PROCEEDMMNGS OF THE INTERMATIONAL CONFERENMCE
ON FIFTH GENERATION COMPUTER SYSTEMS 1988,
edited by ICOT, © [O0T, 1988

347

UNIFORM ABSTRACTION, ATOMICITY AND CONTRACTIONS
IN THE COMPARATIVE SEMANTICS OF CONCURRENT PROLOG

J.W. de Bakker
J.N. Kok

Centre for Mathematics and Computer Science,
P.0. Box 4079, 1009 AB Amsterdam, The Netherlands

ABSTRACT

This paper shows the equivalence of two semantics for
& version of Concurrent Prolog with non-flat guards: an
operational semantics based on a transition system and 2
denotational semantica which is a metric semantics (the
domains are metric spaces). We do this in the follow-
ing manner: First a uniform language £ is considered,
that is a language where the atomic actions have arhi-
trary interpretations. For this language we prove that a
denotational semantics ts correct with respeet to the op-
erational semantics. This result relies on Banach's fixed
point theorem. Techniques stemming from imperative
languages are used. Then we show how to translate a
Concurrent Prolog program to a program in £ by select-
ing certain basic sets for £ and then instantizting the
interpretation function for the atomic actions. In this
way we Induce the two semantics for Concurrent Prolog
and the equivalence between the two semantics,

WNote: this work was carried out in the context of ES-
PRIT 415: Parallel Architectures and Languages for
Advanced Information Processing — a VLSI-directed ap-
proach and in the context of LFC: the dutch National
Concurrency Project, supported by the Netherlands Or-
ganization for Sclentific Research (N.W.0.), grant 125-
20-0u4.,

1 Introduction

‘Pure’ logic programming (LF) has by now a well-esta-
blished semantic theory, described in, e.g. [Lioyd 1987,
[Apt 1987] or |Apt and van Emden 1982, Traditionally,
at least three varieties of semantics are distingunished,
viz. the ‘declarative’, ‘procedural’ and ‘process’ inter-
pretations, and, for pure LP, it is a standard result that
these semantics all coincide. For logic pregramming lan-
guages — with the emphasis now on programming lan-
quage rather that on the underlying mathematical frame-
work of pure LP — the situation is much less clear.
Parallelism in LP languages brings along the well-
known (from the field of imperative languages) phenom-

ena such as synchronization, suspension and deadlock,
sending and receiving of messages, and process creation,
Accordingly, it may be more advantageous to address the
semantic issues in parallel LP following the tradition in
imperative languages (emphasizing ‘contrel’) rather that
that of pure LP (emphasizing ‘logic’}.

For operational semantics the method of Structured
Operational Semantics ([Plotkin 1981]) has become the
standard tool. Systems of (possibly labeled) transitions
are embedded into syntax directed deductive systems,
providing a concise, powerful and flexible tool, as demon-
strated by numerous applications (for parallel logic lan-
guages we mention [Saraswat 1987]). For denotational
semantics, a classification can be based on the underly-
ing mathematical structures, thus leading to (at least)
order-theoretic, metric, algebraic and category-theoretic
models, We use metric structures as our main tool.

A well-known phenomenon from imperative concur-
rency is that of deadlock (in LP returning as faflure),
inducing the need for a model which embadies more
structure than just (sefs of) sequences. In case pro-
gramming notions requiting branching time are com-
bined with state transformations, the need for Plotkin’s
resumptions arises. We have developed our own (metric}
way of salving domain equations which are at the bottom
of such resumptions {described in [de Bakker and Zucker
1982] or [America and Rutten 1988]), The introduction
of committed-choice in parallel logic languages is a cause
of deadlock (see for example [Falaschi and Levi 1988) for
an analysis of this phenomenon).

In [Kok 1988] we developed a denotational seman-
tics for a version of Concurrent Prolog, employing the
metric techniques (domains of processes in the resump-
tions style, contracting functions ete.) of [de Bakker and
Zucker 1982| and successors. The branching structure
built up as result of a computation before a commil is
encountered, is eoflapsed, at the moment of such an en-
counter, into a set of streams. The paper [Gerth et al,
1933] develops, for the language TFCP, aperational and
denotational semantics, the latter based on [zilure sets.
Moreover, a fully abstractness theorem relating the two
ia presented. The third investigation we mention fol-

348

lows the approach of declarative semantics. In [Levi
and Palamidessi 1985] and [Levi and Palamidessi 1987,
a comprehensive analvsis is provided of a number of syn-
chronization mechanisms in parallel logic languages.

