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ABSTRACT

We argue on the computational complexity of
logic programs introduced by Shapiro, and show a
close relationship between logic pregrams and tree-
gize bounded alternating Turing machines. First, we
propose a modified definition of goal-size of logic pro-
grams lo cope with sublinear space complexity.
Second, we present algorithms for simulating logic
programs and indexing aliernating Turing machines
each other. As a result, simultaneous goal-size and
depth of logic programs are clesely related to space
and tree-size of indexing alternating Turing machines
respectively, Further, we investigate and character-
ize many well-known complexity classes like
LOGCFL, NC, PTIME and NPTIME, via logic pro-
grams. In particular, it is shown that context-free
languages can be recognized by logic programs with
depth Oflogn) and goal-size O(logn) simultanscusly.

1 INTRODUCTIONS

Logic programming languages Thave lately
attracted considerable attention as languages for
"fifth generalion computers”. In particular, since the
execution of a logic program can be regard as paralle]
computation, several parallel logic programming
languages such as Concurrent Prolog (Shapiro 1983)
and GHC (Ueda 1985) are proposed in order to
describe parallel processing. Moreover, many parallel
computer architectures for processing logic programs
are being developed, and some of them have been
actually implemented. It becomes important to give
a mathematical foandatien te such a parallelism in
logic programe, and te relate it to the conventional
theory of parallel computaiion.

Shapiro (1984) showed that there is a close rela-
tionship between logic programs and aliernating Tur-
ing machines (ATMs) (Chandra et al. 1581). In his
formulation, a logic programs is regarded as an
ATM, which is given a goal as an input string. The
derivation of the program corresponds to the compu-
tation ireze of the ATM, and the ATM accepts the
input if and only if the program can solve the goal.
He introduced three complexity measures for logic
programs, namely, depth complexity, goal-size com-
plexity and length complexity, and showed that these

and tree-gize respectively by simulating on-line alter-
nating Turing machines and logic programs each
other.

His result tells us many things about relaiions
among logic programs and theoretical parallel com-
putation models such as PRAMs and combinational
circuits. According to his definition, however, goal-
size complexity should be 2{n) for the input length
n; this is because “input™ and “work space’ are not
distingnished. Corresponding alternaling space com-
plexity is also at least linear. For this reason, practi-
cally important classes like PTTME cannot be charac-
terized via logic programs. Siepanek and Stepan-
kova (1986) gave simulations between off-line alter-
neting Turing machines and logic programs with sub-
linear space (or goal-size} complexity, for a special
class of logic programs, which they eall “logic pro-
grams with input”. However, their result is not a
netural. improvement of Shapiro’s since their logic
programs have a strongly restricted form. Ruzzo
(1980, 1581) showed that indexing alternating Tur-
ing machines (indexing ATMs), which are a “random
aceess input” varalion of ATMs, have a close rela-
tionship with other parallel complexity classes, espe-
cially those of uniform combinational ecircuits like
NC, while relaticnships between logle programs and
indexing ATMz have never been discussed.

In this paper, we improve Shapiro’s (and also
Stepanek-Stepankova's) resulis on relatjons between
logic programs and alternating Turing machines, and
characterize well-known parallel complexity classes in
terms of logic programs. The main difference of our
formulation from Shapiro’s is that goal-size of logie
programs is defined with the use of pointers taken
into account, In our definition, the size of a term
which occurs as a subterm in the initial goal clause
can be estimated as the bit-length of the pointer
representing it. Hence suoblinear goal-size complexity
is introduced natucally, just like space complexity of
off-line Turing machines, This alse make the random
accessibility of indexing ATMs essential.

Two main theorem are derived using our new
definition of goal-size complexity., One iz an exten-
sion of Shapiro’s first result to the case of sublinear
space; logic programs of goalsize G(n) and depth



machines with space @(n) and in time D{n)}G(n).
Thiz is achieved by extending Shapire’s simulation fo
the case of indewing ATMs. The other is an
improvement of Shapiro’s second result; indexing
ATMs using space S{n) and tree-size Z(n) are simu-
lated by logic programs with goal-size 5(n) and
depth log Z(n), which is achieved by utilizing Ruzzo's
techniques for simulating ATMs (Ruzze 1980).

