PROCEEDINGS OF THE INTERNATIONAL CONFERENCE
OM FIFTH GENERATION COMPUTER SYSTEMS 1988,
edited by 1COT. © ICOT, 1988

489

Towards a Computational Interpretation of Situation Theory

Hideyuki Nakashima*
Electrotechnical Lab, and CSLI
Hiroyuki Suzuki
Matsmshita Electric Industrial Co. Ltd. and CGSLI

Per-Kristian Halvorsen
¥erox Palo Alto Research Center and CSLI

Stanley Peters
Stapford University and CSLI

ABSTRACT

This paper describes the design of a programming/
knowledge representation language, PROSIT, based on

situation theory. Our goal is to provide facilities within
the logic programming paradigm for stating theories
which allow self-reference, relativizaiton of assertions to
situations, direct access to the relationship between sit-
uations ete. We provide a computational account of the
notion of situated inference, and compare it to other ap-
proaches to deduction. The syntax, operational seman-
ties and data struetures of the language are presented
in detail. The paper concludes with examples of some
novel aspects of the query mechanism of PROSIT, as
well as the treatment of identity and inheritance.

1 Introdunction

This paper describes the design of & program-
ming [knowledge representation language, PROSIT
(Programming in Situation Theory). As the name im-
plies, the language is based on situation theory (Barwise
and Peters 1988; Devlin to appear). The motivation for
embarking on the design of another langnage rests on
the unique collection of features which are supporled by
situation theory:

1. the use of partially specified objects (e.g. situations,
parameters) and a general trealment of partial in-
formation

2, situalions as first class citizens of the theory
3. & formal treatment of informational constraints

4. » proper treatment of self-referential expressions

*This author is partially supported by the Science and. Tech-
nology Agency to visit OSLI

'Center for the Stady of Language and Information, Ventura
Hall, Stanford University, Stanford, California 94305 U.S.A.

These features make situation theory particularly well
suited for the analysis of semantic phenomena in natu-
ral language and other instances of communication and
information flow. But at the same time these attribotes
of situation theory put it beyond the comfortable reach
of programming environments that provide integral sup-
port for knowledge representation, interactive querying
and deduction, This is evidenced by the work of Mukai
{1985}, which extends Prolog to contend with one par-
ticular construct introduced by situation theory, viz.
compler indeferminates, as well a range of other work
which addresses the more general questions of how to ac-
commodate partially specified objects in Prolog (Mukai.
1987, Aft-Kaci and Lincaln 1988). .

The long-term goal of PROSIT is to provide facilities
within the logic programming paradigm for stating the-
ories which allow self-reference, relativization of asser-
tions to situations, direct access to the relationship be-
tween situations etc. In a logic programming language,
a set of clausez can be viewed from two different perspec-
tives. On the one hand, they can be taken as a declara-
tive statement of a “iheory”. Alternatively, they can be
viewed as a program. According to the latter view the
elauses specify the computation which will yield a simul-
tanecusly satisfying set of bindings for the free variables
in the clauses, provided such & binding exists. Given
this dual status of the statements of a logic program,
situation theory’s treatment of objects and operations
opens up the possibility of simplifying specification of a
range of computations thal involve notions such as mu-
tual knowledge, and partial knowledge. (See section 5 for
gome basic examples of such applications.) This comes
in addition to the more obvious advantage to practi-
tioners of situation semantics of having a programming
language specifically tailored for the implementation of
natural language systems based on sifuation semantics,

In addition to crealing a programming language to ac-
commodate the fundamental objects and operations of

490

situation theory, we are also attempting to probe an, as
yet, underdeveloped area of situation theory itself, ie.
its deductive features (see also chapter 4 of Fenstad et
al. (1987)). We believe that inference is a very impor-
tant component of intelligent behavior in general, and of
successful lingnistic communication in particular, This
motivates our attempt at providing a computational in-
terpretation of aspects of the logic of siluation theary,
even though any effort in this direction at this peint in
time has to be incomplete.