In this paper we develop an operational and a de-
notational semantics for a language . This language
is uniform in the sense that some basic setz can have
arbitrary interpretations. Another feature of £ is that
we have an operator that turns its argument (any, pos-
sibly complex statement s) into an elementary action or
(contrel) atomn, denoted by |s|. Hence our emphasis on
atomicify in this investigation. We provide a proofl of
the correctness of the denotational semantics with re-
spect to the operational semantics [we show that there
exists a restriction operator which relates the two). The
operational semantica O is based on a transition system.
The denotational semantics I is a metric semmantics: the
domains are metric spaces. A key role is played by con-
tractions: they are used in almest all definitions. We
have wsed wniform abstraction: In order to obtain the
two semantics for Concurrent Prolog, we interpret the
abstract sets of £. For example, the set of elementary
actions B will be the set of pairs {a;,a;) of (logical)
atoms. The intended meaning of such a pair (a,,a;)
of atoms is that we have to unify a; and as. We then
show how to translate a Concurrent Proleg program to
a program in the uniform language £. The denotational
model that is induced in this way {I'n;rm the denotational
model for L) resembles the model given in [Kok 1588].
We also have an induced operational semantics and an
induced relation between the two semantics. Figure 1
shows the relations. Note that the heavy lines in this
figure refer to induced mappings only.

CcP

. translation

restr

Figure 1: overview of the models

We think that the uniform abstraction procedure of
firat giving semantics to a uniform language and then
the interpretation, gives more insight inte the model.

Moreover, we have the automatic link with an opera-
tional model,

The idea of a translation of Concurrent Prolog is
already present in |Beckman 1986|. In that paper a
translation to Milner's CCS (Calculus of Communicat-
ing Systems) is provided. The recursion structure that
is used in the paper is different: a clause is modeled by
an agent which tries continuously to apply itself. In our
model the equivalent of elauses is (recursive) procedures.
The model in [Beckman 1986] is based on synchronous
communication, which iz not present in our model.

We treat a larger subset of Concurrent Prolog than
[Gerth et al. 1988]. The main difference is that we allow
non-flat guards. This leads to more complex semantic
domains: we have to introduce the notion of atomicity.
One of the nice points of [Gerth et al. 1988 is that it
makes clear what can be observed from a Concurrent
Prolog program: for example that we can distinguish
between failure and deadlock, They prove that their se-
mantics is fully abstract with respect to the operational
semantics. A point of further research is whether or
not non-flat guards influence these results. Following
Apt and Plotkin {[Apt and Plotkin 1986]) we recall that
in the case of unbounded nondeterminism (caused by
non-flat guards) it might be impossible to assign a fully
abstract semantics.

We give an outline of the rest of our paper. Metric
topological preliminaries are given in section 2. Section
3 describes the language £ and section 4 its operational
semantics 0. In section 5 the denotational semantics
is defined. Section 6 gives the relationship between O
and . Finally, section 7 provides the translation from
Concurrent Prolog to L. :

2 Metric Preliminaries

We give in this section some basic definitions and
properties about metric spaces. Let IV be the set of
natural numbers. For the notionz of (complete) (ul-
trajmetric space, compact and closed sets, Cauchy se-
quence we refer to [Engelking 1977].

Definition 2.1 Let (M), d;), (My, d;) be metric spaces.
Let 0 < ¢ = 1. The sef of functions [from M, te M;
that satisfy

vz, y € M{dy(f(z), F(¥)) < c.di(z,y)]
we eall controcting.

Theorem 2.2 (Banach’s fixed point theorem) Let
{M.d) be a complete metric space and f : M — M a
contracting function. Then there exisls an z € M such
that the following holds:

1. flz) = z (z iz o fized point of f),
2 YWye M[fly)=v = v=2z| (x5 unigue).

Definition 2.3 The closure ClI{X) of a subset X of a
metric space 15 the set {lim;_. w : Vily € X|}

Definition 2.4 Let (M,d) (M, dy) {Mz,da) be metric
spaces.

1. We dcﬁﬁﬁ a metric d on the functions i My —
M; as follows. For fi, fz € M), — M;

d(f1, fr) = sup{da(f1(z), falz)) : = € M, }.

2. Put P,(M) (Pi(M)} the set of compaet {closed)
and non emply subsels of M. We define @ metric
di on both Po{M) and Pu(M), called the Haus-
dorff distance, as follows., For every X, Y & F, (M)
(€ Fu(M))

d(X,Y) =
max{sup{d{z,¥) : £ € X}, sup{dly, X) : y € ¥}}
where d(z,Z) = inf{d(z,2) : 2 € Z} for every Z C
M,ze M.

Theorem 2.5 Let (M,d), (My,d,), (My,d;) be com-
plete [ultralmetric spaces. We heve that My, — M,
Fo(M) and Py(M) (with the metrics defined above) are
complete [ultra}metric spaces.

In the sequel we sometimes suppress the definitions of
metrics, We then assume that they are constructed in
the standard ways as outlined above. -

3 Syntax

Assume given a [possibly infinite) set of atomic actions
B, with typical element b, Let Proe, with typical element
P, be a set of procedure variables. These two basic sets
are used in :

Definition 3.1 We define the sel of statements £, with
typical element s, by the following grammar:

s u= b P sy st 8a] e s[5l
A statement s is one of the following six forms:
» an clementary action b, _
a procedure variable P,

s the sequential composition &, 2; of statements s,
and sg,

the nondeterministic chaoice 5y + 54,

the concurrent execution s, | sy, modeled by ar-
bitrary interleaving,

349

¢ the atomic version [s] of 5, modeled by interpreting
& a3 anh elementary action.

