PROCEEDINGS OF THE INTERMATIOMAL CONFERENCE
OM FIFTH GENERATION COMPUTER SYSTEMS 1988,
edited by ICOT. © ICOT, 1988

A DECLARATIVE SEMANTICS OF PARALLEL LOGIC PROGRAMS
WITH PERPETUAL PROCESSES

Masala Murakarmi

Institute for New Generation Computer Technology
1-4-28 Mita, Minato-lu, Tokyo 108, Japan

ABSTRACT

A declarative sermantice of a parallel programming lan-
guage based on Horn logic such as Flat GHC is presented.
The domain of input foutput (IO histories is introduced.
The denotation of a program is defined as a set of I/0
histories. The notion of truth is redefined for goal clauses
and sets of guarded clauses. The semantics of a program
is defined as the maximum model of the program. We also
show that the semantics is characterized as the greatest
fixpoint of the function obtained from the program. The
properties of programs which contain perpetual computa-
tion controlled by guard-commit mechanisms can be dis-
cusaed using the semantics.

1 INTRODUCTION

In recent years, several parallel programming languages
based on Horn logic have been investigated. Examples
are PARLOG [Clark 86], Concurrent Prolog [Shapiro 86)
and GHC [Ueda 88]. In such langueges, the notion of
processes which execute infinite computations controlled
by guard-commit mechanisms communicating with other
processes using input/output sireams can be represented
paturally. Several results on the formal semantics of these
languages are reported [Maher 87,5araswat 85, 87, Ueda
86, Shibayama 87, Takeuchi 86]. However, these results
are based on the operational approach. Thus, they should
be considered as a formal specification of the language pro-
cessing system. In order to give a logical base for program
verification methods or transformation methods, a kind of
declarative semantics is expected.

In pure Horn logic programming languages, the result
for declarative semantics based on the least fixpoint is
reported in [Apt 82, Lloyd 84). In this approach, the de-
notation of a program is given as ihe minimum model
of the set of Horn clauses, in other words, the set of unit
clauses which is equivalent to the program. The set of unit
clauses is characterized as the least fixpoint of the function
ohtained from the set of definite clauses. In this approach,
we can characterize the set of solutions as the logical con-
sequences of the program independently from the execu-
tion mechanisms. This approach is one of the best ways
of appreciating the clarity of logic programs. Extensions

of this approach for programs which contain infinite com-
putations are also reported in [Lloyd 84, Sakakibara 35].

However, these results are reported for pure Horn logic
languages, They cannot be applied to parallel languages
which contain the notion of a guard-commit mechanisem
directory. A model theory must be reconstructed for Horn
logic with the cormmit operator. Thus several extensions
are reported for such languages [Levi 8T, 88, Falaschi 88a].
[Leevi 88] diseusses the semantics of Flat GIIC programs as
the sets of guarded atoms. A guarded atom is a guarded
clause such that all aboms n the guard part and the body
part are unifications. For example,

D(Kareres Xy Yooy ¥o) £ —
X ='r|,---1.”l!'1.|I =*r,||Yi ='5|1:“-;Ym =4,.

"I"]]n::f can be congidered as unit clavses of Flat GHO,

Howewer, in this approach, the guarded atom describes
anly the relation betwesn the input substitutions and the
compute substitutions which are obtained when the goal
succeeds. It is difficult to discuss the infinite computation
of the program only with such relation. As [Takeuchi 86)
reported, there ave two programs which cannot be distin-
guished only by relations of input and cutput substito-
tions, and output different results when they are executed
in parallel with other processes. Thus, the information for
the intermeadiate result of the computation is necessary to
discuss the semantics of such programs.:

This paper infroduces a new declarative semantics for
Flat GHC programs which contain perpetual processes.
The notion of input/output (L/0) history is introduced
instead of the notion of the guarded atom. Infuitively an
1/0 history denotes an example of a computation path of a
program which is generated when the program is executed
without any failure or deadlock. We define the notion that
a goal clause or a set of guarded clavses is true wrt a sef of
I/0 histories. The semantics of a program is defined as the
maximum set of I/O histories which makes the program
true, in other words, the maximum model of the program.