If one thinks of situation theory on the model of set

theory, it may seem odd to think of it as generating de-
ductions, However, situation theory includes constraints
between facts and situations, such as various forms of in-
volverent relation (e.g. logical involvement (=), con-
ventional involvement (=+.)). This is the logical compo-
nent of situation theory that drives the computational
interpretation of a set of statements.

2 A Computational Perspective on Situation
Theory

2.1 Situated Inference

In knowledge representation, it is well known that the
form of representations has a great influence on the ef-
ficiency of their manipulation. The difference between
efficient and inefficient representations sometimes turns
out to be the difference between practicality and imprac-
ticalily of actually performing the desired deductions.

In situation theory the inference system is supposed
to be situated, ie. relativized to a situalion—a paré of
the world. This means not only that the inferences and
conclusions drawn are dependent on the situation, but
also that the rules themselves are compiled into the sit-
uation go that the inference may become more efficient.
Most previons theories neglected this fundamental fact,
so the representation of kmowledge in the systems imple-
menting them took place sub specie aefernitatis without
any reference to the situation,

Many-sorted logic is one of the exceptions to this gen-
eral rule. It opens the possibility of more efficient de-
duction by limiting the domain of variables. However,
many-sorted logic is not situated since it must always
explicitly state the domain. Moreover, it is efficient only
in limiting the domain. In PROSIT, we achieve a sim-
ilar, but more general, effect by classifying information
by situations. Although we are geing to give an example
in which we form situations according to the domain, we
can apply the same technique to classify situations ac-
cording to spatio-temporal locations, or any other prop-
arty.

The information that all canaries are yellow has been
conventionally represented as

Yz (eanary(z) — color_of (z, yellow)). (1)

Note that, in this formulation, the truth value of the
formula is determined relative to afl the objects in the
total universe of discourse.

If wa relativize the first arpument of the relation
eolor_of to the class of canaries, we can treat color.of
a3 a one-place relation, which holds of the color yellow,
Le. color of(yellow) is & fact relative to the class of
canaries, In PROSIT we represent this as follows:

Seanary | color_of (yellow). (2)

This formalization is quite similar to that of many-sorted
logie: :
V[canary color_of(z, yellow). (3)

Computationally speaking, the advantage of having
situated knowledge is obwious. In the case of inguir-
ing about the color of a particular canary, Tweety, it is
nol. necessary to invoke an inference rule. The answer
follows through inheritance.

However, the case for situated lmowledge is not only,
or even primarily, motivated by computational eonsid-
erations. The efficiency of language (i.e. the same ex-
pression taking on different or specialized interpretations
on different cceasions of use) is similarly a reflection of
the ability to exploif context {o protide “missing” infor-
mation. In other words, all representations of informa-
tion, including linguistic expressions, depend on situa-
tional context for their interpretation. Situated knowl-
edge serves Lo make more economical linguistic expres-
sions, internal representations, and inference alike.

Sitnation theory has so far captured only partially the
nature of situated inference. To aid in accounting for
the behavior of intelligent agents, we wish to actually
use situated inference in our reasoning. Thus owr system
explicitly mentions and manipulates situations. It is not
limited to viewing situations from ocutside; the internals
of the system are also organized as situated.

It should be emphasized again that our method of par-
tial evaluation te capture situated knowledge is not lirm-
ited to domain hierarchies. It can equally well be ap-
plied, for example, to the case of iemporal reasoning. In
temporal reasening, there are two possibilities given our
approach, On the one hand we can consider a situation,
£, spanning an interval as in

s |= kissing(John, Mary, !). (4}

Here an argument role is required to represent the tem-
poral location. Allernatively, we can divide the informa-
tion in a larger situation into subsituations according to
time slices, {, where | C 5. This can be represented as

[| kissing(John, Mary). (5)

This form, having no temporal parameter, inereases the
efficiency of certain types of deductions.