Assume given a set of states E, with typical element o.
Let fnt = B = ¥ =+, £ be the set of interpretations
and let f be a typical element of Inf. Given an elemen-
tary action b and an initial state o, f{b}{o) (if it exists)
is the state after the execution of b in state &. The set
of declarations Decl (with typical element d) has as ele-
ments functions from Proe — L, where £, (the set of
guarded statements) is defined in

Definition 3.2 We define the set of guarded statements
Ly, with typical element g, by the following syntaz:

gu=blgs|a+talalolln-

Note that £, < L. Intuitively, a statement 5 is guarded
il all procedure variables are preceded by some stafe-
ment. A program is a triple (f,d,s}, where s is a state-
ment, d € Deel is a declaration for the procedure vari-
ables in s and f is an interpretation of the atomic ac-
tions. Let Prog be the set of programs. In the sequel we
sometimes suppress the declaration and interpretation
parts of a program: instead of writing {f,d,s) we write
Just &,

4 Operational Semantics

The operational semantics for £ is based on a transi-
tion relation in the style of [Plotkin 1981). A transition
relation describes the steps we can take during a com-
putation. We use a special symbol E, which stands for
terrnination. A step can change the state and the (rest
of)] the program we have to execute.

Definition 4.1 Let

— C (Prog x E x (Progu {E}) x T}

be the smallest relation satisfying (writing (s,0) — (&', &)
for (8,0,8',0") £= and (s,¢) — (E.¢') for (s,0.E,¢') €
— and writing A — Ay|...|4s = B — By|...|By for
A= A= BB a...nA— A, = B — B, where
A, B are typical elements of (Prog U {E}) x L}

¢ (byo) = (B, [(6) (o)) i £(B)(0) ezists
o (d(P),0) — (5,0")|(E,0") = (P,o) — (s, |(E, o)

s (s8,0) = (32, 5)|(E, 0:) =

{31;3:91} — (5215, ﬂi]][‘grd!}
(51 || 8,01) — (52 || 5, 02)[{5, 02}
(s | sivan) = (s | 52, 09) (5, 02)
(5 + s1,00) — (52,00} | [E,o2)
['51 + a'lgl} - {Eliui}l[E'l '73]

350

* (s,0) =" (E, o) = (|s],e) — (E,o") [writing —~
for the transitive closure of —),

The last rule takes several transitions together: in order
to get a step from ([s],) we analyse sequences of steps
from (s,0). We have the following lemma:

Lemma 4.2 For all s € £ and ¢ £ T, the sef
{ eLl:3 e El(s,0) = (¢,0)]}
15 a fimle sel.

Pleasa note that (for any s € £ and o €) {(¢',¢') £
L% E:(s,0)— (¢,0')}is in general an infinite set,

We use the transition relation to give an operational
semantics: we collect the sequence of states during a
computation. Such a sequence can be finite or infinite.
We also signal deadlock by a special symbaol §. Deadlock
means that from a cenfiguration (s,0) no transition is
possible. This can happen becanse It contains partial
functions. Let £* {E£¥) denote the collection of all finite
(infinite) words over . Let x be a typical element of
E* and let ¥ be a typical elament of £ = E° U Dv¥,
Let &% be £* without the empty word and let TF =
E'-{} UTT UE". Let z be a typical element of I¥.
Put 8 = & — PiulE¥F): the set of functions from T to
the closed subsets of L},

We turn Xf into a complete metric space in

Definition 4.3 We define a metric dy on B by putling
du(z1,2) = 278 where N = sup{n : zx{n| = zln|}
where for each z & Bf, z|n] is the prefiz of length n, if
this exists, and z[n| = z, otherwise.

The operational semantics is given in

Definition 4.4 (Operational semantics O) Let O :
Prog — 8 be the unique fized point of the contraction
A (Prog = 8) = (Prog — 8) which is defined as
follows:

A(F)(s) = Ae. {8:(s,a) A} U
{oy:(s,0) = (B,)} U
U{or : Fla){on) : (s,0) ~ (s1,04)}

5 Denotational semantics

In this section we define a denotational semantics for
L. We call a sermantics denotational if it is composi-
tionally defined and tackles recursion with the help of
fixed points. With each operator in £ we associate a
semantic operator., The denotational semantics will he
the fixed point of a higher-order operator. The deno-
tational semantics will be based on domains which are

metric spaces. These domains are defined with the help
of domain equations. The equations can be solved with
techniques described in [America and Rutten 1988] or
|de Bakker and Zucker 1982].

