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ABSTRACT

This paper investigates some semantic properties of
concutrent logic languages. Concurrent logic languages
with a commit operator differ from pure logic languages in
the finite failure set, Since the new finite faflure set depends
on the computation rule, we define an operational semantics
based on a parallel computation rule and a fair search rule.
Failures with a parallel computation rule are shown to be
strongly related to partial computed answer substitutions,
The set of partial computed answer substinutions and the set
of finite failures are defined as the least fixpoint of a
transformation on pairs of interprefations,

1 INTRODUCTION

In this paper, we are interested in some issues
concerning the commit operator and its semantics. The
commit eperator is a primitive which was first introduced in
the relational parallel language (Clark and Gregory 1981)
and is present in many concurrent languages, such as
PARLOG (Clark and Gregory 1986), Concurrent Prolog
{Shapiro 1983) and GHC (Ueda 1985). The mechanism of
committing was explicitly designed for concurrent logic
languages o allow nondeterminism control. As already
noted in other papers {Saraswat 1986), the commit operator
strongly affects the semantics. In particular, the notions of
success and finite failure sets (Lloyd 1984) must be
reconsidered in the case of logic s with the commit
operator. As noted in (Takeuchi 1987), the intersection
between these two sets is in general non empty. Some
previous stodies on concurrent logic languages (Maher
1987, Saraswat 1986, Saraswat 1987a) aimed at the
definition of variations of the basic commit operator which
preserve a logical meaning to the underlying language, This
was achieved by 1mposing strong constraints n_n_r]:!a
semantically characterized language (almost deterministic
programs in (Maher 1987)), or by changing the nature of
the commit operator, {as in the case of the don't know
commil in (Saraswat 1986)). The standard commit operator
was only characterized operationally., For example,
Saraswat (19872, 1987h) defines a structured operational
semantics, which also takes into sccount the mechanisms of
synchronization of Concurrent Prolog and GHC. In this
paper, we try to preserve the original commit operator and
o stmudy the come ing modified semantics. We show
that failures depend on the computation role and that the
standard . notion of model theoretic semantics and the
negation-ps-failure rule (Clark 1978) do not make sense
any more. Then, we specify a parallel computation rule and
characterize the "enlarged” set of finite failures due to the
commit operator,

2 COMMITTED-CHOICE LOGIC
LANGUAGES

Committed-choice Iogic languages are based on Homn
Clause Logic (HCL), extended with the commit operator
{Clark and Gregory 1981, Shapiro 1983, Shapiro 1986,
Clark and Gregory 1986, Ueda 1985), which was
introduced in concurrent logic languages. We do not
consider the other relevant extension of concurrent logic
languages, ie. synchronization (such as explicit mode
declarations or read-only variables). Levi and Palamidessi
(1987) proposed an approach to the semantics of
gynchronization and Levi (1988) proposed a different
approach to the synchronization mechanism of Flat GHC.
We are currently investigating on the possibility to combine
our approach and the one inn&m'i and Palamidessi 1987) o
obtain a semantics for both the synchronization and the
control mechanisms.

In the following we assume, for a given program, F o
be the set of functors (with definite arity), denoted by a, b,
Epeny Pt b thie set of icates (with definite arity),
denoted by p, ¢, e, and X to be a denumerable set of
variables, x, ¥, 2, .... Constants are O-adic functors.

The set of terms T is the minimal set such that
¥ cT
Wy¥ee F,ooadic, W1y, b6 T, cfty, iy )e T

A subsrintion 19 is a mapping from X 10 T. An atom is
a formula p(#},...¢4;) where pe Pand t7,..0, T.

A program is a finite set of clauses of the following
form
H & Gj,..Gy |By,... B, (m, n20)
where H (head), the G,'s (guards) and the Bj's (body
processes) are atoms. 1" is the commit operator. The
predicates which appear in the guards are assumed to be
defined by standard Horn claoses (without commit).

The corresponding pure .ra;:‘r: program is obtained
simply by replacing "I" with "," and by interpreting the
Gj's and the By's as standard atoms.

A poal statement {goal) is a clause of the form
“— B;,....B;, (n=z0) If n=A{, the goal is the empry
clouse (dencted by OO).

The operational semantics of committed-choice



languages is the same of pure logic languages, apant from
the following rle (rule of comvmitment (Ueda 1987)):
When some clause C called by a goal & succeeds
in solving its guard, clanse C tries to be selected
for the exccution of &. To be selected, C must
first confirm that no other cliuses have been
selecied for @, If this is the case, C is selecied
and the execution of & commits to C.

Pure commitment {withoet synchronization) does not
affect the soccess set semantics (Maher 1987), provided
that we assign the success set a different meaning. In fact,
any answer substitution, computed in the corresponding
pure HCL program, is potentially computed in the
committed-choice program, where, however, we are not
gnaranteed that the substitution will always be computed,
since the program execution could commit to a different
path in the cxccntion tree. This is the reason why the
commitment does instead strongly affect the finite failure
set, which can have a non-cmpty intersection with the
success set (Takeuchi 1987).'A good semantic
characterization of a committed-choice program cannot be

based on the success set only. In fact, a query « p(x) can
terminate either with one (and only one) answer which
belongs to the success set, or with the answer "pfx) fails”
even if the success set contains instances of plx),

Example 2.1,

1) Mod{xx)e x201 2} Mod{x,-x)e— x=D1 #

This program computes (second argument of Mod) the
abzolute value of an integer (first argnment of Mod). The
choice between (1) and (2) is guided the guards, If the
computation commits to clause (1), the first argument is
certainly positive and the computation terminates
successfully.