2.2 Deduction with Infons and Constraints

PROSIT mirrors situation theory in distinguishing a
special type of information that ‘generates nmew facls’,
called & constraint. Constraints are jusl a special case
of infons, situation theory’s uniis of informatiom. We
restrict attention to situations thal respect every con-
straint they support; in other words, all a situation’s
infens should agree with the constraints imposed on the
gituation. In PROSIT if a constraint ¢ = 7 holds in
a situation s, then the situation is closed under that
constraing, i.e. if ¢ holds in s, then 7 also helds in s
! A constraint usually contains variables which are in-
stantiated to particular objects upon application of the
constraint. An example of a constraint is:

kissing(z, y) = touching(z, y). (8)

Infons and constraints determine the deductive behav-
ior of the sysiem via certain proof rules, which constitute
an operational semantics. These proof rules must all be
gound, in terms of the situation-theoretic behavior of
the objects PROSIT expressions are intended to denote;
they need not, however, be complete, in the sense of li-
censing the deduction of every consequence that validly
follows. When infons are asseried, entries are made in
the database and the forward-chaining constraints? are
consulted and applied when matched. Similarly, when
forward-chaining constraints are asserted, the database
iz updated to comply with the constraints. By these
mechanisms, the system can conclude a wide range of
valid consequences of assertions made Lo it about what
infons held in various situations, though not every valid
consequence,

When a query is made, the system utilizes backward-
chaining constraints in a laxer dedactive system to try
and ‘prove’ the query from the database. We add to
the forward-chaining rules further proof rules that allow
the system to induce that the database contains posi-
tive instances in support of constraints. For example, if
white(a), white(h), swan(a), and swan(b) hold in a situ-
ation, and this list includes the only instances of swan(z})
proven to hold in that situation, backward-chaining rules
will conclude that the constraint swan(z) =+ white(z)
might hold in the situation, or as we shall say that the
situation permiés the comstraint. Clearly, the constraint

may not hold, and counterexamples to it may even exist.

Hevertheless, this is a useful programming mechanism
for information processing,

" 1This is analogous to the dislinetion between neces-
garily true and contingently true facis discussed, in the
context of knowledge representation languages, in Kryp-

ton {Brachman and Levesque 1983).
8¢ section 4.4 for an explanation of the different

types of constraints in PROSIT.

491

3 Implementation

3.1 Stirategy

PROSIT is implemented as a modification of the Uranus
system (Makashima 1986). Uranus is a logic program-
ming language equipped with a multiple world mecha-
nism. As we will show in the example section (section
5}, the multiple world mechanism is similar to the use of
situations. Limited medification of the Uranus system
made possible a full implementation of PROSIT. The
revigions are largely focused on extensions of the unifi-
cation mechanism (see section 3.2) and introduction of
forward chaining.

Since the design of PROSIT is still in an experi-
mental stage, part of PROSIT interpreter is written in
core PROSIT itself. As we gain more experience using
the language to greater application, we will rewrite the
whole code in Lisp to make it run more efficiently.

3.2 TUnification

As in other logic programming languages, unification
is an important computational component in PROSIT.
Cur notion of unification is more general than term uni-
fication, used in Prolog. For example, unification of two
situations is possible.

The basic rules of unification are:

1. A variable is unifiable with any other data structure.

2, A parameter is not unifiable with anything but itself.
It is desirable to distinguish the unification of pa-
rameters {rom assertions of equality of parameters.
When unifying two sets of infons, (see below), we re-
cursively unify the constituents of the infons in the
sets, including any parameters. In this case the pa-
rameters should remain distinet. However, one may,
after having accumulated information about two pa-
rameters eventually discover that they denote the
same object, in which case their merger should be
possible, e.g. through an explicit assertion of equal-
ity.