In the construction of the domains for the denotational
semantics we need an operator 0 which is defined in

Definition 5.1 Let (M,d) be a metric space. We de-
fine a metric d on TOM =% LF U S « M by putting

d{Z']TZ;] — d‘al[zllaﬂ} "'.IFZL:E"; 1= Ef

d{(21,m1), (22, m3)) =

dlflslizil if L1 E E+|mltm’! E M!z'l ?E T2
2 loek(a) dimy, my) if 51,2 € BF,mu,me € M,z = 2

d.{ Xy {zz, m:l_} =

dn[i’h -3‘::' 1,||r nE E:",E'E € E+1m LS M,E] ?‘-' 23
grtemgthlan) Jf o e 0¥ s e Tt mEM, 5 =2

JHZI ST, 32] =

{dn'[sl. m) f el neltme M,z %o
p-bemathla) §f B e RS 5 €Dt MEM, n = 2

We have that (E0 M, r.i} is a complete ultrametric space
if (M,d) is a complete ultrametric space. We briefly re-
call the notion of a {metric) domain equation. The gen-
eral form of such an equaticn is P = F{P} or, more pre-
cisely, (P,d) = F((P,d)), where the mapping F maps
metric spaces to metric spaces. Under certain condi-
tions, we can find unique solutions (upto isometry) in
the category of complete metric spaces. We have na
room to discuss details. For our purposes, it is suffi-
cient to know that P = & — P,(E0P) has a complete
ultrametric space as solution.

Definition 5.2 Let P be the unique compleie ultramet-
ric space that salisfies

P =T — P,(COP)

Elements of P are called processes. Let p be a typical
element of P. Given an initial state o, p(z) is a (com-
pact) set. Elements of this set are either in ¥ or in
E* x P. An element in Z7 (Z¥) can be seen as a (non)
terminating computation, an element in £° - {6} as a
computation ending in deadlock. An elementi in Bt = P
can be viewed as a terminating computation which has
a resumption: after the computation (which is finite),
it turns itself into another proces. It may be surpris-
ing that we use streams of states in our processes. This

iz done for technical reasons: we then can use compact
sets, If we take paths in our processes (to be made
precize below) we have that the resulting sets are also
compact. This i used in the equivalence proof of the
correctness of the denotational semantics with respect
to the operational semantics.

For each syntactic operator in L we define a semantic
operator. The semantic operators corresponding with 3,
+ and || will be of type P x P — P and the semantic
operator corresponding to |-] will be of type P — P.

Definition 5.3 The operators &, +, ||: Px P — P
and stream: P — P are defined as follows. Let

Pite: = do{p(o) U pa(o))

and let @,ﬂ be the unique fized points of the contractions
Pe, P ([P xP = P) = (P xP — P) that are defined
as follows:

Do(F)(p1,p2) = Ao {z:z € pifo) Az € YU E{S}}U
{{z.ps) :zEPi{o) A2z B U
{(z F(p.p2)) : (2.9) E (o)},

8 (F)(p1, p2) = ®o(F)(p1,p2)+®e(F)(p2. p1)

and fet stream: P — P NS be the unigue fized point of
the contraction ® g : (P = PN 8) = (P =+ PNS)
that is defined by

B Fp) = Ao {z € Bf : 2 € plo) JU

{zo'z: (zo', ') € plo) nz € Fp')e)}.

In the sequel we use a lelt-merge operator:

Definition 5.4 Define | : P x P — P by [= do/]l).

We often write +, ||, || rather than +, I, |]._ if no confu-

sion is possible. Now we define a denotational semantics
for £ in

Definition 5.5 Let D : Prog — P be the unigue fized
point of the contraciion ® : (Prog — P) — {Prog — P)
which is defined fnductively as follows:

e
®(F)(P) = &(F)(d(P)),

B(F)(51; 82) = B(F)[51) & F(s1),

B(F) (51 + 82) = B(F)(a1) + B(F)(5:),
®(F)(s1]| 52) = ®(F)(s1) || ®(F)(s2),
®(F)([s]) = stream(®(F)(s)).

351

6 Relation between the
operational and denotational
semantics

The operational semantics O delivers linear-time objects
(for & given state o, O(s){z) € EF) whereas the denota-
tional semantics D delivers branching time objects in P.
We define an restriction operator restr which will link
0 and D: given a process p and an initial state o, it
delivers certain 'paths’ in the process p. A path will be
an element of Y. In next definition we use the operator
lnst which takes the last element of a word in 7.

Definition 6.1 Let restr : P — 8§ be the unique fized
point of the contraction T : (P — 8) — (P — 8) which
15 gruen by P[F]I{p}l:d] = {S} ::,fp[cr} c E"'UE'-{J} arnd

otherwise 1t equals

Ci{{last(z) :z e BT nz Eplo)}u
| last (2} - F(p")last(z)) :
[=,¢) € B* x P A l(=p) € ple)}).