Example 2.2,
1) Modfxx)e lx20

In this case, it is possible, becanse of the empty guards,
to commit to clause (1) even if the first argument is
negative, In such & case, the computation fails and clause
(2} will never be considered.

2) Modix,-x)e— =)+

The following example shows that the set of finite
failures depends upon the computation rle. .
Example 2.3.
1) plx) « lgixy), r(y).
3) qlfix).s(a)) « |

2) ris(x)) & |
4 gifix)gix)) e | +

The goal « p(x), with a rightmost computation rule,
{where r(y) is reduced before gix,y)), has one possible
snceessful computation only, For the same goal with a
leftmost computation rule (which forces 10 reduce gix,y)
first), we have two possibilities: either clause 3) is choosen
and the computation terminates saccessfully, or clanss 4) is
choosen and the computation terminates with a failure,

The following example shows that in general the finite
failure of 2 non ground goal does not imply the failure of
the goal instances.
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Example 2.4.
1) pix}e= |q(x). 2) qla)e |r.
3) qlbje | +

& p(x). has a finitely failing derivation (obtained by
committing to ¢lauses (1) and (2)), vet + p(b). has no
finitely failing derivations.

COur simple examples suggest the following remarks,

a) A committed computation can terminate with a
failure even if the goal has instances in the success
set,

b) Failures are affected by the computation rule,

¢) The negation-as-faflure rule is not scru_nd for finite
failure. In fact, in our example 2.3, + pifia)) can
fail, yet —pfffa)) cannot be considered a logical
consequence of (some sound logical extension) of
the program, since p(fia}} is a logical consequence
of the comresponding pure logic program. :

d) It is not possible to infer the existence of a failure

*for a goal & from the existence of failures for a poal
', such that  is an instance of (7"

The th]nm of (finite) failures, for a given
computation rule, consists in characterizing the atoms for
which there exists at least one (ﬁui:el;r} failing reduction
path. This problem will be considered in the following, in
the framework of a specific {parallel) computation rule.

3 OPERATIONAL SEMANTICS

We now introduce some general definitions which
extend the classical comesponding notions to our
framework. The computation rule is AND-parallelism,
igi‘uinad as any possible interleaving of the Hterals in the

Definition 3.1 Let W be a program and let
Si=¢=Aj,... Ay be a goal statement, If

(&) IB+Gy,...G 0 By,...BpeWand Imgu &
bctmuﬂnnd&;[lgiﬂ-:] .

(b) «(Gj,....G,)P has a standard refutation
computing an answer substintion

(c) Sl-_” Eé‘fﬂ;,...,ﬁj,l,ﬂr,...,Bk,.‘l_l:+f.,.,."7lﬂ,] o9

then 8,y is a potential reduction of §; using mgu %
and the computed answer substitution @' for the guard
G1,...,G. The notation §; F+9 S;,; will denote that S;,;
is a potential reduction of §;, by substitution . If for some
120 S& 8§y |»%15; [»92... |=»%n§,=Tand
= By Dye... » 1, where - is the usual composition on
substitutions, the relation: § % *T holds. ‘-
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Definition 3.2 Let W be a program and

§=¢ Aj,....,A, be a goal statement. A porential
derivarion for § in W is a (finite or infinite) sequence of
potential reductions starting from § and using (variants of)

the clauses of W, *
We sometimes use a notation which points out the
clauses applied in the derivation. For example

5 l—:‘l——} T means that the potential derivation for §
has lengﬂl m and uses the clauses Cy...Cy,.

Definition 3.3 A goal statement « Aj,....A, has a

potential refitarion (in W) iff there exists a derivation
Ap..A, bt O

If this is the case, a potential derivation of e Ajp iy in

W werminates successfully and ¢ is the computed answer

substinution. *

Definition 3.4 An atom A is not rewritable if there is no
clause in W, whose head is unifiable with A. Anatom A is
nat reducible if it is not rewritable or, for every clause

Il « G B eW for which there exists an mgu & between
Hand A , & ¥ has no refutation. *

Definition 3.5 Let W be a program and

5% = Ap,...Ap, be a goal statement. A finite potential
derivation for § in W can succeed (potential refutation) or
fail. A failed derivation is one which ends in a non empry
goal containing an atom which is not rewrirable, A puarded
failed derivation is one which ends in 2 non empty goal

containing an atom which is not reducible. *

In our definition we do not consider infinite
computations as failures.

From the above definitions it is easy to see that the only
difference between the concept of porential derivation,
pm‘enn‘ut refutation, etc... and the conventional SLD ones

Apt and van Ernden 1982) is that the use of a clause for a

uction in a commirted-choice language requires a

rchmma.rjr solution of its guard. Definition 3.5
distinguishes two kinds of finite failures for potential
derivations. The notion of failed derivation is similar to the
standard one, while the notion of guarded failed derivation
takes into account possible failures caused by the guards.

The main difference betwesn a committed-choice
program and the comesponding standard HCL program,
apart from the evalvation of guards, is that every
(committed) derivation is, roughly speaking, deterministic.
MNamely, the commit rator allows only one derivation
and backtracking is inhibited. There is still a degree of
uncertainty in the choice of the clause to be used for
reduction when more goards are satisfied. This kind of non
determinism, typical of committed-choice languages, is
usually called "don't care” nondeterminism because it is
based on the assumption that the specific clause chosen for
reduction is not relevant to the search for a solution.

