffices for the case of safe
GHC. In the next section we will extend it to perform the
required run-time test for general GHC programs,

~ For completeness we describe finally the
implementation of the otherwise primitive (see the
appendix for a more efficient implementation); its definition
in Dact] is the following:

Otherwise [Any SUCCEED] => “SUCCEED;

Otherwise [Any Result [(body]] => *hody;
Otherwise[otherwise FAIL] => *otherwise;

An otherwise process is called as the top rewrite rule that
handles the OR-parallelism. The first argument is the clause
that calls the et herwise primirive and the second 13 either a
single clause that textually precedes the one with the

" stherwise or a group of clawses monitored by om

processes. otherwise remains suspended until the on
processes have reported back, If they have all failed,
otherwisze fircs the clause that nses the otherwise
primitive; otherwise it fires the body of the clause that
committed successfully,

4.2 OR-parallelism

We now show how GHC's full OR-parallelism can be
easily and efficiently implemented nsing Dactl's pointer
bqua“J;iel?iv facility. We recall that if user-defined calls arc
alloy in the guards there is a need for a run-time check to
determine whether a variable attempting unification is
allowed to do so. If unification could only proceed by
binding & non-local variable, unification sospends. This
suggests the need for 2 mechanism to determine at run-time
the current environment of the variable as well as the
environment where the binding is attempted. If the two
coincide, unification is allowed to proceed; otherwise
unification suspends. A variable is now represented as
var {env] where eaw denotes the curmrent environment of the
variable. Variables introduced in a guard are created in a
new local environment. When a guard commits, this
environment 15 merged with the calling environment,
promoting the new variables to the stams of variables in the
calling environment. :

GHC allows some computation in the body of a clause
to procesed before successful evaluation of the guard and
commitment to the clause. Although our model can support
this extreme form of ulative evaluation, we do not
believe it will be beneficial in general and consider first the
case where the body of a clause is only execoted after
commitment to that clause. As a consequence, new variables
introduced in the body are created in the environment of the
caller. To implement this scheme, a GHC call is represented
as a Dact] funcron with an addidonal argument identifying
the environment of the call, For example, the GHC query

=p{¥), QiX X).
is represented in Dactl as

Initial => #RND[*bl “b2].,
bl:*F|env:E x:Var[env]], b2:*Q[env x y:Var[env]]

where B, @, x, v 2ll share the same environment (Initial is

a Dactl reserved word indicating the initial graph to be
rewtitten), The clause

piX) = z(X, ¥} 1 a{¥,2).
is represented as
Plinh x] => #P Ceommit (inh loc:E “guard ¥].
guard:*R[loec x y:Var[locl]:
F Commit [inh loc SUCCEED y] =>
*3[inh v =z:var[inh]}l.
? Commit [Any Any FAIL Any] = *FAIL;

Any new variables appearing in the guard (eg. v above) are
given the local environment of that guard {1oc); however,
since the corresponding body will be evaluated only after
commitment, any new variables in it {eg. =) are given the
inherited environment of the caller (inh). Upon suceessful
gvaluation of the guard, ¢_Commic performs the redirection
loc:=inh thus merging the environment of its guard with
the inherited environment of the head; any loecal guard
variables that remained unistantiated will be given the
environment of the caller. The decision on whether to
instantiate a variable or suspend is taken by the unification

log:=inh|

primitive which is now represented as onify[ensv 1 £2]
where the £1 and 2 are terms and env is the environment
where unification is attempted. The definition of unify is:

(1] unify[Any = x] => *SUCCEED: .

12} Unify(env wvl:Var[env] v2:;Var([Any]] =>
*3UCCEED, wl:=vZ|

Unify[eav wl:Var(Asy] +2:Varlenvl] =>
*SUCCEED, w2:=wlj;

Unify [env vl:Vaz[Any] v2:Var(Any]] =>
#¥Unify [ent ~vl *“v2]|

Unify[env v:Var(env] t:{Any-¥Var[Any])! =>
*SUCCEED, w:=Wt|

Unify [env t:{Any—-Var[inyl} v:Var(env]] =>

) “SUCCEED, wo=%g;

Unilfylenv t:{Aoy-Var[any]} wv:Var|[env']] =>
#inifylenv £ “v]|.