We have
Theorem 6.2 0 = restro D

In order to prove this theorem, we will define an inter-

mediate semantics I. It is called intermediate bacanse
it serves as an intermediate semantics between O and D:

it is defined with the help of a transition system (like
the operational semantics) and it delivers tree-like ob-
jects (like the denctational semantica), We will prove
the theorem in two steps. First we show that I = D
and secondly we show that O = restr o [,

We prove J = [by showing that P is a fixed peint
of the defining contraction of I, and hence, by Banach’s
theorem, we have that I = ', The proof 1= an extension
of the ideas present in |Kok and Rutten 1988| and [de
Bakker and Meyer 1988|,

We give the transition system for the intermediate
semantics I in

Definition 6.3 Lel
— C Prog x T x E% % (ProgU {E}) x (B u {&})

be the smallest relation satisfying (writing (s,0) 2 (&', ¢")
fﬂl’ ['sr"’:nyrﬁr:a‘} £, [‘5:5] 2 [E!'ar} fﬂ’r{&ﬂ’,y,E,ﬂ"} =
—, (s,0) & (&', 8) for (s,0.u,4',8) €— and (s,0) >
(E,§) for [s,0,4,E,8) €— and writing A — A,|.. |4, =
B—-B...|Byfor A= A = B = Hna...nd—
A, = B — B, where A, B are typical elements of
(Prog U {E}) x (Eu{8}))

o (b,o) = (B, f(b)(o)) if f(b)(o) ezists
s (o) 5 (E,5) of [(b)(e) does not exist

352

o (d(P),0) % (s,0")|(E.)|(s,8)|(E, 8) =
(P,o) & (s,0")| (B,) |(5,8)|(E, 6)

e [51,07) A (82, o2) |(B, o) 82, 8)|(E,) =
(s1:8,00) = (52 5, 02)|(5,02) | (827 5, 8) | (5, 6)
(51 || s01) 2 (22 || 5,00)|(8, o2} (52 || 5,8)](s,6)
(s || s1.01) L (s || s2,00) (s, 22) (5 || 82,6)|(s,6)

(s + 81,01) = (82,03)|(E, o) (52, 8)|(E, 8)
[SI: + 3:'5"1] o (82, 02)|(E, o2} | (52, 6}|(E, §)

o If (s1.00) & (82,00) B -+ (8n,00) then
(8n:0a) 2 (B, a)|(E,8)[(s,6) =
([ss)s00) "5 (B, 0) (B, 8)l(5,6)

o (51,01) B (s9,00) 5o (50,00) -
([ss], 02) "7 =" (E, 6)

Note that we have defined two transition relations: one
in definition 4.1 and the other in definition 6.3. The
second relation is always written with a superscript. The
following lemma holds

Lemma 6.4
Il(s.0) = (') & (s,0) — (£,07)
3y|(s,0) 2 (E.0")] & (s,0) — (E,0")

It follows that

(s,0) o4 =30, 8, 0|(s,0) B (¢,0") V (5,0) = (B,)]

=

Next we give the intermediate semantics:

Definition 6.5 Let I : Prog — P be the unigue fized
point of the contraction U : (Prog — P} — (Prog —)
which is defined as follows.
(F)(s) = do. {wo': (s,0) & (E,')}u

{wé : I{a,r_f}l % [EI 6}}""

{36 : (s,0) B (3,8}

{{ve’, F(&)) : (s,0) %+ (+".0)}
We provide a lemma with properties of the defining con-
traction W of It

Lemma 6.6

w(D)(b) = D(b)

v(D)(P) = w(P)(d(P))

U(D) (515 81) = W(D)(51) @ P(s2)
U(D)(s1 + 82) = T(D)(a1) + ¥(D)(s2)

Y(D)(s1 | s2) =
U(D)(s1) | D(sz) + T(P)(s:) || Pls1)

6. w(P)(s) ePNS

b o

7. B(D)(]s]) =
Ao, {yd’:(s,0) S (B0}
{y6: (s,0) & (s, 8)}U
{yé : (s,0) -5 (E,6)}
We' - #(D)([#])(e") : (s,0) = (s',0")}
Lemma 6.7 #(0) =D

Proof We show that for all s € £ d[\U({D)(s),D(s)) =

L.d{(W(D), D). This implies that d(¥(D), D) < Ld(¥(D), D),

i.e. d(¥(D),D) =0, i.e. ©(D) = D.