The notion of a true goal clause wrt the model of a
program does not necessarily mean that the goal clause
succeeds on the program. That is, not only all successful
goal clauses are true buf also goals which do not succeed
finitely but can be executed nfinitely without failure or
deadlock are true. A goal clause with a goal which sus-

pends can also be true if the goal can be activated with
some input from other processes.

This paper also shows that the semantics of a program
can be characterized as the greatest fixpoint of the func-
tion obtained from the program.

2 GUARDED STREAM

"This section introduces the notion of the guarded stream.
For simplicity we only consider programs on the domain
of lists of {a, b} .

Def. 1

Let Var be a set of variables, Fun— {a, b, nil, cons}
be a set of function symbols. Each element of Fun has its
arity. The arity of a, b and nil is 0, and the arity of
cons 18 2.
Def. 2

Let Terms be the set of terms defined as follows.

(i) if r eVaror 7 € {a,b,nil}, then r €Terms.

(ii) if 7, € Terms, then cons(r, 7y € Terms.
Def. 3

A term T is said to be simple, when r €Var, 7 € {a,
b, nil} or 7 has the form of cons(X,Y), and X and ¥
are different variables.

Def. 4
A mapping, o1 Var — Terms is called a substitution if
it satisfies the following condition:

HE={X|oX # X, X € Var}, then ¥ is a finite set.
We expand the domain of substitutions fmrq Var to

Terms.

Def. 5
For each 7,7y, 73 € Terms, o1 is recursively defined as
follows. '

aX if #ia X € Var
oT = T if r €{a, b, nil}
cons(om,on) if v = cons(r, 1)

Def. B .
Let T be a simple term and X £Var.

X=r1

is a simple substitulion form or a substitution form
simply. X = X is denoted true.)

A substitution & iz denoted using a finite set of simple
substitution forms, for example,

og={k = cons(¥, Z), ¥ = a}.
cens(X, 1) is denoted [X|¥] and nil is dencted [.
Def. T

375

Let o be a set of simple substifution forms, f o is a
substitution or equal to |Jy_ .. & defined below for soms
substitution #, then o is be an w—substifution.

6o = 6
ﬂ_H.j = HL—U
{X = 7|X occurs in 7' for some (¥ = 1) € f,
(X =" & 8, and no variables occurring in ¢
occur in the left part of any element of ;)

A w=substitution defines a mapping from a term to
an infinite term.

Def. 8

Let V be a set of variables (V¥ < Var), and £ be the set
defined from a mapping o as Def, 4. If £ C V', then o is
restricied to V. I ENYV = ¢, then ¢ is invariant on V.

The notion of /O history introduced in this paper
corresponds to the notion of element of the Herbrand bases
for pure Horn logic programs. IO history i& an extension
or modification of a guarded atom of [Levi 88]. An If0
history is denoted as follows with head part H, which
denctes a form of a process, and the body part GU, which
denctes a trace of inputs and outputs of the process:

H: =G

H s defined in the next section. GU 15 a set of tuples
< o|lfy > where o ig a substitution which is expressed in
the form of a set of simple substitution forms, and I is
a formula which represents an execution of a unification
in the body part of some clause. Intuitively, < o|l} =
means that the arguments of the process are instantiated
with o, then unification 7y is executed. For instance, in
the following program:

pl(X,Y) =X = [AIX1], A = a |

Y = [BIYi], B = b, p1(X1,¥1).
plL(X,¥) - X =[BIX1], B =1 |

Y = [AIY1], A = a, p1(X1,Y1).

The following is an example of I/O history which de-
notes the computation such that pt reads a in input stream
¥ first, writes b in output stream ¥, then reads b and writes
a.

pl{E,¥): — {< {X = [A[X1],A = a}|¥ = [B|¥1] =,
<{y=[Af1],a=a}B=b>,
< {X = [A]X1],A = a,X1 = [B1|X2],B1 = b}|
Y1 =[a1]¥2] >, '
< {X = [AX1],A = a, X1 = [B1]X2],B1 = b}|
M=a>_.}

An I/ history of a process H represents ‘& possible
execution of the process. Thus, there exist different I/0
histories for different executions which commit to different
clanses. There may be different I/ O histories for different
schedulings.