The operational semantics is defined in two pants. The
first one comresponds to the success sef, while the second
ane corresponds o the sed of finile failures.

If p isa predicate, then the success setof p is
S(p) = { pity,ctp}| 31, t'eT such that
Pt at'y) 122* 0, d(e' =1ty B(1') =1, }
where ¥ is the computed answer substitution,

The set of finitely failing atoms is
FFgip)={ p(ts,...tx} | p(t;,...t,) has a guarded failed
derivation}.

The actual difference between the standard finite failure
set (Apt and van Emden 1982) for Hom ¢lanse logic and
the new definition of FF; is, intuitively, based on the use
of different quantifiers: In the standard one, the goal has
only failed (fair) derivations, whilst in the new one the goal
has at least one failed derivation.

Our aim is finding a fixpoint characterization of
FFr(p). We simulate by a bottom-up transformation the
behaviour of cur parallel computation rule. This relies on
somme notion of partial computed answer substitution, since
failures can oceor because of intermediate variable bindings
produced by partial (not necessarily successful)
derivations, This information cannot be obtained from the
standard minimal Herbrand model, becanse

i) it does not allow to determine the actual computed
answer substitutions,

i} it does not characterize partial derivations.

A solution to the first problem can be found in a
different semantics recent posed for pure logic
programs (Falaschi et al. lyggfﬂa, 1988h). In the next
section we give an overview of the definitions and results
which are used in our framework. Section 5 ents 4 new
result, Le. a soluton to the problem of the erization
of the set of partial computed answer substitutions,

4 EXTENDED SEMANTICS FOR
STANDARD HCL PROGRAMS

The Herbeand vniverse I7 (for a given TFnﬁgranﬂ is the
set of equivalence classes (guotient sed) of
the variance equivalence relation: _
t =1 iff there exist two substitutions # and ¥ such that

=1 and 'y=t.

The new - Herbrand universe is different from the
standard one, because terms can contain variables,

For the sake of simplicity, the elements of U will have
the same representation of the elements of T. In the
following, the elements of L7 will denote the corresponding
equivalence classes; i.e. a representative whose variables
are renamed, whenever it is needed, to avoid confusion
with other variables. This also holds for any other structure
that we will define (Base, Interpretations, etc.).

We define an ordering relation < on L7 :

t =1 iff there exists a substitution & from X to If such
that 1 & =1"

The Herbrand base B (for a given program) is the set of
all the formulas (equivalence classes with respect to the
induced variance relation) pity,...0), where ty,...tpe U
andp P,



The ordering on If induces an ordering on B,
)<ty .dy Sty then pliy,...ty) € plt'],....0).

S-Herbrand interpretations are defined as subsets of B.
Variables in the interpretations allow to treat universally
quantified formulas in our models and transformations.
Thanks to the introdunction of variables in the Herbrand
domain, the noton of muth ($-fruch) can be defined as
follows (Falaschi et al. 1988a, 1988b). Let 7 be an §-
imterpretation:

* aunitclause A ¢ is S-true in J iff A belongs w [,

« a definite clause A Bj,....B, iz S-true in [ iff for
cvery B';,....B", belonging to [, if there exists
? =mgu((B';,...B" ), (B}....B, }), then Ad}
belongs to f,

* an atom A (possibly not ground) is S-true in f iff
3 A’, such that {the equivalence class of) A°
belongs to fand A" < 4,

A Herbrand model (for a given program) is & Herbrand

interpretation M, such that all the clauses of the pro are
true in M. As wsoal, we take the minimal moi?:nsw,

whose existence is proved in (Falaschi et al. 1988a,
1988b), as the model- ic semantics of the program.

The set of Herbrand interpretations frr of a program W
is a complete lattice with respect to set inclusion. B and &7
are, respectively, the top-and the bottom element. The
fixpoint semantics iz based on the following
transformation,

Definition 4.1. Let W be a program. The mapping Ty
on the sef of 5-Herbrand interpretations, associated to W,
is defined as follows
Ty ={AB | 3A«B,,.B, inW,
3BY,..B el
3 & =mgu((B'y,...B° ). (B....By ),
and A'=Ad ) *

Falaschi et al. (1988a, 1988b) show that

= Ty is continuous. Hence Ifp( Ty j=luby, =, Ty )
where Ifp{Ty ) is the fixpoint semantics of Ty,
and Ifp{Ty) is defined as the (least) fixpoint
semantics of the program W.

+ The set of models is the same as the set of
interpretations closed with respeet to Ty (where an
S-interpretation £ is closed with respect to Ty iff

Tyll) = 1.

« The fixpoint and model-theoretic semantics are
equivalent, i.e. Ifp(Ty ) = Sy

» Each computed (possibly non ground) answer
substitution for a goal & can be obtained by
;nifying the goa! & with the atoms contained in

W
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The (non ground) minimal model Sy has stronger
Fmpr.rties than the standard (ground) minimal model. The
ollowing two theorems establish that if a (possibly non
ground) goal has a refutation, then the computed answer
substitutions can be characterized by the most general
unifiers of the atoms in the goal with the atoms in the
minimal model Sy. These theorems are generalizations of
the corresponding ones in the ground case (see theorems
7.1,7.4 and corollary 7.3 in (Lloyd 1984)).