We firat prove it for g € L,. We use structural induction
on the elements of £,. We give only the cases g5, [g]:

(g:8) d(¥(D}(g;4) D{g:s)) =
d(®(D}{9) ® D(s). Dlg) ® D(s)) <
max{d(¥{D}(g), D (g)),d(D(s), P{s))} =
d(¥(P)(g), P(g)) < (induction)

L d(¥%(D}, D).
{[gl) d(®(2)(lgl), Pilg])} <

max{ d{T(D){|g]}, stream{T(D}(g))].
d(stream{W(D}(g)), D([a]})}

We show that

1. d(¥(D)([g]), stream(¥(D){(g))) < 1.d(¥(D), D)
2: d(stream(#(D)(a)), D((g)) < }.4(¥(D), D)

1 ¥(D)([g]) =

Ae. {ye':(g,0) LY (E,e')}u
{yé : (g,0) 5 (¢,6)}0
{y6: (g,0) = (E,8)}u
Ulye' - B(D)(Is'])(e") : (g, 0) > (s, ')}

On the other hand, we have
stream{¥(P)(a)) =

stream{Aa. {ye’: (9,0) =+ (B, o) U
{véd : (g9.0) 2 (s, 6)}1
{vé: (9,0) * (B,8)}u
{(vo", D(s)} : (g,0) = (s"0)}) =

da. {ya':(g,0) % (E,0')}u
{ué : (g,0) % (&,8)JU
{v6 : (g,0) & (E.6)}u
U{ye' - stream(D)(s'}a")) :
(g.0) > (s"0)} =

de. {ya':(g,0) = (E,e')}U
{y6 : (g.0) 2+ (&, 6)}u
{vé : (3,0) * (E,8)}U
Ulye? - D([#1) : (3,0) % (4,0)}

j-1ed
d(#(D)(lal), stream(¥(D)(a))) < 3.d(¥(D),D)

since yo' is not equal to the empty word (hence
the factor). Note that the last step does not
use the induction hypothesis.

2. d(stream(¥(D)(g)), D(lg])) =
d(stream(¥(D)(g)), stream(D(g})]) <
d(¥(P)(g), Plg)) <
L.d(®(P), D).

Secondly, we extend £, to L. We use structural indue-
tion on the slements of £. All cases are the same as for
L,, except for P (which is not present in the guarded
case).

(P) By lemma 6.6 we have ¥(D)(P) = ¥(D){d(P)) and
by the definition of D we have D(P) = D{d(P))
Hence d(T(D)(P), D(P)) = d(¥(P)(d(F)), D(d(F)))
< Ld(®(D), D) because d(P) is a guarded state-
ment.

By Banach's fixed peint theorem we have the following
Corollary 6.8 I =D
Lemma 6.9 O = restra]

Proof We show that Alrestr o I') = resir o I where &
is the defining contraction of (0. By the definition of A,
Al(restr o I){s){e) = {6} if (s,0) /. Because (s,0) #
implies -3y, 5", o'[(s,0) % (¢,0") V (s,0) % (E,0)] we
have by definition of I that I(s)(e) C E¥ U E* - {8}
i.e. (restr o I)(s){e) = {§}. Now assume that there are
transitions pessible from (s,0):

Afrestr o T){s){e) =
{e' : (5,0) — (E,c")}U
U{e' - (restr e I){s"){e") : (s,0) — (&', 2)} =
ci{{e' : (s,0) = (B,) U
IU{ea" - (restr o T)(s"){e") (s,0) — {sl,ar}}'_l =
Cl({last(z - ') : (s,0) = [E,0') nzE L' JU
U{last(z - &) - (restr o I){&")(last(z - o') :
(s,0) = (s")}) =

" (restro I)(s){o).

353

7 Zoncurrent Prolog

In this section we apply the framework of the previ-
ous sections, We choose a set of elementary actions, a
get of procedure variables, a set of states and an inter-
pretation function in such a way that we obtain a de-
notational and an operational semantics for Concurrent
Prolog. A Concurrent Prolog program is “translated’ to
an element of Prog.

We first intreduce the language Concurrent Prolog
{CP for short) in an informal way, The reader not fa-
miliair with CP should consult [Shapiro 1983|, the pa-
per which introduces the concepts of CP. The paper
[Saraswat 1987| signals some problems and proposes a
family of languages called CP. We can incorparate the
features described in that paper in our model. In the
present paper we do not give a formal definition of the
extended unification. We can take over the formaliza-
tion proposed in |Saraswat 1987] for the input-only func-
tor. In arder fo do this properly we should place & re-
gtrietion on the places where read-only (input-only in
terms of [Saraswat 1987|) annotations are allowed. Also
our interpretation of the commit operator comes from
that paper. For the details we refer Lo [Saraswat 1987].
The rest of our paper can be read without knowledge of
the exact details. .