376

The body part of an 1/O history represents a nor-
mal execution of Flat' GHC programs, thus GU is well
founded with the partial order of execution, namely, for
any ¥ oq[Uy >, < oo|lhy =€ GU, if oy C o, then Uy is
executable before [y,

G has several chavacteristic which correspond to the
properties of normal executions of GHC programs. In
the rest of this section, the notion of guarded stream is
mtroduced which characterizes the normal executions of
GHC programs.

Def. 9
Let 7 be 2 simple term and X & Var.

X1=+7

is & simple test form or a lesl form simply.

Def. 10

For a substitution o, X €Var, and a simple term 7,
< oluni(X,r) > is a guarded unification, where uni{ X, 7)
denotes X = 7 or X7 = r. & is the guard port of <
alﬂnifx,f} = and uﬂi{.’l‘.’rr} 15 the aclive part,

Intuitively, if uni(X,7) is a substitution form, it de-
naotes a unification which actually instantiates X, and if
it 1% a test form, it denotes a test unification.

Def, 11

Let < o|U > be a guarded unification. | < |l > |
is the set of substitution forms or test form defined as
fellowing.

l<elU>|={U}ue
Def, 12

Let GU be & set of guarded unifications. For < oq|uy >
y < oplug 2E GU,

< 7|ty = oguy >

holds if and only if oy C o3 and o7 # oy,
It is easy to show that < is a well founded ordering.

Def. 13
A set of guarded unifications GU is 2 guarded sireamn
if the following are true.

1) For any < o|lfy =, < m|ly > GU, if <
ﬂ'|j-[-r|_ }ié{ ﬂ'glUg = and U] and U-z have same
variable on their left hand side, then £ or [
is a test form and their right hand sides are
unifiable. Purthermere if LY is a substitution
form and UV is a test form then

< malliy > |l >
does, not held,

2) If < o|U »€ GU, then (X = 7) & o for any
< OX =7 = GU,

3) For any < 0|X7 =+ > GU, if and +" are
not unifiable, then (X = ') o for < o|l/ »e
eliB

4) For any < oq|lh >, < ou|llz > GUL I (X =
7)€ oy and (X = 7') € gy, then v and 7' are
unifiable.

Conditions (1) to (4) mean that all variable in GHC
programs are logical variables and if they are instantiated,
the values are never changed.

The following notion is defined to obtain the guarded
stream representing the computation of a goal clause from
the guarded streams which represent the computation of
each goal in the goal clause.

Def, 14
Let GUy, ..., GU, be guarded streams, and Gu,(l <
k) be as follows:

Guy ={< ol = |33 <ol e GU,,
WU € oV, < &|U' > G}

G‘uj;.n = Gu;,,LJ
{<o|lll > |3, 3 < |l > QU VU e &,
((¥5, < e"lU" =& GU; IV < &"|U/ =€ Guw)A
o= (o' — {7 < | € Gu U
(Ui € o, < a"[U =€ Gy }}

and let GIF be as follows.

Gl = U Gy,

k—eom

If U ia a guarded stream and if

{U] < o|U >€ GU} = {U)3i < a|U >€ GU;)

then GU is a synchronized merge of GUL, ..., GU,, and
is denoted:

Gl ... |GI,.

[f n = 1, then the synchronized merge can always be
defined and it is equal to (LY itsell

In Def. 14, for < o|lf =€ GU, if < a|U 5€ Guy then
that means I waits o from ouiside of GUL[... ||GU, and
waits nothing from GU;(j # i). T < o|ll > Gupn
then that means ' waite some inputs from outside of
G| ... [|GUs and waits that 7 is executed in some GU;
(7 # i) such that it is already found that it waits ¢¥ from
outside. If I waits /" € ¢ from outside of || ... || GV,
then U alao waits U/,

Consider following guarded streams.