Given a goal G and a substitution @, ¥ | denotes the
restriction of ¥ to the variables of G. G —#—* O
specifies that G has an SLD-refutation with computed
answer substitution 4.

Theorem 4.1, (Strong Soundness) Let W be a program,
let G be a goal « A4;,....A, and assume G |—d—* 0.
Then 3 A%,... A€ Sy and 3 &' =mgu((A;,...A,),
(A'}A")) such that &= )G .

Theorem 4.2. (Swong Completeness) Let Wbe a
program, let G be a goal & A;,. A, and assume
3A°,. A%e Sy and 3 O = mgu((A;,....A,),
{A'}reAy)) then 38 G 197 O and #ig = g

5 PARTIAL ANSWER SUBSTITUTIONS

In (Lloyd 1984) the notion of computed answer

substitution depends on the notion of refutation. ¥ is a
compuied answer substitution for the program W and the
goal Giff 30" G =" 0 and ¢ = #g.The next
definition -introduces a notion of computed answer
substitution that is more general than the one in (Lloyd
1984). This generalization is mecessary to give the
semantics that will be defined in section 6.

Definition 5.1. Let W be a HCL program and G be a
goal. s a partial computed answer substinion for the
program W U G iff 39" G b—#'>" G"and 9 = 0.+

A partial computed answer substitution is given by
resiricting the composition of the substitutions used in a
derivation to the variables of the initial goal. Obviously, a
computed answer substitution is a partial computed
substitution where the derivation is a refutation.

We propose a method to characterize the set of partial
(computed) answer substitutions in a declarative way;
analogous to the characterization of the computed answer
substitutions given by Sy. This is possible by defining a
simple ransformation on programs.

Definition 5.2. Let W be a HCL program.

Pr(W) = [P{x)«—. | Pisan-ary predicatc in Wand x
is a n-tuple of distinct varigbles)

Part(W) = W L Pr(l4) *
Pr(W) represents a new set of facts corresponding to

predicates appearing in W. Part(W) is the set given by
adding the new clauses of Pr{W) to the program W,
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Part(W), as it is shown by the following theorems, has the
nice property to characterize exactly the set of partial
computed answer substitutions of W. Informally, the
clauses in Pr(W) allow to ransform any (partial) derivation
into a refutation. Let us now prove ilz;nth:mtnfpamaj
computed answer substitutions for W and Part(W) is the
same. We prove this result by showing that, given a goal
7, for any derivation in the program W, there exisis a
corresponding derivation in Part(W) computing the same
answer substitution, and vice versa. -

Theorem 5.1. Let W be a HCL program and & be a
goal. 1 is a partial computed answer substitution for the
program W o G iff ¥ is a partial computed answer
substitution for the program Part{W)w G,

Proof. Let us consider first a derivation for & in the
programn W. The same derivation is also possible in
Part(W), being W < Pary(W).

Let us now consider a derivation for & in Part{W). The
proof is by induction on the number n of clauses of PriW)
used in the derivation.

n=0) In this case the derdvation uses only clauses

which are in W too.

n=)  Assume our derivation is

G 3" G lpg—> G" 0" G .
where Cj is the first clause of Pr{W) used in the derivation,
Let us now consider the reduction G* I—C—F — G* and the

structure of the substitution 9 _

Clearly #" = mgu(P(1),P(x)) for some predicate P() in
&' and the corresponding predicate Px) in Pr(W). By
definition of Pe(W), P{x)?" = P(1). Thus " modifies the

values of some new variables introduced in this siep of -

derivation, and these wariables do not affect the
composition of substitutions. Therefore .
'lj"ﬂ"ﬂmla = ﬂ'ﬂmlf'r {1}

Let us now simply c¢onsider the derivation
G l—0'=*G" |—8"—=* G" where P(1) is not
rewritten, and therefore G¥"'= G™plus the atom Pf1)
Smtbly more instantiated). This derivation uses n-1

auses of Pr{W). Hence, by the inductive hypothesis,
there exists a derivation for (7 in W which gives the same

answer substitution ﬂ’ﬂ“’jg, and, by (1),
898" = #8"g. .

In a similar manner we can prove that any partial
computed answer substitation in Part{W) is also a
computed answer substitution in Part(W).
Theorem 5.2. Let W be a HCL program and & be a
goal. ¥ is a partial computed answer substittion for the
program W G iff 1 is a computed answer substitution
for the program Part{W)w G.

Proof. By theorem 5.1 the set of computed answer
substitutions of Part(W) is equal to its sct of partial answer

substitutions. Therefore, it is sufficient to prove that #'isa
partial computed answer substitution for Pari(W) U G iff it

- notion of partial potential

is & computed answer substitution, (Sketch) Let us consider
a derivation G —9#'=% G' for G in Part(W). Let
g =0 and consider a refutation of G’ using clauses of

Pe(W). G —0'2* ' |—">* O. Clearly, 0"|g-=&.
Therefore, this refotation computes the answer substitution
ﬂ’ﬁ"m =t|g =t +

We can now characterize the set of partial computed
answer substitution of a program W, simply considering
the minimal mode! of the augmented program 5
fact, by theorems 4.1 and 4.2 Spyqwn characterizes the set
of computed answer substitutions of Part(W), and, by
theorem 5.2, the set of computed answer sabstitutions of
E{aﬂﬂi‘} 18 equal to the set of partal answer substitutions of

We are interested, in this paper, to potential derdvations
in commirted-choice programs. The notion of partial
computed answer substitution obviously extends to the
ted answer substitntion, by
simply substiteting the definition of potential derivation
(definition 3.2) to the standard notion of derivation.
Because of our assumption on the guards (i.e. guards are
defined by standard Horn clauses), the set of partial
potential computed angwer substimtions can be generated
using the following construction,

Definition 5.3. Let W be a committed-choice program.