Let @ be a typical element of the set of atoms Aiom,
Atoms are built up in the usual way from constants,

variables, functors and predicate symbols. In CP there
is a special functor 7 of arity one which is called the
read-only funetor, An extension of normal unification
is defined in order to cope with this read-only funcfor.
In this paper we call this extension mgu,. It is a partial
function on Afem x Atom. If it is defined it delivers a
substitution. A CF program is a finite set of elements
{called clauses) of the following form:

P R U N B I S, W N

Both n, m can be 0. The bar | is called the commit oper-
ator, @ the head, @i M. . .Aa, the guard and ape A . Aey
the body of the clause. If n = 0 we have an empty guard
and if n = m we have an empty body. Let Clause be the
set of clauses and let ¢ be a typical element of Clause.
Besides a finite set of clauses, we also have a goal which

" is of the form &, A ... A & If k& = 0 we say that the

goal is empty. The {interleaved) execution of a CF pro-
gram goes as follows. We execute the goal given the
identity substitution. The execulion of a goal given a
{current) substitution means that we try to resolve all
the atoms in the goal until the goal is empty. If the goal
i empty we return a substitution. In order to resolve
an atom we unify it with the head of a clause (laking
the current substitution into account) and we try to ex-
ecute the guard (given the ‘new’ substitution resulting

354

from the unification). The unification and the execution
of the guard do not vet influence the current substitu-
tion. Only after the guard becomes empty we commit:
we do not consider alternatives for this clause anymore
and we replace the atom by the body of the clanse and
update the current substitution. The execution modal
deseribed here is an interleaving model. We do not con=
sider here a parallel model where we have truly parallel
processes. In such a model we also would have to check
if a substitution delivered by the execution of a guard
matches with the current substitution.

We introduce disjoint sets of variables, This is done
for technical reasons. During the process described above
we replace atoms by bedies of clauses. In order to aveid
clashes of variables, every time we rewrite an atom we
'replace’ the variables in the clause by new ones. This
is intuitively correct because clauses are assumed to be
universally quantified. Therefore we partition the set of
variables Var into infinite disjunct subsets Var,, where
@ Tenges over N, the set of finite words of integers. As-
sume injections o ; Var, — Var, (and their natural ex-
tensions to elements of Atom). Now we choose our basic
sets: take T the set of substitutions, B = Atom x Atom
and Proc = Atom =% N” {where N" is the set of finite
words of integers). A pair (e, @) in Proc specifies that
we have to rewrite the atom a with a clause of the pro-
gram in which the variables are taken from Var,, Take
flan a2)(e) = mguy(ay, o{as)) ¢ o if mgu,(ay,e(az)) is
defined and is undefined otherwise. Fix a CP program
and a goal. We assume that all variables in the pro-
gram and in the goal are taken from Var,. We define a
function stm : Clause x Proc — £, by

stm@ — ag AL A Bl Eapr A e o A By [8,8]) =

[(a(a),a); (a(ar), - 1) || - -- i {ex(an)s - n)l;
(eflanm)ia-n+ 1) || - || (a{am), @ m).
Suppose the set of clauses is {¢1,...,ex}. Define

d(P) = stm(ey, P) + -+ - + stmles, P).
Assume the goal is & A ... M 8p. Take
8= (ay;,1) | -+ || (@, k)-

Some explanation is at its place. Execution of the goal
consists in parallel execution of the k procedure vari-
ables (&@;,1),...,(3, k). When we call stm on a clause
¢ and a pair (e,a) it considers what has to be done
in order to rewrite atom a with clause ¢ in which we
have to take the variables from Var.. Suppose ¢ = & +
@y A A oBl@asr N . A By First we unifly a with @
(the head of clause ¢). Because we have to take vari-
ables from Var, we rename the variables in @ with the
operator o this results in the pair (al@),a). After this

unification, we have to execute the guard of the clause ¢,
ieayn.. e, We can execute all the atoms (in which
the variables are renamed by o) in parallel. In order
to avoid clashes of variables, we specify that if efa;) is
rewritten by a clanse, variables in that clause are to he
taken from Var,;. The resolving of the gnard and the
unification is not (yet) allowed io influence other com-
putations. This is modeled by considering them to be
an elementary action by placing || around the unifica-
tion and the guard. After the execution of the guard,
we continue with the execution of the body: again with
the renaming and the specification of sets of varizbies.

This translation induces an operational- and denota-
tional semantics for Concurrent Prolog: We combine the
translation to £ with the operational- and denotational
semantics for £. Also the equivalence [an operator link-
ing the two semantics for Concurrent Prolog) is induced
by the translation: we already have the restriction op-
erator restr that relates the two semantics for £. This
method of uniform abstraction gives in our apinion more
insight into the semantic models than a direct definition
would give. A direct definition yields a transition sys-
tem in the style of [Saraswat 1987] and a denotational
semantics as in [Kok 1988, The proof of the equiva-
lence befween two such semantic definitions would be
mere difficult to understand (due to the interpretation
of the abstract sets). :

8 Acknowledgements

We acknowledge fruitful discussions on our work in the
Amsterdam concurrency group, including Frank de Boer,
Arie de Bruin, John-Jules Meijer, Jan Rutten and Erik
de Vink. We thank Erik de Vink and Katiuscia Palami-
dessi for the comments and suggestions made during }he

work.