Gl = {< {{=a}f =1 >}
Gy ={<{Y=>}X=2a>}

They represent computations of the gi (X, ¥) and g2(Y,
%) where,

Ei{x] "I':I H
galy, X :

In this case,
{U] < ol € GU) = 4.
On the other hand,
(U3 < |l > GU;} = {X=a,Y=1].

Thus GUS||GU; cannot be defined. It is impossible to
obtain the guarded stream which represents the compu-
tation of goal clavse g1 (X, ¥}, g2(¥, X) from &Tf; and
Uy In fact, neither X nor ¥ is instantiated by execution
of g1{X, ¥, g2(¥, X).

3 MODEL THEORETIC
SEMANTICS

This section infroduces notions which correspond to
the Herbrand base and unit clauses, for parallel logic lan-
guage based on the notion of guarded streams. FPirst, a
parallel language based on Horn logic is presented. The
language is essentially a subset of Flat GHC [Ueda 88]
with only cne system predicate, = : unification of a vari-
able term band a'simple term. Furthermore all clauses are
assumed to be in a normal form, namely all arguments in
the head part are different variable terms. However it
is not difficult to show that the language presented here
does not lose any generality compared to Flat GHC using
the madification of the transformation algorithm for the
strong normal form [Levi B8]

Let Pred be a finite set of predicate symbols. Each
element of Pred has its arity. We dencfe each element of
Pred using lower-case letters,

Def. 15 '

Let H, By, By,..., By be an atomic formula defined
from Pred, every term which appears in argument of H
be a different variable, and Uy, ..., Um and Uyy,. .., Ui
be simple substitution forms. The following is 2 guerded
clause,

H:- ;1,...,Upmlﬂn1,.,.,UM,BH.B:,....B,.

A finite set of guarded clauses is a program.
We define Var(H) = {X, X5,..., X} when H is
P{XI,XQ,...,X*}.

Def. 186

n

Let p be an element of Pred with arity &, X5, Xs, ..., X
be different variables and o be an w— subatitution. Then
ap(X1, X2, -, X)) 05 a goal.

Def. 17
A sequenece of goals: g, ...
Def. 18 |
For a guarded stream GU and an atom p(X;, X5, ..., Xi),
a pseudo [/0 history t is:

, On 18 a goal clause.

PEX]-.X-;,. " sxk:l : =G

where p €Pred with arity &, X, X3, ..., X} are differ
ent variables, and for every gu € GU if IV € |gu| then the
left hand side of 7 s an element of of V{GT) for some
where Vi{GLT) is defined as follows.

Vo(GU) = Viar(p(Xy, Xa,. .., X&)
Vi (GU) = W{GU)U :
{X[3gu € GU, JuniY, 7) € lgul,
" X appears in v, ¥ € V(GU) and Vgu' € GU,
if gu' < gu then X does not occur in gu'}

A, Xa, .o, Xi) is called the head part of ¢ and GU
is called the body part of ¢. Intuitively, GU only contains
variables which are visible from outside through the head
part.

In psendo [/0 history, the same computation can be
represented in several ways, In other words, if §; and &
are identical except for the names of variables which do
nat appear in the head parts, they are considered to rep-
resent the same computation. Thuos an equivalent relation
is introduced to the domain of pseudo I/ histories.

Def. 19
A mapping o : Var— Var is a renaming mapping if there
exists a mapping o', such that

i

oo !

=0dg.

Let G be a guarded stream and ¢ be a renaming
mapping. oG is a guarded stream, defined as follows.

oGl = {agu|gu € GU}
where
ogu =< o * fluni(cY, or') >,

for gu =< Oluni(¥, ') > and ¢+ is & substitution defined
as follows.

cwl={cX=0o7r[X =78}
It iz easy to show that if GV is a gearded stream, then

el is also a guarded stream.

Def. 20 _
Let #; : H: —GU, and &, : H : =GU; be pseudo 1/O
histories with the same head part H. If there exists a

378

renaming mapping ¢ : GUy — GU; invariant on Var(H)
such that &Gl = CU; then

1y =2 iy

holds.