Prg(W) = [P{x)«. ] P is a n-ary predicate
appearing in the body or the head of some clause in
W and x 15 a n-uple of distinct variables)

Partg(W) = W L Prg(W) +

Theorem 5.3. Let W be a committed-choice program and
{ be a goal. ¥ is a partial potential computed answer
substitution for the program W & iff & is a computed
answer substitution for the program Partg(W)w G,

Proof. Similar to the case of partial computed answer
substinutions for HCL programs. .

Thus, given a committed-choice program W, the set of
partial potential computed answer substitotions is
represented by Spar. . Moreover, the subset of the (non
ground) minimal model corresponding to the predicates
appearing in the gnards does not change when we angment
the clauses to get the partial computed answer substimtions.
This depends on the choice to use a different mechanism to
evaluate guards, that is 1o have standard HCL programs for
guards. Refutations are the only allowed. partial
computations for guards.

Example 5.1: Let us consider the program W

1) plx) e qix) | r(x). 2) p(b)e 1.

3) gfa)e— . (Standard HCL clause).

4) gle)e 1. 5) rla)e 1.

6) rib)e- 1. "



The standard (ground) minimal model would be the set

{ a(a), gfc), p(a), p(b), r(a), r(b) }. The new program for

potential partial computations can easily be constructed:

Pr(W) = ((7) p{x)« |, (8) r{x) & T}.

Thus _ Part(W) =WUPH{W)

The new minimal angmented model is the following:
Tmr,}ﬁ?q”{r@ = (p(x}, r{x), laﬁ::: p(b}, qfa), qfc).

a), Hb)], by app c s (2), (3), (4), (5),
AT ST J

Thara 2 (D =Trangan([p(x), rix), pla), p(b), ala),
fi"f'-‘)- ?rﬂj, i"'ﬁl“} = I":J': pfx.’! fij: _ﬂfﬂ}. F{lh-}!
g(a), g(c), r(a), r(b}}, where p(c) is added by
applying g{c) and r{x) to the clause (1)

Thangwy (D =Tpsg>(2)

Thus Tpﬂ-lﬂ(mmfg} = SPBIIG{H"_:I L {Pfdp pf.l',]', 41"|r-""'.rl'r Pfﬂ)l
pib), afa), ria), H{b) }. The elements of represent
the corresponding equivalence classes. Therefore variable
names are not meaningful, Note, for example, that plc)
does not belong to the standard minimal model. We can

note that, starting from the goal +p(x), clause (1) can be
applied and the guard has a refutation computing the part
potential answer substitution {x=c}. The same substitution
can be computed by the unification of an atom in Spyp- Wy
and the atoms in the query itself. (x=c] is the mgu of the
atom p(x) in the query, and the atom p(c) it Spapig(w)-
Sparg(w) allows to characterize the standard computed
answer substitutions for Past(W). For example, by the
unification of p(x) and atoms in Spyncwy. it can be

that e« p(x) has four possible computed answer
subsirutions, i.¢. the empty one, and the substitutions
(x=a}, {x=b),[x=c).

6 CHARACTERIZATION OF THE FAILING
ATOMS

The problem consists in characterizing the set FFg, Our
characterization of FFg takes into account the notion of
partial computed (non ground) answer substitutions, and
the related properties. The definitions of the

tions, which are given in the rest of this section,
are always related to the non standard definition of
Herbrand universe and Herbrand Base, whose terms are
possibly non ground. Throughout this section we will refer

to the lattice Int of §-Herbrand interpretations under set
inclusion, which was introduced in section 4. In our
mappings on Herbrand interpretations, variables of clanses
are irnpljcitelﬁ renamed when an mgy with some atom is
computed. This is possible because we can choose an
appropriate representative of the equivalence class with
respect to the variance relation and avoid the technical
complications due to the possible collisions of variable
names. Given a program W, Sparqowy will always denote
the (non ground) minimal model for partial computations
introd in section 5. )

[Cly:H' ¢« By',...,B," denotes the instance
H'«By',...,B, of the clause C under the substitution A
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Let us introduce the relation E. Given a set of atoms

By,....By and a Herbrand interpretation L , the relation E
on Bj,....B; and L holds iff there exist (variants of)

are unifiable with mgu A. (Bj,...,Bp)A E L denotes that
the relation E holds under the substitution 4.

As a first step wowards a complete characterization of
the atoms for which there exists a finitely failing derivation,
let us define a vsefu! ransformaton which maps Herbrand
interpretations to Herbrand interpretations.

Definition 6.1 Let J be a Herbrand interpretation, Whe a
program, and Spansowy be the minimal model for partial

computations.
TF ffF{H H
=3C W soch that Imgu (H head(C )
or
3¢ eW such that Imgu (H, head(C ))=4
and [CI:H B 1" e B Buya1's.-oBn’
such that Tk m+I<k<n B'A"e 1,
and (Bp,...Be.1"Biel' - Bn}h ESpangow)) *

Roughly speaking, the condition
(Bp'euBp g’ Bia)'s By )L E.Fpﬂ-mm

in the definition of T shows that

Bi'viBp 1B sl By arc involved in a partial
computation, and that they are partially reduced computing
the binding A'. Moreover, the condition m+l1<k
corresponds to requiring a refutation of the guards. We are
able to handle the bindings computed from partial

cofiputations thanks to the minimal model Spanqiw) We
have introduced in section 5.