3. A constant is not unifiable with anything but itself

4. Twoinfons are unifiable only when their constituents
are componentwise unifiable.

5. Unification of two sets of infons yields another sei
of infons which consists of the set of infons resulling
from pairwise unification of the infons in the two sets
{Rounds 1988). This is related to taking the intersec-
tion of the two sets. On anslogy with the operation
of intersection, the unification of two sets of infons
always succeeds, but the result may be empty (i.e.
contain no infons).

452

3.3 TForward and Backward Chaining

As stated earlier, PROSIT uses both forward and back-
ward chaining rules. Backward chaining in PROSIT is
weaker in power than forward chaining. We believe that
this distinction is paralleled by a distinction in the de-
ductive capability of humans. We are also weak in fore-
seeintg all the possible consequences of a given set of
facts.

Forward chaining rules are activated whenever a
matching new assertion is added. All the consequences
are then asserted, which may in turn activate other for-
ward chaining rules recursively. By default, all the con-
sequent assertions are added to the initial situation to
which the original assertion is added, unless another sit-
uation is explicitly stated in the rule.

Backward chaining rules are activated when a query
{a goal) is entered. The mechanism is similar to those
used in Prolog implementations. The difference is that
there may be super-silualions to search for rules/facts
to use. The Uranus implementation is used here with

only a slight modification, which is necessary because

PROSIT uses negative propesilions as well as posifive
ones,

As a natural consequence of the above rules, although
backward chaining rules may utilize the result of forward
chaining rules, the opposite is not the case. Fven if a
preposition is proven uwsing backward chaining rules, the
result is not asserted and does not trigger any forwasd
chaining rules. The information ihe system has may
be partial and the result of applying backward chain-
ing rules to partial information may be invalidated with
presentation of further information. On the oiher hand,
since ounly definitely true facts are to be asserted, the
result of applying forward chaining rules to the asser-
tions is to be persistent. Considering these distinctions,
the division of forward and backward chaining rules is
mere than procedural. Only persistent rnles are to be
introduced as forward chaining rules.

4 Components of Programs

4.1 Sketch of the Language

Before we go into details about the language, we will
gketeh the whole siructure of a program using extended
BNF. Nen-terminal symbols are in brackeis; terminal
symbaols are in double-quotes; symbols in braces are op-
tional.

< program > = (< assertion > | < query >)*
< assertion > u= {< label >} “+" < infon >
< label > u= < parameier >
< guery > = " < infon >
< infon > = < issue 3|

" < polarily > < issue >)"

< polarity > o= “yas” | “no”
< issue > = (" < relation > < ferm >¥)7
< relation > 1= < struclural relation >|
< rt!’ u!:ml_pdmmc!cr >
< structural_relalion > n= "|=" | “<=" | "=>"|
g 2P I o1 I n< n I w1 |
i *:'F | 1‘s+ﬁ‘
< relational_parameler > == < parameler >
< lerm > = < pariable > | < parameter >
| < constant >| < compound Lerm >
< compound term > n= < infon > |
¥ < wariable > %" < infon > ¥]"
< parighle > ;= an atomic symbol b@gmmng
with a capital letter
< parameder > = an atomic symbol not
beginning with a capital letter
< constant > = string

4.2 Parameters, Variables and Constants

Parameters are used to represent things in the world,
e.g. individuals, situations, relations, infons and propo-
siticns. Usually, different parameters correspond to dif-
ferent entities. They are nol unifiable, but may be
merged by explicit assertions of identity, eg. (= x)
(el sectiond.2}).

An infon may not be fully specified. It may contain a
pointer to possibly unknown ohjecis as in

kissing(Mary, sormeone). {7

Expressions, such as someone in (7), stand for a par-
ticular entity, just lilke “the person standing next to
you" stands for a particular person. We may, at any
one point in time, not have enough information to
uniquely identify the entity. In PROSIT, we call these
expressions fobjects parameters. These unlmown objects
should not be confused with variables.

Variables only occur in constraints. In the constraint
(=> (kimsing X ¥} (tonching X Y))

X and ¥ do not stand for something fixed. They are
gimply a device Lo connecl various menlions of the same
entity.