It is easy to show that = is a equivalent relation. We
denote the quotient set of all psendo I/O histories with =
as IO = hist. Each element of I/O — hist is called an
/0 fhistory,

Def. 21
An interprelalion is any subset of I/0 — hist.

Deef. 22
Let ¢ be an IfO history and g be a goal. H : -0 is
& trace of g if the following (1),...,(3) hold.

(1) There exists an w— substitution ¢ such that
el =g.

(2) Forany < U e GU, 6 C .

(3) For any < 8| »e GU, if I is a substitution
form X = 7, then ¢ does not instantiate X
and if £ is & test form then o X = o,

ﬁ}ﬁappjng 7 does not instantiate a variable X if aX =
¥(€ Var) and there is no Z such that 02 = ¥ except X.

Def. 23

Let 1 be a interpretation and g be a goal. g is true on
I if there exists a trace of ag € I for some w—substitution:
o

For goals g1,...,4n, let &s,...,t, be their traces. If
they are 170 histories which are obtained when these goals
are executed in parallel, the shared variables in t; and
t; must have some value, and they occur as subterms of
values of the same variables in #; and #;, The following
notion is introduced to formalize these conditions.

Def. 24

1y .oy ln is variable compatible if for any i and § (1 <
4,7 < n), the set of variables which oceur in both ¢ and
£; is equivalent to Commen(t;,t;) defined as follows.

COM,(ti, ;) = Var(H;) N Var(H;)

COM; 4 (8, t5) = COMt;, 1)U
[X] 3¥ € COMy(ta, 1),
3r, which has the form of X, [X|Z], or [Z]X],
dgu; € GUT,
(Y =7)e o v(¥?=1) € [qu I
Yaul € GU;, il gu} < gu
then X does not occur in any U € |gul|A
Jgu; € GUG,
(¥ =1) € [gu;| v (¥? = 1) € [gu;])A
Vgul € GU;, f gul, < gu;
then X does not oceur in any I/ € |gu}].}

C’M&mml{h,t}-}l = U C'OM,
k—on
whera H,, denotes the head part of ¢, and GI7, de-
notes the body part, Obviously, for n = 1, #, iz variable
compatible.

Ief. 25

Let T be an interpretation and g,...,g. be & goal
clause. g1,...,4n is true on I if there exists a trace t; € [
for every g4(1 <1 < n) for some w— substitution o, and
there exists a synchronized merge GU||. .. [|GU, whers
GUy,...,GUy are body parts of elements of &,,... 1,
which are variable compatible.

The empty goal clause is always true,

It is easy to show by the following proposition that
Def. 25 iz well defined, namely the truth valueof ¢, . .. , 4.,
does not depends on which element e selected from the
trace of each goal.

Prop. 1

Let G307, ..., G, be guarded streame and o be a re-
naming mapping. If there exists GUy|...||GU,, then
there also exiats eGUY . .. ||e G,

The proof is straightforward from the definition of syn-
chronized merge.

For a given goal g, it is easy to show that g is true if
and only if the goal clause with enly one goal g is true.

Def. 26

Let GU be a guarded stream and V be a finite set of
variables. The restriction of GU by V 20 L V is the set
defined as follows. '

GU |V = {< oluni(X,7) > |
< oluni(X,r) >€ GU, X € V, for some k}

where

W=V
I{i+1 =Wu
{X[3gu € GU, Juni(Y,7) € jgul,
X appears in 7,¥ € V; and
You' € GU, if gu' < gu,
then X does not occur in gu'}

If GU is a guarded stream then GU | V is also a
guarded stream.

Def, 27

Let GLf be & guarded stream and # be a set of simple
substitution form. The sel G 4 § is defined as follows if
it is a guarded stream.