These two resulis imply a close relationship
between logic programs and tree-size bounded alter-
nating Turing machines. It can be said that simul-
taneous goal-size/depth of logic programs is the same
as spaceftree-size of indexing ATMs, with goal-size
and space up to a constant factor and likewise depth
and log(tree-size). Some well-known complexity
classes such as LOGCFL, NC, PTIME and NPTIME
can be characterized via logic programs. In particu-
lar, it is shown that context-free languages can be
recognized by logic programs with depth G{logn)
and goal-size O(logn) simultanesusly.

In the next section, we will give several basic
definitions on logic programs and alternating Turing
_msachines (Yasuura 1984). In Section 3, we will
describe complexity measures of logic programs intro-
duced by Shapiro, and then modify them. Simula-
tions between logic programs and indexng Turing
machines will be presented in Section 4. In Section
5, classes of languages recognized by logic programs
will be considerad. '

2 BASIC CONCEPTS

2.1 Logic Programs

Let F be a finite set of funcltion symbols, and V
be a set of wvariables. We assume that F\V=0.
Each function symbol is characterized by its name
and its arity. Zero-arity function symbols are called
constants. Variables are distinguished by an iritial
capital lefter.

Terms on F|V are defined recursively as fol-
lows:

(1) A veriable XV or a constant acF is a term,

(2) If ¢,...,t; ave terms and fEF is a k-arity func-
tion symbol, f{{,,...,f) is & term.

(3) All terms are generated by applying the above

rules {1) and (2).

A term p(l,....4;) ie called an atomic formula if
pEF iz an k-arity predicate symbol. An atomic for-
mula is considered io be a term which has logieal
value. (Note that we regard a predicate symbol as a
kind of function symbol.)

Let T be the sei of terms on F| V. A subsiilu-
tion §:V—T is represenied by a finite set of ordered
pairs of terms and variables

{{EE,X.'J | f} is & term, Jf,— isa variable
and no two pairs have the same.
variable as the second element}.
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Applying a substitution # to a term f, we represent
the resulting term by ¥, which is called an instance
of £ A substitution # is called a unifier for two
terms ¢, and t,, if and only if ¢,f=t48. A unifier § is
said to be the most general unifier of ¢, and & if and
only if, for any unifier 8, of ¢, and &, 4#, is an
instance of #,# and &8, is an instance of Lf. If two
terms are unifiable then they have a unique most
general unifier.

Let A, By, ..., By (k=0) be atomic formulae. A
formula

A_BI""'Bl
is called a Horn clouse whose left side means the con-
Junction of B;'s. Particulasly, we write

A=

when k=0. A logic program is a finite set of Horn

clauses. A  conjunction of atomic formulae

YA AL, m20, is called a goal clause, or simply

a goal. When m=1, “A,;" is called a unit goal

When m=0, we denote it “[J" and call it an emply

goal.

We define computations of logic programs. Let
Ne="4, Aq..,45", m>0, be a (conjunctive) goal and
C="A~—H,,. ,B,", k=0, be a Homn clause such that
A and A, are unifiable via a substitution #, for some
1<i<m. Then

N =(A1y A1 By By Aip s A )8

is said to be derived from N and & with substitution

8.

Let P be a logic program and N be a goal. A
derivation of N from P is a (possibly infinite)
sequence of triples < N, G, 8>, i=01,_. 6 such that
N, is a goal, C;is a clause in P, #; is a substitution,
Ny=N and N, is derived from N; and C; with sub-
stitution ;, for all £>0.

A derivation of N from P is called a refutalion of
N from P if N;=[] (the empty goal) for some I>0.
Such a derivation is finite and of length I If there is
a refutation of o goal A from a program P, we also
gay that P solves A. Let R be a refuiation of A
from P. The refulation tree of B is a tree of unit
goals, which is defined as follows:

(1) The root of the treeis A.

(2) Leaves are emply goals.

(3) In each step of dervation <N,C.#;>, if
Ci=""A;—By,...,By", and unit goal Ay in N; is
unified with A; by #; then the node A; has
directed edges to all Bf,'s.

An example of logic programs, refutations and
refutation trees are shown in Fig. 1.

The Herbrand universe of P, H{F}, is the set of
all variable-free gosls constructed by function sym-
bols that occurs in P. The Herbrand base of P,
HB(P), is the set of all atomic formulae in H(P).
We define the interprétafion of P, I(F), o be the set
{AcHB(P)|F solves A}.
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{b) An example of 2 refulation and & refutation iree

Figure 1. An example of logic programs and its computation
(The read-only annotation “!" will be defined in Section 3.)