A variable is distinguished by its initial capital let-
ter in this paper. Variables are instantiated to parame-
ters, previously used or not, at the time of application
of the eonstraint. Parameters may alse pet anchored Lo
constants, A constant is distinguished by surmnmdmg
double-quotes ",

A erucial difference between variables and parameters
is that the scope of variables is local fo the constraint
in which they appear while the scope of parameters is
global.

4.3 Situations and Infons

Some parameters correspond fo real situations. Those
parameters are called sifuetional parometers. They are
associated with sets of infons, which classify real situa-
tions: An infon is a basic unit of information chatacter-
izing relations among parameters. A situation supporis
an infon if the infon is explicitly asserfed to held in the
situation, {|= situation infon), or can be proved to held
by application of forward-chaining constraints in the sit-
uation. In PROSIT, a siluation parameter corresponds
to the set of infons which it supports.

We say that an infon is permifted by a situation if
that infon is dedoced through application of backward-
chaining constraints (<=).

An infon consists of a relalion followed by its argn-
ments (possibly none). There may be a yes/no prefix
for an infon indicating its polarity. If the poladty is
omitted, it defaults to yes®

The argument roles of an infon are filled by terms,
Here are examples of infons:

{p X [father X])
(yes (p X Y))
{no (p a b))

(= (p 1) (q X))
(p (q X))

There are several primilive relalions lo describe the
strueture of situations:

(|= sif infon) asserts that sit supports infon. State-
ments of this particular form are also called propo-
sitions (cf. section 4.8).

o (-> gitl sit2) asserts that sit! is a super-siluation of
sit2 (This form of statement is also called a proposi-
tion.) This operation has two computational effects:

1. #:il, viewed as a set of infons, becomes a super-
set of #it2 and will constrain all the infons in
sitd,

2. As a direct consequence of the above, all the
constraints in sifl also apply to infons in sit
This is the equivalent of inferitance in knowl-
edge representation. See section 5.2 for details.

o (g% sl #il2 508} causes the unification of two sefs
of infons (the set of these supported by sifl and the
set supported by sit#) and associates the result with
the parameter sitd (cf. section 3.2).

o (s+ sifl si2 s0E%) makes sif? be the umion of sitd
and st

*The decision to make polarity a prefix is motivated
solely by considerations of efficiency of implementation.

493
An example: Suppose that

(|= siti (love x "John"}}
(|= sit2 (love "Hary" y}}

then, by
(s* sitl sit2 8it3)
we will get
(= sit3 (love "Hary" "Jchn"l}
Similarly, by
(e+ sitl sit2 sitd)
we will gat

(= sit4 (lowe x “Jahn"})
(l= sit4 (love "Mary" y))

4.4 Constraints

Constraints are special infons whose relation is one of <=,
=» and <=>, The argument roles of constraints are filled
by types of sitnations. Types of situation are written in_
a form identical to infons, One may even think of them
as infons, since they designate those situations in which
the corresponding infons hold. For example, a constraint

(= (kiszsing X Y) (touching X Y¥))

consists in a relation, the invelvesrelation, holding be-
tween two types of situations: sitnations of the kissing-
type involve siluations of the touching-type.

The constraint, (<= t{ £2), is used as a backward chain-
ing rule; To prove that ¢f helds, we try to prove that 2
holds in the situation.®

Example:

(<= (append [cons A X] ¥ [cons & Z1)
(append X Y Z3)

1Proof by contradiction and as a sub-case of this, res-
olution, cannot be usefully employed in situation the-
ory. The reason is that the following are all possible: 1)
sl=p 2) s k= -pand 3) s & pnor s & ~p. Therefore,
refuting the case s = —p does not entail s | p.

Backward (forward, or any) chaining, on the other
hand, is believed to be a sound prool procedure for sit-
uation theory {Flotkin to appear). The behavior here is
similar to that of three-valued logic (for example, consult
chapter 4 of Fenstad et al.).