GUME={<allh>| GU,e = 0L &'}
Def, 28

Let D be a finite set of guarded clauses and T be an
interpretation. I is @ model of I} if for any t € I, there
exists a clause H : —Uy,..., Um|Xy = 7y, K =
Try By, .. By £ 0, each element of § has the following
form:

H:—{<{Un,... . Usm, Huns({ Xy, 1) >,...
iray {Uyltﬂ--sum:r}lmsl{"xhhfh] }}u
(GTl ... IGUY ™ (Up,-- - Upm}) | Var(H)

where (0 is the body part of some instance of a
trace {;{€ I) of the goal ¢B; for some w—substitution
= {Un . Fgm} U {X1 = 1,...,Xp =1} U &', which
is restricted to Var{H)U {X,,..., X, } and

¥ < U =€ (GUAl... IGU) M {Un,. .., pm [, B C o

The following proposition is easy to show from the

definition of models.

Prop. 2
Let M;i(i € Ind) be a class of models of D for a set of
indices Tnd. Then,
U M

iEfnd

is-also & mode] of I

From Prop. 2, it iz easy to show that there exists
a unique maximum model for 2 given D). The semantics
of D, the w—success sef of I} is defined as the maximum
model of D. A goal clavse g, ..., gm s brue on D if it is
true on the maximum model of D). Intuitively, the maxi-
mum moedel is the set of all computations without failure
or deadlock on £

The w—success set is defined for characterizing the goal
clauses which runs normally without failure or deadlock
on the program as true on the model of the program. How-
ever goal clauses which run normally are not necessarily
the successful goals. That iz goals which run infinitely
are regarded as goals that run normally. Furthermore a
goal clause suspending goal can also be true. Consider the
following example:

plX, ¥} :-X=al¥="h
q(X, ¥) :-Y =101 X =a,
t(X, Y) := X =a | true, p(X, Y, q(X, ¥).

Although goal +(X, Y) suspends on this program, if
% is instantiated to a, then the execution procesds. The
maximum fixpoint of this program conftains:

(X, Y): —{< {X = a}|true >,
< {x=a.}|Y1=rb‘..‘.=r,,
< {f=a}i?=2a>}

Thus, goal £{X, ¥) is true on this program. On the
other hand, let us consider the progrem obtained from the
previous program by replacing the third clause with:

e

t :- true | true, p€X, ¥, q(X, ¥J.

In this case, when goal © is invoked then goal clause
plX,), qf{X, ¥} is invoked and suspends, it cannot
proceeds the computation whatever process runs in par-
allel with +. Goal such as & are false on the semantics
presented here,

4 FIXPOINT SEMANTICS

This section discusses the fixpoint characterization of
the semantics of programs.

It is easy to show that the set of all interprefations
IP defined from I/0 — hist is a complete lattice with a
partial order of set inclusion. The maximum element is
1/ — hist and the minimum element is ¢.

Def. 29
Let [be o program. ®p : JP — IF is the function
defined as follows.

Bp(5) = Sn
{t] each element of t has the form of

H:—{< {Up,... U Huré(Xs, 1) >,....
cen < AUs1, 0 oy Uy Humi(Xn, 7a) =}
((GTAl.. . IGU) M {Up1,. . ., Um}) L Var{H)

for some clause m L) ;

H H _U§1l""lyﬂ‘-m|
A =T1|----|Xﬂ. = Ty Bhy. .., Be

where (7I; is the body part of a element of
the trace ¥; € 5 of o8,
o i5 a w — substitution such that

o= {U_q'h'-"ryjll'l-rx'l =T!:|--"|X.ﬁ. ="rll|.'}'l—|:'|:FJI
for some o', restricted to
Var(HYU {X,...,Xx}, and
dcCe

for all

< 8|U > (GUY|... ||GU) ™ (U, ..., Um}.}
For achain & : 5, 2 5 O

bound of 5 is dencted 55,

Def. 30
Let I be a complete latiice. A function f: L — L is
w—continuous from below, if for any chain8; : & 2 5 D

N{A(S)I0 < i} = A{Sile = i}).

It is well known that if f is w—continuous from below
then fis monotone, that is if §, D 5a, thenf(S1) D f(52).
The fallowing two propositions are well known (see [Park
64]).