Utlify[env v:Var[env'] t:(Any-Var[Any])] =>
funifyfenv “v tl;

Rules {21 to {4} cover the case of unifying two variables: if
the environment of the unify call is the same with the
current environment of any of these variables, that variable
is unified with the other one, otherwise unification
snspends. Note the opimisation in the fourth rule: although
Unify suspends on v1 and »2 there is no need for it o

d also on the environments of the variables. Since a
body is executed after commitment, the environment of a
variable in a guard can change only at that time; however, a
guard will commit only when all its local computation has
completed successfully. In other words once an attempted
unification suspends, it can only resume if the associated
variable is instantiated to a non-variable term by some
external goal. As a final point in the description of unifying
two variables we stress the need for suspending when the
environments of the variables and unisy are incompatible
even if such a unification does not create local bindings,
This is becanse variables could be instantated oo early,
Consider the following program:

P Y}

{3}
{4}
13}
(4}
{7}

{B}

= giX,Y) | teue.,
plX,¥) := £(X}) | trus.
g(X;¥) :- true | ==Y,
r{X} := true | X=a.

If the unification x=y reguired by the guard of the first rule

for p is always allowed to procesd, then the goal

1= X=a, piX,b).

always succeeds whereas the goal

= N=a, Y=h, p{X Y.

may fail if the guard qqx,¥) executes Ffirst. Our

implementation, however, respects the concept of anti-
timution (Ueda 1986) and treats the two goals the same

way. The last fuur rules define the case where a variable

artempts to uni t‘}r with a non-variable term. Again if the

environments of the variable and unify are cmpanblc,

unification is allowed, otherwise it suspends. So in the

following program

7= PIELE)), -

BUE) = (X)) | w «
qi¥) - truas | ¥Y=£{a).

the corresponding Dactl code

Initial => $RHD[*p ..].

pi*F [env:E Tep["F" z:Varlenvl]]l:s
#F_Commit [inh loc:E “guard body],
guard:*Q[loc x], bedy: _ ;

Qlinh ¥) => *Unify(inoh ¥ Tup["F" &])l;
will eventually suspend on the call Unifyie =:Var({a'l

Elinh x] =>

1055

a], where e=a', until some other process instantiates =,

Incidentally note that in some implementations {Levy 1986)
the above program would create cross-environment
references with certzin associated problems.

We will illustrate the exscution of a program usmg 8
eraphical re&’vtegenmunn to clarify further some of the issues

discussed The following program
= pIXER giX:Y).

BV - glv,ul | ziU®.

(X, ¥] := true | ¥=l, ¥=2,

=(X;¥) = trua | X=2, ¥=3.
‘has Dactl code given by

Initial => §RND[“b1 “b2],
bl:*Plenv:E x:Var[env]],b2:*Q [env x y:Varlenv]]:
Flenv v] => #F_Commit [gnv loc:iE “guarcd ul,
guard: *Q[loc v urVar(loa]]:
P_Commit [env log SUCCEED u] =>
YR env u w:Var[env]],
P_Commit lAny Any FAIL Anyl] => *FAIL;
Rlenv x y] => fAND[~B1 “b2],
bl:"Unify[env = 1], b2:*Unify[env v 2]];
Rlenv = y] => §AND["bl ~b2],
bl:*Unify[env = 2], b2: *uniﬂy{env v 311,

After executing the first rule, the state of the derived graph is
shown in fig. 1:

loc:=env|

§¥RND
* P =0
anv!E \‘

yivVar

x:Var

Figure 1

Mote that both goals in the conjunction and their associated
variables share the same environment. The nodes

representing the two goals are both active and can be
executed in parallel. Suppose that the one for e is executed
first. After rewriting it using the appropriate rule, the state of
the praph is as shown in fig. 2