2.2 Alternating Turing Machines

We assume familiarity with deterministic and
non-deterministic ~ Turing Machines (DTMs and
NTMs, respectively). We will also use alternating
Turing machines (ATMs) (Chandra et al. 1081) as
our computation model,

ATMs are a generslization of nondeterministic
Turing machines described informally as follows.
The states of an ATM are partitioned into “existen-
tial” and “universal” states. As with an NTM, we
can view & computation of an ATM as a tree of con-
Gguration. A full computation iree of an ATM M on
a siring w is a (possibly infinite) tree whose nodes
are labeled with configurations of M on w, such that
the descendanis of any non-leaf node includes all of
the successors of that configuration. A computation
tree of M is a subtree of the full computation tree
such that the descendants of any nondesf node
labeled by universal configurations includes all of the
successors of that configuration, and the descendants
of any non-leaf node labeled by existential confignra-
tions includes one of the successors of that configura-
ticn. An accepling computation free is a finite com-
putation tree whose leaf nodes are accepiing confi-
gurations. M accepts w if and only if there exists an
accepting compuiation tree whose root node is
labeled with the initial configuration of M on w.
Formal definitions of ATMs are found in (Chandra et
al. 1981},

On-line ATMs (which have a writable input
tape) and offline ATMs (which have a read-only
input tape and some work tapes) are defined simi-
lazly to the case of DTMs or NTMs. We will also
nse a “random access input” variation of ATMs
called indering ATMs, introduced by Ruzzo {1980).
An indexing ATM has no input head; instead it has a
special “index™ tape and special “read” states.
Whenever it enters a read state with an integer i
written on the index tape, it reads the i-th symbol of
the input and transit to an accepting or rejecting
state. Thus in O(logn) steps, it can read any posi-
tion of the input. There is only a constant loss in
space and time in conversion of an on-line or off-line
ATM to this normal form if space is at least O(logn).

An ATM uses time T'(n) (tree-size Z(n)) if for all
accepted inputs of length n there is an aceepling
computation tree of height <T(n) (respectively, size
<Z(n)). An ATM uses space 5(n) if for all accepted
inputs there is an accepting computation tree, each
of whose nodes is labeled by a configuration using
space <S(n), and uses alternation depth A(n) if for
all accepted inputs there is an accepting computation
tree, whose alternations of existential and universal
configurations <A(n).

We will denote the class of languages recognized
by indexing ATMs within space O(S(n)} and time
O(T(n)) simultaneously, by A-SpTi(S(n), T(n)).
Likewise, A—5pSz(5(n),Z(n)) denotes languages
recognized by ATMs running in space O(5(n)) and
tree-site O(Z(n)) simultanecusly, and similarly
A=SpAl(5(n),A(n)) ete.



i COMPLEXITY MEASURES FOR
LOGIC PROGRAMS

First we describe complexify measures of logic
programs introduced by Shapiro (1984). Let P be a
logic program and A, be a unit goal. Here we regard
P as a device which determines whether P solves a
given goal or not. We consider that 2 goal A, is a
input string for P, and P accepts A, if and only if P
solves A, A goal is to a program what a input tape
is to a Turing machine. The interpretation f{P) is
considered to be the “language” recognized by the
program P. (P itself corresponds to, as it were, a
finite control of & Turing machine.)

Assume that P solves Ay with a refutation R.
We regard R as a computation of P for input A,
The length of R is defined as the number of nodes in
the refutation tree of R, and the depth of R is
defined as the height of the refutation tree. The
goal-size of B is defined as the maximum size of any
node in the refutation tree, where the size of goal is
the number of symbaols in its prefix notation. These
three are comsidered to be *“parallel” computation
time, “serial™ computation time and space required
in the computation R, respectively. We say that a
logic program P is of goal-size complexity G(n), if
any goal Ay in 7 FP) of size n has a refutation from P
of goal-size <G(n). Depth complerity and lengih
complerity of P are defined similarly.

Shapiro showed the following relations between
on-line alternating Turing machines and logic pro-
grarms.

PROPOSITION 1. (Shapiro 1984) Let P be a logic
program of depth complexity D(n), goal-size com-
plexity G{n) and length complexity L({n). Then
there exists an on-line ATM M recognizing I{P) such
that M operates in time O[D(n)G(n)}, space
@ G(n)) and tree-size O L{n)GE(n)).