.o, the greatest lower

380

Prop. 3

Let [be a complete lattice with the maximum ele-
ment, T, If f: 5 — [is w—continuous from below, then
[has the greatest fixpoint gfpf and,

gfpf =[|{/{T)n 2 0}

where fO(X) = X, (X)) = F(/(X)).

Prop. 4
If f is & monotone funciion, then:

gfef = H{X|f(X) > X}
where | J 5 is the least upper bound of 5.

Prop. 5
& is w—continuous from below.

proof:

(1) 2p(NS;) € N{@p(S;)} :
For any ¢ € ®p{[5;), there exists a clause in D:

H:—Up,.o Ugm|
Xi = T:h-"':Xﬁ - Th,;B'l.‘..--lB*

An element of ¢ has the form as following. ,

H: _{{ {Uplr“~1Upmr]’|“n*‘|:X'IITI:I Fyaas
coer = (U U, Hund(X, m) >JU
((GUL|... |GUL) M {Up, ..., Upm}) | Var(H)

where GLU; is the body part of an element of a trace (€
N{5;}) of oB; and = is a w—substitution which satisfies
the condition in Def. 29. From t; € N{S;}, ; € §; for
all 5. Thus for all §, ¢ € $p(5;). Since, N{€p(5;)} is the
greatest lower bound of {$(5])}, then:

t € N{25(5;)}.
(2) 25(N55) 2 N{®p(S;)} :

Assume ¢ € [{®p(5;)}. For any 3, t € $p(S;). An
element of ¢ has the form of

H: —{"C {Uﬂ, T ,U,m, }|uni{}{1,'r1] Farea
SRR {HQI,...,UM,HHHII(XMT*} }}U
(G| IGTL) & {Ups,-. ., Upm}) | Var(H)

where GU; is the body part of an element of a trace ;(€
MN{S;}) of oB; and & is a w—substitution which satisfies
the condition in Def. 29. For any j, since #; € §;, then
1; € [1{5;} for each i. Thus, { '@pl{ﬂ{gj}}

Pm'p.]
@p(l) O I if and only if I is a model of D.

prnnf:
if part:

Let I be a model of I} and ¢ € I. From Def. 28, there
exizts a clause: H:—lg,... . Um|Xi=mn,... X =
Tﬁlﬂlr-“rﬂl £ ﬂ

and t has the form as following.

H: —{":: ‘[Up,. % H.F"-! }|uﬂi[X1, Ti} - TR
veay {Ur EREE’ HM! }Iuﬂi.{X;,, r.h} }}U
((GU|... |GUL) ¥ {U,. .., Umb) L Var(H)

where U5 ia the body part of an element of a trace
& € I of oy and o i5 & w—substitution which satisfies
the condition in Def. 27 . From the definition of $p,
te @p(l).

only if part:

Assume ®p(f) 2 1, in other words for any ¢ € 1,
t € ®p(F). From the definition of $p(T),

t € {t| each element of ¢ has the form of

H:—{<{Un,...,Usm, Honi(Xy,71) >,...
peay S {U;l:' e rUjm1]luﬁ‘.l:xh:'rh] }]'U
((GUAJ. . NIGU) ¥ {Un,. .-, Uy }) | Var(H)

for some clause in D :

H: —U,:,'...,ﬂmi
Xi = Tj‘...‘Xh = T:II-TB'IT---TEk

where GU; is the body part of a element of
the trace t; & T of o B,;.
¢ 15 & w — substitution such that

o={Ups \ Upm, Xy =7, Ko =m}U o’

for some o', restricted to
Var(H)U {X;,..., X}, and

fCe

for all :
<O >€ (GU||.... |GU) ™ {Ups,... Upm)}

This is the definition of the model of D.

Thus, we derive the following theorem.

Theorem
Let D be a program and Mp be the maximum model
of D. Then:

Mp =({@}3(1/0 — hist)n > 0}.

5 CONCLUSION

This paper presented a new declarative semantics for
a subset of Flat GIC programs based on the maximum
maodel, Using the semantics, the solutions of programs
which contain perpetual processes controlled by guard
commit mechanisms can be characterized as the logical
congequence of the Programs.