/\

#P Cnmmlt

<IN\

wiVar

\ guard:*Q

wviVar

usvar

Figura 2

1056

Two nodes are again active, both representing different calls
of the predicate, ¢ The one shown in bold was introduced in
the guard of and the other is the original call in the goal
conjunction. Mote here that the former call and all the
variables first introduced in it share a different (local)
environment. Suppose that the node representing the call in
tl'u'}.guajrd is rewritten first. The graph now looks as shown
in fig. 3:

Figure 3

Two urifications are attemnpted in parallel but only one (u=2)
can proceed; the other will have to be suspended until the
variable involved, v, is instantiated by the s executing
the remaining g. The left one matches role § in the definition

of uniry (given above) and the right one matches rule 5 (fg.
4).
$LND
/ .
$P Commit ‘/ \
env:E
¥:Var
lac:E
#Aﬁ v:Var
SUCCEED
Unify 2z

A
1

Figura 4
The node corresponding to the unification of the variable u
rewrites to succesD and the node for u itself overwrites to 2.

However, the second unification has suspended awaiting
instantiation of the variable v because the environment of
Unify is not the same as the environment of v, The required
run-time tests have been performed as simple pointer
equality tests. In fact, the only active node is the one
corresponding to the goal g which, when executed, will be
able wo instantiate the variable v, since g and v share the same
environment, This instantiation will re-activate the node
corresponding to the suspended Unigy operation which will
sucecead after testing the compatibility of its two arguments,
since v will then be data.

Mote that the program used in the example does not
eonform exactly to the translation scheme outlined earlier,
We have introduced the optimisation that for a predicate
which has a single guarded clause, we can evaluate the body
directly if the guard succeeds. The predicate p is an example
of such a predicate.

This optimisation is one example of many which are
possible within the framework of Dact], The appendix 1o this
wpcr illustrates the code actually penerated by our compiler,

& explain there some further optimisations.

4.3 Speculative Evaluation

We now cxtend the above technigue so that the body of a
clanse is executed in parallel with the respective guard
which is allowed provided it does not atterpt to instantiate a
variable either in the guard or the caller of the clause until
commitment (second rule of suspension). This is achieved
by associating a ncw local environment with variables
introduced in the body. The pointer to the environment of the
body is sed to the commit rules which will promoie
body variables to the environment of the caller if the clause
is chosen, In addition, if we have information that a body
fails, we avoid committing to the corresponding clause since
it is doomed to fail even if the guard succeeds. Hence we
retain GHC sematics, but reduce the failore set somewhat.
As an example, let us reconsider the following ¢lause:

piX) - 2{XY) | S({¥,2).
This is now represented as follows:

Plinh x] => #Commit [inh locg:E lecb:E g “bl,
g:*R[locg x y:Viloegl],
bi*5[leck y z:&[leock]]:
Both guard and body are now fired in parallel; ynification
will again suspend if any incompatibilities in the
environments are detected. There is a standard function
commit now which is defined by: ’

{11 Commit[Any Any Any FATL Any] => *FAIL|
{21 Commit[Any BAny Any Any FRIL] =» *FAIL|
(3} Cemmit[inh locg lock SUCCEED SUCCEED] =
*SUCCEED;
{41 cCommit[inh locg loch SUCCEED body] =>
*Result [inh loecg lech body] |
{5} r:Commit[inh locg lech guard SUCCEED] ->
#r:

If either the guard or the body fails, we report failure using
one of the first two rules. If both the guard and body
succeed the third rule 15 selected which simply reports
success. The fourth rule is selected if the guard has
successfully terminated but the body is still executing; the
Commit rule 5 the necessary data to the monitori
Search process which choses a candidate clause and wi
merge the environments as required, The final rule is
selected in the case where the body has succeeded, but the

guerd has not completed; commit is suspended again waiting
for the guard to complete execution. Search is now defined
as;

Search[p: (SUCCEED+FAIL)] == %p; '
Saarch[Result [inh locg loch bodyl] =» bady,
logg:=*inh, loch:=%inh;

The Unify pﬁmiﬁva must now be modified to suspend also
on the environments of the variables; this is because a
suspended unification in a body should now resume either
when an involved variable is instantiated to a non-variable
term or when, after commimment to the clause, the
covironment is oted. Rules {41, {71 and (87 are
m?diﬁed accordingly and there is an additional auxiliary
rale:

[4"] Unify[env vl:Var(envl] v2:Var[env2]] =>
funify wait [env “vl “enwl “vZ ~eavi]|
{7T°) Unifylenv v:Var[env'] t] =>
#nify_wait [env *v “env' t env']|
{87} Unify(env £ v:Var[env']] =>
#Unify wait[env t env' “v *anv'l:
18} Unify wait[env tl Any t2 Any] =->
*Unify[env t1 £2];

5 PERFORMANCE

Initial results from analysing the performance of our
compiler from GHC to Dactl show that inclusion of the run-
time test does not significantly impair performance for safe
programs. The programs were run on a Sun 3/180 using our
Dactl interpreter written in C which executes approximately
1000 rewrites per second,

In the iable below, the first figure in cach entry shows
the performance of our GHC compiler; the second (in
italics) shows the performance of the handwritten eode for a

PARLOG o Dactl implementation.
Programs A R FC | GNC
Merge 2021 | 1211 614 | 2625
£100% 1007 2027 1217 Gid 26024
Primes 80404 | 58207 4558 83047
1 to 30000 82013 | 53726 4495 Ri%47
Quicksort 27234 | 16879 o044 | 25314
(30 els reversed.) | 27234 | 16879 o44 26313
Tree search 200 143 65 K1)
{15 els bin, mwee) 214 148 6. J49
Isotres go3 Hd G 193 1211
{15 els bin, wes) 82 568 177 268

A=Activations, R=Rewrites, GNC=Graph nodes created,
PC=Farallel cycles performed.

6 DISCUSSION AND RELATED WORK

_ The implementation of the flat subset of GHC is very
similar to the one for PARLOG which is described in
Glauert ¢t al. (1988) and Papadopoulos (1988). Since in
PARLOG the safety test is done at compile time, there is no
need for a run-time test. However, the compile-time test is
not always successful; safe programs may be rejected as
unsafe. A combination of the compile and run-time tests is
possible in our Dactl implementations and it could be useful
for both PARLOG and GHC. '

Although our implementation detects failure as early as
posstble it cannot abort a computation whose result is not
needed any more; this is becavse the notion of killing active
processes has no meaning in & graph rewriting model. If an
aNp process detects a failure from one of its children it
terminates iminediately, reporting faflure, but it does not kill
the rest of its child processes. In most cases these will

1057

eventually suspend waiting for inpur data which will never
arrive, Also, when an or process commirs to the body of a
clanse, the rest of the guards continue their execution
alchough they cannet affect the final result, This i:dg;:rf:cﬂ
acceptable by the definition of the language; as Ueda (1986)
peints out & truly parallel language may have to allow
possible uscless computation. However, for efficiency
reasons we would like to be able to terminate such
unnecessary computation. This is possible in our model by
means of a transformation technique which involves
enhancing a Dactl function with an additional parameter to
be instantiated when the computation of that function must
be aborted; indeed, it can also be used to suspend and
resume computation, which is useful for systems
programming and metaprogramming. This technique is
discussed in the implementation of PARLOG
(Papadopoulos 1988) and the reader is referred to that
document for further detgdls,

Finally, we note that our technique for detecting the
current environment of a variable (needed when calls to user
defined predicates are allowed in the guards) involves justa
simple pointer equality test. We believe that this techniqoe is
more efficient than the ones sed so far such as pointer
colonring or guard system numbers (Kishi er al. 1985).

Commitment 1s grfummd a simple non-root overwrite
which merges local an?ﬂm caﬁing environment and
does not involve the difficulties of other known schemes
such as handling cross-environment references (Levy 1986).
We would like to stress here the fact that, if desired, a
mixture of the two possible strategies (speculative and non-
speculative) can be used. Some of the clauses of a GHC
program may be translated to Dactl code based the first
strategy, and others to code based on the second. Although
speculative evalvation of the body of a clause in parallel
with the tive guard achieves the maximum degree of
parallelism, it remains to be seen whether it is an acceptable
strategy from the point of view of efficiency.