PROPOSITION 2. (Shapiro 1384) Let M be an

on-line ATM that recognizes a language L in time -

T(n), space 5(n) and tree-size Z(n). Then there
axists & logic program P of depth complexity
O(T(n)), goalsize complexity @(S5(n)) and length
complexity O(Z(n)) such that L={weX*|accept(w)
is in I{P)}.

Note that any logic program satisfies G(n)=i2{n)
and any on-line ATM satisfies S(n)=£2(n) and
T{n)=42{n) from the definitions,

Goal-size is linearly related to alternating space.
Depth and length ate related to alternating time and
alternating tree-size respectively, up to the goal-size
factor. However, in Shapiro's definition of goal-size,
“input” and “work space” required in the computa-
tion are mot distinguished, and therefore goal-size is
at least n, where n is the input lemgth. We will
modify the definition of goal-size io consider sub-
linear goal-size complexity.

Let I be a derivation of a unit goal 4, from a
program P. Read-only terms in D are variable-free
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terms occurring omly in goal clauses and satisfying

the following properties:

(1) Initial goal A, is a read-only term,

(2) Let 4 be a unit goal and A; be the left-side of a
Homn clause in P such that 4 and A; are uni-
fied via the most general unifier # in a step of
the derivation D. If ({X)ef and a subterm s
of the term f occurs also in A as a read-only
term, then s is a read-only term.

(3} All read-only terms in D' are generated by
applying the above rules (1) and (2).

Terms which are not read-only are called writ-
able, A read-only term which is not a subterm of
any read-only term is called a primary read-only
term. We will mark primary read-only terms with
‘% Wote that any read-only term oceurring in the
derivation I? of A, also cccurs in Ay An example of
read-only terms are shown in Figure 1 in Section 2.1.

We now deline the off-line goal-size of the refuta-
tion R of an primary read-only goal 4, The size of
a primary read-only term is defined as the smaller of

& number of function symbols cccur in it and

legsn| , where n is the number of symbols in the
inilial goal Ay . The “off-line size” of a goal in R is
the sum of the number of writable subterms and the
size of all primary read-only terms. The size of writ-
able terms is the number of symbols in its textual
representation, while the size of read-only terms may
be estimated as the number of symbols required to
represent the address of the sceurrence in binary
representation if it is smaller. The off-line goal-size
of a refutation is defined as the maximum off-line size
of any node in the refutation tres of K.

According to this definition, the off-line goal-size
complezity is defined similarly to the original goal-
size complexity. Obviously our definition of the ofi-
line goal-size complexity iz a natural extension of
Shapire’s definition. Henceforth, we say simply
goal-size complexity as off-line goal-size complexity.

4 ATMS AND LOGIC PROGRAMS

4,1 Sumulating Logic Programs with ATMs.

We will describe an algorithm for simulating a
logic program by an indexing alternaiing Turing
machine, which is a modification of Shapire’s method
(Shapire 1984), and show that sublinear goal-size
logic programs can be simulated by an indexing
ATM in sublinear space.

Without loss of generality, we assume that arity
of any function symbael is at most 2, Consider Algo-
rithm SIMULATE1 shown in PFig. 2, which answers
whether a unit goal 4 is proved by & program F.
DERIVE iz a procedure for the derivation and UNIFY
is a subroutine for unification. In our simulation,
goals are stored in & work tape of an indexing ATM,
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Algorithm SIMULATEL

Given: a logic proaram P

Input: & unit goal A

Output: whether P proves 4 or not

function UNIFY( #: a varisble free term, §7: & term ) : & substitution ;

begin
casel £ ) of
(U1) a variable "X : UNIFY:= {{X,1")}

(U2} = constant "a" :if t="a" then UNIFY:= (} else reject;

an 1-arity function symbal "f(#,")" :
(U3) if { t="f(1)" } then
a Z-arity funciion symbel "g{# ' 0" )"
i t=mtrglty, i) ) then
berd

IFY:=UNIFY(,1") else rejeet;

U4) Guess the location of ¢ (existential branch);
EUﬁ if the guessd term is incorrect then reject (universal branch);
(Us UNIFY1:=UNIFY(;,4," ); UNIFY2:=UNIFY(t;,8;" );
ur il [ UNIFY1 and UNIFY? are inconsistent ) then reject;
EUS} UNIFY:=UNIFY1|_JUNIFY2
end
else reject;
end {of case}

end {of function UNIFY};

procedure DERIVE ( A4 : & unit goal );
begin

R1) Choose a clause C="4"+—B8,,.. B " (k>0) in P (existential branch};