Proposition 6.1 Ty is continuous

Proof Standard. *

Corollary 6.1 Tp¥(@)= Eﬂ‘l}ﬂfﬂ} = Jeast fixed point
of T

Proof Immediate from proposition 6.1. .

We now show that the set Tp®(&) characlerizes the set
of finitely failing atoms. We give the characterization for
programs W which satisfy the following quite reasonable
condition: if an atom A is unifisble with the head of some
clauses Hjye-Gjy 1Big....,Hip¢Gig By in W, then at least
one of the corresponding guards Gyy,....Giy is satisfiable.
Thus we cannot have a failure cansed by the unsatisfiability
of guards and, consequently, the set of guarded failed
derivations is equal to the set of failed derivations.

Given a goal G, an atom A in &, and a derivation, a
successor of A is A or any of the successors of the atoms
intraduced from the reduction of G in the derivation itself.



370

Lemma 6.1 Let G =¢ Aj,....A, be a goal. Assume GG
has a derivation

G I-ﬁa_.—; G; 1—0392—; Gs I—C-?j-—}... I—Cgm—mm
Let C(A;) denote the clauses in Cj,....Cp, (in the same
order) that correspond to the reduction of a successor of
Ay Let C(4;) be the remaining clauses of Cj,...,Cpy
(in the same order). )

J L) M " ¥
Then G w—-; G bl ——" Gy, where

G’y 1s a variant of G,

Proof. It is an easy generalization of the Switching lemma
in (Lloyd 1984). *

Theorem 6.1 FFg =Tp™&).

Proof.

a) Letus prove FFg cTp® &) first.

(By induction on the number t of clanses applied in the
failing path). Let A € FFg; we prove that A € T &),

Assume first that t=0. If A immediately fails, A is
clearly not rewritable. By definition of Tg, any atom which

is not rewritable, 1.e. any atom H for which -3C e W
such that Imgu(H, head(C )), belongs o Tr(l) for any 1.

Thus A belongs o Te(Tr(@)) = TV E).
Now assume that the result holds for derivations of

length £ t-1. Assume Hé Bj...BylBpyaf..8y i the
clanse C‘J applied in the first derivation step and #; be the
mgie of A and A (hence the substitution ¥ computed from
the potential reduction is dyd, i.e. the composition of &
and the substiution B3 computed from the refutation of the
guard, see definition 3.1).

Let A b = & (Bpyj-Bi-B,) 8 I—Czy—-;

amale [
¢ ...B... be a finitely failing derivation of length t, and B

be the atom which is not rewritable. Assume B is a
successor of By in the derfvation. By lemma 6.1,

— rﬂm.l-.i""ﬂk""&m’ﬁ ’mﬂl'_—} G’ |Tf_ﬂ-|z";— —
{7"=¢...B'... where B’ is a variant of B (and therefore it
is mot rewritable).The derivation that goes from

—(B.7--Bp...B)0=G 1o ¢ is a partial potential one,
and it does not involve any successor of B;. Thes there

exists, by theorem 5.3, an mgu o (that for the guards
computes the binding % given by the refutation) between
the (n-1)-tople (B;,....Bp. ;. Bpsps---Bp)Py and a
comesponding (n-1)-tuple in Spanqwy

Le. (ByOp....Bp 1018101, . BpD1)0 E Spang(w):
such that o) = By %|g. Hence (Bpyqg...By...B,) 00' =
(Bps--Bi-By) O10:%g = (Byy1.-Bp...Bp) $1005,

and therefore, Bydd' =B 0o (1)
Moreover, by lemima 6.1,
By )"—-—r G'"s+« ..B'...

(G™ is in general different from G"), i.e. G™ contains an
atom which is not rewritable. Thus By is the root of 2

failing path of length <t-1, and therefore, by the inductive
hypothesis,

By e Tp(@)  (2)
Let A = B, and [C)yp,;:H D¢~ (Bj,....B,)0;.

(By0y,...By 101 By 1 9., By07) 0 ESpanigwy
m#+l<k, and, by (1) and (2) B0 = B, 00’ Tp93).
Thus, by definition of T'r, any atom whose mgau with H is
i belongs 1o Te(Te®™ &)). Hence
Ae TF(TFWEJ} = TFWEJ
b) Let us prove now that TeW £} < FFg.

Assume that A belongs to T &), Then A belongs 1o
Tpl(d), for some t € N. We prove the assertion by
induction on &

Assume first that t=1. Then A € Tg! (&) means that
=3¢ W such that Imgu (4, head{C ). Hence A has
a finitely failing derivation.

MNow assume that the resnlr holds for t=1. Assume
A eTg(&). Then

{a) 9C W such that Imgu(A, head(C ))

or

(b} AC e W such that Jmgu (A, head(C)) =4 and

[Cly:H & By....By 1Bpysp’,....By" soch that
3k m+1<ksn By'A' e Te-1{&) and
(By's. Bt Biat'seesBn )X ESpangiw)-
Case (a) is obvious. Let us consider the other case.