7 CONCLUSIONS AND FUTURE RESEARCH

We have presented a parallel implementation of Guarded
Horn Clauses based on graph rewriting. We showed that
GHC clauses can be seen as rewrite rules specifying
possible transformations on graphs representing goal
queries. We provided a complete translation scheme f%'om
GHC to Dactl, a compiler target langoage based on graph
reduction. This scheme is general enough to accomodarte all
kinds of GHC programs including the ones that usc nested
calls in the guards (the required Dactl code to run GHC

s as well as a number of example can be
‘ound in Glavert and Papadopoulos (1988)). The ability 1o
share subexpressions, an inherent property of graph
reduction, allowed the run-time test needed for such
programs to be implemented using a simple pointer equality
test. An additional advantage of such an implementation
stems from the fact that Dact]l will be used as a front-end to &
number of machines nam;l}y Flagship (Watson et al. 1988},
GRIFP (Peyton Jones ef @l 1987) and ZAFP (Slesp and
Kennaway 1984), :

The use of Dactl as the implementation language for
GHC allows the former to be used as a common basis for
comparing implementations of the latter with other
languages both logic and functional. This is discussed
further by Hammond and Papadopoulos (1988), A
performance comparison between our GHC (or PARLOG)

‘o Dactl implernentation on Flagship and a similar one for

PARLOG on Alice CTL (Lam and Gregory 19877 would

~also be interesting.

1058

We are currently investigating the extension of our
model Lo accomodate a wider family of languages, namely
the CP-family, P-Frolog (Yark and Aiso 1986) and a class
of equational (logic+functional) languages (DeGroot and
Lindstrom 1986).

ACKNOWLEDGEMENTS

We are grateful to the anonymous referees for their
constructive comments,

REFERENCES

Barendregt H. P., van Eekelen M. C. J. D.,
Glavert J. R. W,, Kennaway J. R., Plasmeijer M.
J. and Sleep M. R., Term Graph Rewriting, PARLE
Conference, Eidhoven, Metherlands, Tune 15-19, LNCS
259, pp. 141-158, 19587,

DeGroot D. and Lindstrom G. (eds), Logic
Programming: Functions, Relations and Equations,
Prentice-Hall, 1986,

Glauert J. R, W., Hammond K., Kennaway J. R.
and Papadopoulos G. A., Using Dactl to Implement
Declarative Languages, CONPAR'EE, Manchester UK.,
Sept 12-16, 1988,

Glavert J. R. W., Kennaway J: R. and Sleep M.
R., Dactl: a Computational Model and Compiler Target
Language Based on Graph Reduction, ICL Technical
Journal, May, pp. 309-537, 1987,

Glagert J. R, W. and Papadopoulos G. A., A
Parallel Implementation of GHC Based on Graph
Reduction, Internal Report, University of East Anglia,
UK., 1983,

Gregory 8., Parallel Logic Programming in PARLOG
the Language and its Implementation, Addison-Wesley,
1987, .

Hammond K. and Papadopoulos G. A., Parallel
Implementations of Declarative Languages Based on Graph
Reduction, Alvey Technical Conference, pp. 246-249,
University of Wales, Swansea, Tuly 4-7, 153'33},:|

Kennaway J. R., Implementing Term Rewrite Languages
in Dactl, CAAP '88, Nancy, France, March 21-24, LNCS
299, pp. T.ﬂz-_l 16, 1258,

Kishi M., Kuno E., Rokusawa K. and Ito N., The
Dataflow-based Parallel Inference Machine to Support Two
Basic Languages in KLI, ICOT, Japan, TR-114, 1985,

Lam M. and Griﬂrry 5., PARLOG and ALICE: A
an';é‘ge af Convenience, 4th ICLP, Melbourne, Ausiralia,
May 25-20, pp. 294-310, 1987.