R2) o:=UNIFY(A,4°);
(R3) Guess a substitution § (existential branch)

such that all remaining variebles in Cr occur s the second elements

and that no varishle occurs in the first elements ;

(R4) for a1l s€{1,...,k} parallel do {universal branch)
DERIVE { Bd );
end { of function DERIVE };

begin {of main routine}
Qutput "YES" if DERIVE( A ) is end
end;

Figure 2. An algorithm for simulating logic programs by indexing ATMs.

where writable terms are represented in prefix nota-
tion and primary read-only terms may be represented
as a pointer to the input string.

UNIFY is & function which returms the most gen-
eral unifier of a variable-free term ¢ and a term #'.
First we consider the case that ¢ is writable. If ¢ iz
a variable X, it returns the substitution {(X,f}} (in
line (U1)). If ¢’ is a constant g and f=a, it returns
@ (in line (U2)). If ¢* is f(#,") and ¢ is f{¢,), where
fis & l-arity function symbel and ¢,° and #, are
terms, it returns the result of UNTFY(4,4,") recur-
sively (in line (U3)). If ¢ is g(t,",8,") and ¢ is
g{t,t;), where yis a 2-arity function symbol and L',
L', &, t, are terms, it scans the term gl f,ty)
represented in prefix notation on the work tape,
guesses the second argument £, nondeterministically
(in line (U4}), and verifies it using universal branches
{(in line (US)). Next it calls the subroutines
UNIFY(#,t,") and UNIFY(t,4,’) (in line (U8)),

verifies if no variable is substituted by different terms
{in line (UT)) and returns the union of them (in line
{(U8)). In every other case it answers that these two
terms are not unifiable. It is almeost similar in the
case ithat ' iz read-only term represented as a-
pointer, except that arguments are passed by their
aﬂdres:ses; however, in ease that l'ng[li'llsj:] and

" E=g(t,fy), the address of & on the input tape is

guessed nondeterministically (in line (U4)), instead of
scanning the work tape.

Procedure DERIVE chooses a Horn clanse
C="4"~§,,.,B,"” (k=0) in P nondeterministically
{in line (R1)) and get the most general unifier & by
calling Function UNIFY (in line [R2)). Suppose A
and. A’ are unifiable. Since no variable cccurs in
goal A, all variables occur in 4" are substituted by
varable-free terms via . Next it guesses a variable-
free substitution # of variables which are not substi-
tuted via ¢ (in line (R3)}. All variables occur in €
are substituted by wvariable-free terms wvia of.
Finally, it asks if B,of can be derived by P for each
B; using universal branches (in line (R4)).



Let us consider the logic program P,,, shown in
Fig. 4. Obviously P, behaves quite similar to Algo-
rithm SIMULATE2Z. From Propesition 3, if M
accepts w within space <5(n) and tree-size <Z(n},
then there exists a refutation of

redﬁzubfs[ gu,[ wl, 3, $:'] :']
from P, with depth O(logZ(n)), goal-sizeQ(Z(n))
and length @(Z(n)). Thus the following theorem fol-
lowe:

TEEOREM 2. Let M be an ATM which aceepts a
language L in space S(n)>flogn) and tree-size
Z{n). Then there exists a logic program P of depth
complexity OlogZ(n)}, goal-size complexity O{5(n))
and léngth complexity O(Z(n)) such that
{weX*|aecept(w) iz in I{P)}, iz a language recog-
nized by M.

Allernaling space is linearly related io the goal-
size. Alternating {ree-size is linearly related to the
length and logarithm of alternating tree-size is

linearly related to the depth. The next corollary faol-

lows immediately from the theorem.

COROLEARY 1. Let M be an ATM that accepts
& language L in time T(n), space S(n)={logn) and
tree-size Z(n). Then there exists a logic program P
of depth complexity O{T(a)), goal-sire complexity
{5(n)) snd length complexity O[Z(n)) such that
{weL™|accepi{w) is in I{P)} i a language recog-
ni M.

Remark. Note that T{n)>0(logZ(n)). O

Since Corollary 1 subsumes Proposition 2,
Theorem 2 is an improvement of Proposition 2.