3C e W such that Imgu (A, H') =1 means that a first
rediiction could be applied to A, ender the condition that its
guerd has a refutation. Now, according to the definition of

relation 2 and by theorem 3.3, if )
(Br'eBrp By’ »By)A" E Spangiw
then there exists a partial derivation for
“Bp\..Brp\Brip's By’

which corresponds to a refutation of the atoms in the
guard, and that, if restricted to the variables of

(Bp'y.oBpj By’ By}, computes the substitution 4
Thus starting from A, by means of a derivation, we reach a
goal containing the atom B,'A" e Te!-/(@) (m+1<ksn),
which, by the inductive hypothesis, has a finitely failing
derivation *

T ) can also be used to characterize finite failures
of goal statements, as it is shown by the next theorem,

Theorem 6.2 Let W be a program and G s¢Aj,...A4,
be a goal statement. Thea G finitely fails iff Ik 1=k =n
such that (A...A 1 Ags e n)d” ESpargwy and
ApA'e Tp@().

Proof. By definition of FFg , an atom A can finitely fail
iff A & FF 5. Therefore a goal statement & can finitely fail
iff, possibly after  partial computation, one of the atoms in
the (derived) goal statement belongs to FFg. Thus, by
theorem 5.3, and by lemma 6.1 with arguments similar to



the proof of theorem 6.1,¢= 4;,....4, can finitely fail iff
3k 1=k<n such that fﬁf...,ﬁbjﬁg.‘_f,..ﬂﬂjﬂf ESP:H::{“"}
and Ay’ e FFg. Hence, by theorem 6.1, 4;1'e FF
iff Al e Tpo(@). +

The problem with the transformation Tr is thae it
assumes 10 start with the set Spa-on-

However we can use a general property of lattices (see
theorem 6.1 in (Stoy 1977)) which allows to construct new
lattices in a natural way, by simply making cartesian
products of them and inheriting the correspondin ial
orderings. Namely, given the complete lattices EI,S]},
(L2, =3),-(Ly, =), the cartesian product Lj x..x Ly,
with the induced partial order on its elements
{I;,.....In} = {}?I.....}?n] iff XS ¥ ¥ifi=1,...,n)is a
complete lattice too and is useally called product. Tt is clear
that we can construct the product by making the cartesian
product of the same lattice. We use this construction with
the lattice fnz, and define a transformation which maps pairs
of Herbrand interpretations to pairs of Herbrand
interpretations which allows to effectively compute the set

Teo( &),

De?initinn 6.2 Let (f,J) be a pair of Herbrand
interpretations belonging to the tattice product fnr x Inr, let
W be a pro

Tgil, J)=

( {H:
—3C EWELIB'!'E that Jmgn (M, head(C )
or " .
3C & Wsuch that Imgy (M, head(C )) =4
and [Cly: H'&By',...Bp By s By
such that 3k B,'A" s [, m+1=k=n
" and (By..Bg ' Bee ' BRIAET ),

34 « By,..B, in Parg(W),

3B';,..8'el,

3¢ =mgu((B;,...B° ). (By....B, }),

andA’'=Ad] ) o

We can note that the definition of the first component is
similar to that for Tp. The only difference consists in the
interpretation J (the second argument of the function),
which replaces the set Spyy ). The definition of the
second component is the same given for the ransformation
Tparg(w) in section 5. It only depends on the second

argumnent of T,
Proposition 6.2, T; is a continuous mapping.

Proof The proof of continuity can be given by simply
proving the continuity of Ty with respect to its components
scparately. This is, in fact, a general property of the
product of lattices with the nawrally induced order (see
theorem 6.2 in (Stoy 1977)).

As we have already noted, the definition of the second
component does not depend on the first argument of Tig.

I

Thus it is equivalent to the definition of the function
Tpangwy that is continuous.

With a given J the continuity of the first component is
analogous to the one for proposition 6.1. +

Let (X, ¥)l; indicate the i-th clement of the ordered
pair (X, ¥}, i=1, 2. Thus (X, ¥)l; =X and (X, ¥)l, =¥,

Proposition 6.3, The least fixed point of Ty is
TG‘"T-@! E} =i/ k:EN{TG'*(El EJ"I!TGiTE- ﬁﬂz}

Proof The proof follows from the fact that the product
It = Int of subsets of the Herbrand base with set inclusion
is a complete lattice and from proposition 6.2, *

We now show that the functon T allows to compute
both the minimal model Spyp ooy and the set of finitely

failing atoms FFg,

Theorem 6.3. Let W be a committed-choice program,
then

TeUD, @) = (Tr D), Tpangw)™ @) )

Proof The equality To® &, &l = Tpanigw) ™ @) is an
immediate consequence of the equivalence of the definition
of the second component of Ty; and the definition of the
function Tpyqgwy. We also have the stronger property
Vne N Tpanqmn™E) =TS, 2.