9 References

|America and Rutten 1988| P. America, J.J.M.M. Rut-
ten, Solving reflezive domain equations in a category of
eomplete meiric spaces, Proc. of the Third Workshop on
Mathematical Foundations of Programming Language
Semantics, Lecture Notes in Computer Science, Vol. 298,

Springer (1088) 254-288.

[Apt 1087] K.R. Apt, Infroduction to logic programming,
Report CS-R8741, Centre for Mathematics and Com-
puter Science, Amsterdam (1987), to appear as a chap-
ter in Handbook of Theoretical Computer Science, North-
Holland.

[Apt and van Emden 1982| K.E. Apt, M.H. van Emden,
Contributions to the theory of logic programming, JACM
Vol. 28, No. 3, July 1982, pp. B41-862.

|Apt and Plotkin 1986] K.R. Apt, G. Plotkin, Count-
able nondeterminism and random assignment, JACM
Vaol. 33, No. 4, October 1986, pp. 724-TG7.

'Beckman 1986] L. Beckman, Towards ¢ Formal Seman-
tics for Concurrent Logie Programmung Languages, Proc.
of the Third Intermational Conference on Logic Pro-
gramming, Lecture Motes in Computer Science, Vol
225, Springer [1086) 335-3490,

'de Bakker and Zucker 1982 J.W. de Bakker, J.I. Zucker,
Processes and the denotational semantics of concurrency,
Inform. and Control 54 [1982) 70-120,

|Bakker and Meyer 1987] J.W. de Bakker, J.-J.Ch. Meyer,

Metrie semantics for concurrency , Report Free Univer-
sity, Dept. of Computer Science, IR-139 (1987). to ap-
pear in BIT.

'de Bakker 1988 J.W, de Bakker, Comparative seman-
tics for flow of control in logic programming without
logic, Report CS-RB8.., Centre for Mathematics and
Computer Science, Amsterdam (1988) to appear.

'Engelking 1977] R. Engelking, General topelogy, Polish
Scientific Publishers 1977.

[Falaschi and Levi 1988] M. Falaschi, G. Levi, Opera-
tional end fizpoint semantics of a class of commutted-
choice languages, Techn. Report, Dipartimente di In-
formatica, Universita di Pisa, Pisa (1988).

[Gerth et al. “1988] R. Gerth, M. Codish, Y. Lichten-
stein, E. Shapiro, Fully abstract denotational semantics
for Coneurrent Prolog, Proc. Logic In Computer Sei-
ence, {1988) 320-335.

|[Kok 1988] J.N. Kok, A compositional semantics for
Coneurrent Prolog, Proc. Symp. on Theoretical Aspects
Computer Science [R. Cori, M. Wirsing eds.), Lecture
Motes in Computer Science Vol 204, Springer (1988)
373-388, .

|Kok and Rutten 1988| J.N. Kok, J.J.M.M. Rutten, Con-
tractions in eomparing concurrency semantics, Pree. In-
ternational Colloguium Automata, Languages and Pro-
gramming (T. Lepistd, A. Salomaa eds.), Lecture Notes
in Computer Science Vol. 317, Springer {1988) 317-332.

|Levi 1988] G. Levi, 4 new declarative semanties of Flat
Guarded Horn Clauses, Techn. Report, ICOT, Tokyo
(1988).

[Levi and Palamidessi 1985] G. Levi, C. Palamidessi,
The declarative semanties of logical read-only vartables,
Proc. Symp. on Logic Programming, IEEE Comp. So-
ciety Press (1085) 128-13T.

355

|Levi and Palamidessi 1987] G. Levi, C. Palamidessi, An
approach to the declarative semantics of synchronization
in logic languages, Proc. 4th Int. Conference on Logic
Programming, Melbourne, {1987) 877-803,

[Lloyd 1987] I.W. Lioyd, Foundations of Logic Program-
ming, Springer (1084), (Second edition 1087).

|Plotkin 1981] G.D. Plotkin, A structural approach te
operational semantics, Report DAIMI FN-19, Comp.
Sei. Dept., Aarhus Univ, 1981,

|Saraswat 1987] V.A. Saraswat, The comcurrent logic
programming language CF: definition and operational
semantics, in: Conference Record of Lhe Fourteenth An-
nual ACM Symposium on Principles of Programming
Languages, Munich, West Germany, January 21-23, 1987,
pp. 48-62.

[Shapiro 1983] E.Y. Shapiro, A subset of Coneurrent
Prolog and its interpreter, Tach. Report TR-003, ICOT,
Tokyo [1983).

|Shapiro 1987| E.Y. Shapiro, Coencurrent Proleg, a pro-
gress report, in Fundamentals of Artificial Intelligence
{W. Bibel, Ph. Jorrand, eds.}, Lecture Notes in Com-
puter Science, Vol 232, Springer {1987},

[Vink 1988] E. de Vink, Equivalence of an Operational
and a Denotational Semanties for a Prolog-like Lan-
guage with Cut, Report IRR-151, Free University, Ams-
terdarn [1988).