Algerithm SIMULATE?

CGiven: an indexing alternating Turing machine M
Input: & string weX*

Output: whether M aceepts w or not

Jol

4.2 Simulating ATMs with Logic Programs

We will describe an zlgorithm for simulating
indexing alternating Turing machines by logic pro-
geams. This algorithm is based on a simulation tech-
nique introduced by Ruzzo (1980) for simulating an
S(n)-space and Z(n)-tree-size bounded ATM (which
may be indexng, offline or on-line) by an
O(S(n)logZ(n))-time bounded and O{5(n))-space
bounded indexing ATM.

A computation fragment of an S${n)-zpace and
#(n)-tree-size bounded ATM M is an ordered pair
l:r,L}, where r is a ::onﬂguraﬂrm aof M using space
<5(n), and L is a set of such configurations. A frag-
ment is realizable if there is a computation tree of M
with reot r whose leaves are either accepting or in L.
An algorithm fer deciding realizability of a fragment
(r,L). Algorithr SIMULATE?2, is shown in Fig. 3.

PROPOSITION 3. (Ruzzo 1980). If ATM M
accepts w within tres-size <Z(n), REAL{r,@)
returns “true” with maximum depth of recursions
Oflog Z(n)).

Ruzzo also showed that it is sufficient to consider
fragments whose corresponding compuiation trees
have not more than three nom-accepiing leaves in
Algorithm SIMULATE?.

Next we will deseribe a logle program which
simulates Algorithm SIMULATE2Z. We may assume
thai M is an indexing ATM which has one work tape
and that the index tape alphabet is {0,1}., In our
simulation, an input string w=z;1,...5,€X" of length
fi is represented by a term

oo {a(ol(zy,my) 0{T074) )0 #(74,8) 10(5,8))..)

in complete-binary-tree form of height |logyn |, where

He' is & 2-arity function symbel and “$" is a con-

function REAL{ R: an ATM configuration, I: a set of ATM configuration ): Boolean;

{F1) if the fragment (r,L) is realizable within tree-size <3 then

REAL := true
else
begin
{F2) Guess an ATM configuration s and sets of ATM configurations L°, L"

s.t. L' CL, ICL and L=E"|JL" (existential branch) ;
{F3) REAL := [ REAL({ =, L"| {2} ) A BEAL{ &, L") ) (universzl branch)

end
end {of REAL};
begin
Output “YES" if REAL( ro, # ) = TRUE,

where g is an initial configuration of M with input w;

Fig. 3. An algorithm for Simulating ATMs
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stant. A configuration of indexing ATM M is
represented by a term

?{ weur!r 'ti.gﬂ:l ‘ngﬁl}
where ¢ corresponds the state, w,,, is a subtree of w
obiained by traversing a complete binary tree w
according to the content of the index tape, and Lt
and .., represent the left side (including the head
position) and the right side of the content of the
work tape respectively.

Let n be the length of A, and let G(n), D(n)
and L{n) be the goal-size, depth and length of R
respectively. By examining how the refutation R of
Ag from P is simulated by an indexing ATM, it is
not difficult to show that the total space, time, tree-
size and alternation depth required in the simulation

are O G(n)+logn) G[D{n}G[n]ﬂlagn]E},

O(L(n) {G{n}-l—'h{lﬂgn}i]] and  O{D(n)+logn)
respectively.

THEOREM 1. A logic program of goal-size com-
plexity G{n)< O(n), depth complexity

D{n)=1Xlogn), length complexity L(n), can be simu-
lated by an indexing ATM in time ﬂgﬂ{n} &(nd}),
gpace O G(n)), tree-sige O L{n)n{logn)*) and alter-
natjon depth Q{D(n)). '

Goal-size is linearly related to the alternating
space, depth is related to the alternating time up to
the goal-size factor (indeed it is linearly related to
the alternation depth) and lengih is related to the
alternating tree-size up io the polynomial factor,
This is very similar to Proposition 1, and we may
sy that Theorem 1 extends Proposition 1 to the case
that goal-size complaxity G{n)=o(n).