For the sccond part we must prove that
To™ &, 2);cTe®( &) and that Tp% ST o9&, @),
The first inclusion To% &, @)l; = Tro(&) is obvious.
Therefore, it is sufficient to prove that -

Teo@) TS, D).
This coresponds to proving that, for any m,

Tl o T &, E); (by induction on m).
Assume first that m=1. By definition of Ty, He T¢!(2)

iff ~3C € W such that Imgu (H,head(C )). Then, by
definition of Tz, and by proposition 6.3, i
He TGIfE’, EH; 2 Te™a, @l
Now assume that the result holds for m-1. Assume

HeTpm{@). f =3C & W such that Imgu (H, head(C )
the case is similar to the previous one. Otherwise, there

exisis a clavse C e W such that 3 mgu (H, head(C )) =4
and [Cly:H'e B, B8, .;".....B," such that
(By'By ' By Byl B SPart.n{H"]l m+1=k and
ByA'e Tem-l(),

K(By,.Bpp Biyp' . .By)A' 2 Spﬂm{-,ﬂ then there
exists t* such that

(Byye B By .,Bn'ﬂ.' = TP‘IIIG{W]!TQJ’ with
Toung(wy' (@) =T (2, @)hy.
Moreover, by the inductive hypothesis,

Tem-1(2) © Ta™ &, @)y
This, by proposition 6.3, there exists " soch that

B e Tt (2, @)l;. By monotonicity of Ty and
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assuming f =max(r’,"), we obtain that

HeTg(Tghd, @) TS, @Ny)l;.
From TGH-FEE. ) T, &) we derive the
Ihm. *

Corollary 6.2. FFg = Tp™(@) <Tg®(@, @)); and
Spart(w) =Trangw) D) Tg™ D, D)ly.

Proof The first equivalences derive from theorems 6.1 and
6.3. The second equivalences derive from the theorems

summarized in section 5 and theorem 6.3, *

We can see how the transformation Ty works on a simple
example

Example 6.1.
1) plx) & lg(xy), r(y).  2) glab)e |
3 glx.ape— 1 ) ribje | *

We will only comment the component of failures, while
for the other component the considerations of section 5 are
still valid.

Tg!(@, @) = ( (r(a), g(b.b)}, {afx.a), q(a,b), r(b),
g{x.y}, rix), p{x) 1 ), since r{a) and g(b,b) are the only
atoms which are not rewri

To*(&, @) =({r(a), pix), pla), p(b). q(b.b}), (g(x.a),
qla.b), r{b), gix.y), r{x), p(a}, p(x)1). In fact, in this step,
clause (1) can be applied with the atom pfa) obtaining
[Clanse (1)13:p(a) ¢ q{ay), riy) wheed =[x=a}
and by (gfay)d’ E (q(xa), glab), r(b), qlxy), r(x),
pla), p(x) } we obtain, unifying ¢(a.y) and g{x,q) the
substitution A'= [ y=a,x=a )} and then riy} 1A'=
ria) e Tgl(€,2)|). Thus p(a) e Tg(2, D).
Similarly we can prove that p{x) and p(b) belong to
Te?(e, 2.
The contribution to the set of failures coming from the
second component is, therefore, quite important in this
example.

TG (&, @) =T (D, D). Hence T(&, £) is the least
fixed point of T. It is easy to verify that the set of finitely
failing atoms is in this example exactly {#{a), p(x), p(a},
pib)}. For example, we have a finitely failing derivation for
Pix} using clavse (1) first and then clause (3), Similarly for

pla) and pib).

We can justify our condition on guard satisfiability, by
reconsidering example 5.1.
Respect to the program W in example 5.1, the goal « pfb)
can be reduced either by clause (1) or by clause (2). If the
interpreter tries clause (1), then the goal « g{&),
corresponding (o the guard, must have a refutation before
applying clause (1). « g{b) fails and, therefore, clause (1)
carnot be applied. Clause (2) immediately gives a snccess.
Thus +— p{b) cannot fail. The mapping T; works correctly.
However, let us consider a slight variation of example 5.1,

which does not contain clause (2), and, therafore, does not
satisfy our condition on guards,
Example 6.2.

1) pix) « gix) Lrix).

2 gfa)e—. (Standard HCL clause).

3 Haje | 4y ribpe— 1 *

Let us consider the same goal « pfb). It can be reduced by
clause (1) only. Hence the goal « g(b), corresponding to
the guard, should have a refutation before applying clanse
(1}. = g{b) fails and, therefore, clause (1) cannot be

applied and + p{b) fails. Tz does not work correcily, In
fact, g{b) 15 not generated.

In example 5.1, the guard of clause (1) fails, but there
exists an alternative (clause (2)) which can be applied. In
example 6.2, instead, there are no aliernatives to the
application of clause (1) and, therefore, the failure of the
guard canses the failure of the whole computation. Thus, a
failure in a geard brings to a failore for the whole
computation only if there are no alternatives to reduce the
atom by some other claose. Finite failure becomes a global
property of the clauses whose heads are unifiable with the
atom to be reduced,

7 CONCLUSIONS

In this paper we have shown how finite failures can be
defined and generated by a bottom-up construction in the
case of committed-choice programs with guards satisfying
a condition on satisfiability. In the most general case, the
generation of finite failures with a construction similar to
that shown in this paper becomes more complex. We
should be able to state something about not enly positive
information (i.e. refutations) on the HCL program
corresponding to the atoms in the guards, but also about the
set of (non ground) finite failures for this program, i.e. a
generalizaton of the concept of finite failores in the case of
standard HCL programs (see (Apt and van Emden 1982,
Lloyd 1984)). On the other hand, usually, in real logical
concurrent languages, gnards satisfy severe constraints.
Therefore we believe that knowing something about the
negative information of the programs corresponding to
guards can be feasible, and we are currently invcsl:i.gali;:g
on the concept of (non ground) finite failures for stand

HCL programs.
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