Levy J., A GHC Abstrace Machine and Instruction Set, 3rd
International Conference on Logic Programming, London
U.K,, July 14-18, LNCS 225, pp. 157-171, 1985,

Papadopoulos G. A. A High-Level Parallel
Implementation of PARLOG, Internal Report §YS5-CBS-05,
University of East Anglia, UK., 1983,

Peyton Jomes 8. L., Clack C., Salkild J. and
Hardie M., GRIP - A High-Ferformance Architecture for
Parallel Graph Reduction, FFLCA'S7, Portland Oregon,
U.S.A., Sept. 14-17, LNCS 274, pp. 98-112, 1987.

Shapiro E. Y., A Subser of Concurrent Prolog and its
Interpreter, I00T, Tapan, TR-(03, 1983,

Slegp M. R. amd Kennaway I R. The Zero
Assignment Parallel Processor (ZAPP) Project, in
Distributed Computing Systems Programme, Peter

Peregrinus (ed), pp. 250-269, London, 1984,

Ueda K., Guarded Horn Clawses, D.Eng. Thesis,
University of Tokyo, Japan, 1986.

Watson I, Woods V., Watson P, Banach R.,
Greenberg M. and Sargeant J., Flagship: A Parallel
Architecture for Declarative Programming, 15th
International Symposizm on Computer Architeciure, IEEE,
pp. 124-130, Honolule, Hawaii, May 30 - June 2, 1988,

Yank K. and Aise H., P-Prelog: A Parallel Logic
Lanpuage Based on Exclusive Relations, 3rd International
Conference on Logic Prograumunﬁg London UK., July 14-
18, LNCS 225, pp. 255-269, 1986.

APPENDIX

GHC Code

gearch (Rey,Valua, t(_, 1l (Rey,Valua"),_)]
: t= true [Value=Value'.
ssazrch (Xey, Valus, t (X, _,Y¥}) := otherwise |
gearchl (Key, Value X, ¥) .
1= a@eaech (Key, Value', X) |
Value=vValue" .
1= search (Key, Value”,Y) |
Valua=Walua'.

sasarehl (Key, value, X, ¥)

aaarchl{Kéy.vnlua;K,II

Dactl Code
MODULE Search:
IMPORTS Arithmetic: Logie; Lista; Strings;: GHOC;

EY¥YMBOL REWRITABLE Search; Search Commit;
Sparchl; Searchl Commit;

FUBLIC Search;
BULE
E:urchtinh wo vl Tup["T" v2 Tup["L"™ v3 vd4] +5])]
=y #Search_Commit [inh “guard «@ vl v2 w4 3],
guard: *Eglvld w3l |
Search([pl p2 p3 pd:var[any] p5l]
=» fSearch(pl p2 p3 “pd p5):
Searchpl p2 p3 Tup["T" w2 “L:Var(hny] %3] p5]
=> #Ssarchipl p2 p3 “#Tup(["T" +v2 =1 v5] p5l:
Search [Any Any Any Any Rny] => *FAIL;
Search Commit[inh SUCCEED kay vl hny w4 Any]
=z #Unify[inh w1l w4]]|
Search Cosmit[inh FAIL v) vl w2 Any v3]
=» %Sgarchl [inh v0 w1 =2 5],

Searchl [inh w0 v1 »2 w3)
=> #Seacchl Commit([inh locl:E locZ:E
**Sgarchl [logl vl wiliVar[lool] w2]
“%Sgarchl[locZ vl =5:Var[loc2] w3]
wl wvd w5];
Zearchl Cosmit[inh locl:E Any SUCCEED Any
¥l vd 5] = *Upify[inh v1 41,
locl:=inh|
Searchl Commit[inh Any loc2:E Any SUCCEED
vl wd w3} = *Unify[inh +1 w5],
logl:=iah|
Searchl Commit [Any Any Any FAIL FAIL
Any RAny Any => *FAIL;
r:Seacchl_Commit [Any Any Any Any Any Any Asy
Any)] -* #r;
ENDMODULE Searchi

Note how the functionality of etherwise is embedded
implicitly in the rules defining $eazch instcad of using the
explicit, more meffic:lept, representation described in the
paper. Note also the optimisation in search Commit where
no local environment is created for eq because it is a safe
system primitive. This optimisation can be extended to
guards having user defined calls that are known to be safe
{possibly by means of a compile time test),