The semantics presented here is a kind of suceess set
semantics. Thus, it is enough to discuss the results of
normnal computation. However, 2 frue goal clause on this
semantics 15 a goal clause which can run normally. This
does not mean that a true goal clause always runs nor-
mally, For example, if a subgeal of the clanse commits to
a different clause, then it can fail or deadlock. GHC is a
don't core non-deterministic longuage. Thus, a method to
characterize the set of goal clanses which run in any case
is also expected. We reported on failure/deadlock set of
GHC programs in [Murakami 88].

ACKNOWLEDGMENTS

I would like to thank L. Furukawa, the researchers
of the First Laboratory of ICOT and Professor Levi of

Tniversita di Pisa for their hc]pful d'iacnssirms.

References
[Apt 82] K. Apt and M. H. Van Emden, Contribu-
tions to the theory of logic programming,
J. Assoc. Comput. Mach. 29, [1982)

K. L. Clark and 5. Gregory, PARLOG:
Parallel programming in logie, ACM
Trans. on Programming Language and
Systems 86, 1986

Bl Falaschi, G. Levi, M. Martelli, and
C. Palarnidessi, A more general Declar-
ative Semantics for Logic Programming
Languages, Dipartimento di Informatica,
Universita di Pisa, Ttaly, Tech. Report,
January 1988

M. Falaschi and G. Levi, Operational and
fixpoint semantics of & class of commited-
choice logic languages, Dipartimento di
Informatica, Universita di Pisa, [aly,
Techn. Report, January 1988

5. Levi and C. Palamidessi, An Approach
to the Declarative Semantics of Synchro-
nization in Logie Languages, Proe. of In-
ternational Conf. on Legic Programming
87, 1987

[Clark 6]

[Falaschi 88a]

[Falaschi 88b)

[Levi 87)

[Levi £8]

[Llovd 84]

[Maher §7]

{Murakami 88

[Pack 69]

[Sakakibara 85]

[Saraswat B3]

[Saraswat 87)

[Shapire 86]

[Shibayama §7)

fTakeuchi 86]

[Ueda 88]

[Ueda 26]

381

G. Levi, A new declarative semantics of
Flat Guarded Horn Clauses, ICOT Tech-
nical Report, 1988

J. W, Lleyd, Foundations of logic pro-
gramming, Springer-Verlag, 1984

M. J. Maher, Logic Semantics for a Class
of Commited-Choice Programs, Proc. of
International Conf. on Logic Program-
ming 87, 1987

M. Murakami, A Declarative Semantics
of Parallel Logic Programs based on Fail-
urefDeadlock Set, to appear in ICOT
Technical Memo

D, Park, Fizxpoint induction and prpofs
of program properties, Machine Intelli-
gence 5, Edinburgh University Press, Ed-
inburgh, 1969

Y. Sakakibara, A Fixpoint Characteriza-
tion of Stream Parallelism in Logic Pro-
grams, Proc. of 2nd Cof. J585T, 1985 (in
Japanese)

V. A. Saraswat, Partial Correctness Se-
mantics for

CP[l,|,&], Lecture Notes in Comp. Sci.,
Mo, 206, 1985

V. A, Saraswat, The Concurrent logic
programming CP: definition and opera-
tional semantics, Proc. of ACM Symp. on
Principles of Programming Languages,
1987

E. Y. Shapire, Concurrent Prolog: A
progress report, Lecture Notes in Comp.
Sei. MNo. 232, 1988

E. Shibayama, A Compositional Seman-
tice of GHC, Proe. of 4th Cef. JSSST,
1987

A. Takeuchi, Towards 2 Semantic Model
of GHC, Tech. Rep. of IECE, COMPS6-
50, 1986

K. Ueda, Guarded Horn Clauvses, MIT
Press, 1988

K. Ueda, On Operalional Semantics of
Guarded Horn Clavses, [COT Technieal
Memo, TM-0160, 1986