Program P, ,

aceept{ Wy—realizable gof W,$,8),0¢(%,8 8))

realizable( ¥, sel( ¥1, ¥2, ¥3)) —realizable ¥, set( 2, Y2, ¥3)),
realizable( Z,set{ ¥1,¥2, ¥3))

realizable( ¥, set{ ¥1,Y2, ¥3))—realizable( ¥,set( ¥2, Y1, ¥3))
realizable( ¥, set{ ¥1, Y2, ¥3))—realizable{ ¥,se1{ ¥3,¥2, ¥1))

realizable( ¥, set{ ¥1, Y2, ¥3))—realizablef ¥ set( ¥, Y2, ¥3))

and clauses which correspond to the state transitions
each of the ATM M.

Figure 4. Program for simulating ATMs

b LANGUAGES RECOGNIZED BY
LOGIC PROGRAMS

We will examine the relations among classes of

languages recognized by logic programs and many
well-known complexity classes.

We denote the class of langnages recognized by
logic programs within goal-size O(G(n)), depth
O(D(n)) and length O(L(n)) simultaneously, by L-
GzDpln{ G{n),D{n),L(n)). Likewise, L-
GzDp( G(n),D(n)) denctes languages recognized by
logic programs within goalsize O{&(n)) and depth
O(D{n)) simultaneously, and similarly for UI-
GzLn{G(n),L(n)) ete.

THEEOREM 3, For
G(n)<200(n)
L-G=Dp( G(n), D{n))=L-GLn( G(n),2 %H)
=A-SpSx{ G(n), 29PN,
From Proposition 1 and Theorem 1,
L- GaLn( 6(n),2 X7
CA-8pSH G(n), 2% G(n)+nlog’n))
=A-SpSe G(n), 2=,
From Theorem 2,
A-SpSi( G(n) 297Dy
CL-GzDpLu( G(n),D(n),2 %)
It is obvious that, if the depth of the refutation is

D(n), the length of a refutation is at mest 29(P(=))
1.2,

Din)=(logn) and

FProaf.

L-G2Dp{ G(n), D(w))
C L-G2DpLn( G(n),D(n),2 F )
O

COROLLARY 2.  The class of languages recog-
nized by logic programs within goal-size O(logn) and
depth Ologn) is LOGCFL, ie. the class of languages
log-space reducible to context free languages.

L-GzDp(log n,log n)= L- GzLn(log n,2 %167
= A-SpS{logn,2 0eEn))
=LOGCFL.

Remark. The corollary immediately follows from
Theorem 3 for G(n)=0(logn) and D(n)=0(logn).
O

uhSrimila.r]y, the following result follows immedi-
A s
L-GzDp(logn,{logn)*™)=[-GsLn(logn,2 ™™ )
=4-SpSa(logn,z Teen ™)
=NC.
Lﬂsﬂpﬂugn,nqu}=£.-ﬂzbq'_lu;n,i"mj
=A-SpSs(logn,2™ ")
=PTIME.
L-G2Dp(n™™ logn) = I- GzLn( a™Y), n A1)
= A-SpSr(nH), n Ay
wNPTTME.,



Hierarchy of complexity classes are shown in Fig.
5. Here NC is the class of all problems solvable by
uniform eircuit families with depth O((logn)®!)) and
size n?) LOGSPACE (NLOGSPACE) is the class
solvable by & DTM (respectively, an N'T'M) in space
logn); PTIME (NPTIME) is the class solvable by =
DTM (respectively, an NTM) in time nXt); PSPACE
is the class solvable by a DTM in space n?(), (See
(Cook 1985).)

6§ CONSIDERATIONS

We have modified the definition of eomplexity of
logic programs introduced by Shapiro, and hawve
shown a relationship between the complexity of logic
programs and that of alternating Turing machines
In particular, logic programs are closely related to
tree-gize bounded alternating Turing machines. We
can say that logic programs are a surprisingly good
model of parallel computation. Indeed, logics pro-
gram can be considered as alternafing Turing
machines whose existential brenches and universal
branches are not symmetric,

NC is a very attractive class, becanse all prob-
lems in it are solvable very rapidly by circuits with
polynomial gates. We have given a characterization
of NC in terms of logic programs. Another charac-
terization of NC via logic programs is found in (Ul-
man and Gelder 1988).

Theorem 3 means that any logic programs of
length complexity L{n) (whose depth complexity is
O{L(n))) can be simulated by a logic program with
depth complexity log(L(n)) and length complexity
L{n)*Y, This may be regard as conversion from
“gerial logic programs into parallel form.
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Figure 5. Hierarchy of complexity classes of problems
with respect to logic program complexity