494

The constraint, (=> 11 £2), is used as a forward chain-
ing rule: Whenever # is asserted, {2 is also asserted in
the situation.

=» acts as the combination of the both of the above.

In the case of both forward- and backward-chaining
constraints, only the first infon is considered to be on
the lefi-hand side.

(= dyip.dy)
is interpreted as
1 =13 A Ay,

Infons in the right-hand side of constraints are consid-
ered to be conjoined.

The decision to break up the single notion of constraint
in situation theory inte forward-chaining constraints and
backward-chaining constraints was motivated by consid-
erations of computational efficiency. Depending on the
context, one of the two strategies may be clearly more
efficient. The distinction puts the choice of how to “im-
plement” a rule under the programmer’s choice, *

4.5 Compound Terms

Compound terms are variables with associated restric-
tions (Nakashima 1985):

Cwariable : infond,
e.g.

[X : (l= g (father "&dam" X))].

For simplicity, we can omit explicit mention of the situ-.

ation if it is the same as the situation of the surrounding
proposition. The “(" and)" of the infon can alse be
deleted. Furthermore, when there is no need to explic-
itly name the variable, i.e., the variable does not appear
somewhere else, it may be omitted. Thus, we can write
the previous compound term as

[father "Adam"]

#Generally speaking, forward-chaining rules are space
consuming, while backward-chaining rules are time con-
suming. Forward chaining causes the addition of propo-
sitions lo the database, and consequently consumes slor
age. However, forward chaining provides the advantage
that since all the true propositions censed by forward
chaining are added to the database, checking a query
requires little computation, just a database looknp.

Backward chaining en the other hand does not cause
proven propositions to be added to the database.

Note that the square brackets distinguish this as a term
rather than an infon.

When the relation in a term is not defined it acts as
a constructor of a complex data structure (just as terms
in Prolog).

4.6 Propositions
4.6.1 Assertions

Az assertions, we only accept proposilions. Propositions
have one of the two forms:

siluation = infon
sitl = sitld

and are written as:

label :(|= sifunfion nfon)
or

label :(=> sitf sié2)

respectively, where label is a propositional parameter de-
noting the proposition.

For example,

p:{l= world (father "Jon" "Mary"})
q:{l= s (false g))

are propositions. Note that the second proposition is
self-refarential.

It is possible to omit fabel. In this case, il cannot be
referred to by name from other propositions,

If situafion is omitted, it defaults to world. Actually,
in the two examples above, the supporting relation itself
is regarded as an assertion to world. We define world
as a superset of all situations.

Infons in the world are not necessarily inherited by
other situations. On the other hand, constraints (rep-
resented as infons) in the world apply to all situations.
See section 5.2 for more details,

When an assertion is added, forward-chai ning rules are
applied. Mo backward-chaining rules are used at this
time.

4.6.2 Query
Queries have the following form:

s 75|=P ashs if 5 supports P.
7 agks if P holds in the world.

The system’s response when & query is entersd may
depend on its understanding of Lhe inlention of the user
{see section 5 for details). There are several possible
actions:

I. Answering by yes/no.

2. Returning ene selution, where a solulion is a pos-
sible anchor for the parameters in the guery, and
additional solutions on request.

3. Returning all solutions,

4. Returning the most general formula to match the
guery. This might be the query itself if no further
information is found.

In all cases, the basic computation executed upon the
enlry of a query is done by the application of backward-
chaining constraints.

5 Examples

5.1 Treatment of Identity

The rele of parameters in situation theory could be seen
as a means to keep track of the correspondence between
concepts in the mind and real objecis in the world (lsrael
and Perry 1988). This correspondence may depend on
one’s beliefs. PROSIT provides & treatment of identity
between parameters depending on situations, which clas-
sify beliefs. This enables us to treal certain phenomena
involving belief-contexts.

The renowned Roman orator Cicero’s firsl name is
Tully. For someone who kmows of this identity, it is
easy to answer yes to the question “Is Tully an orator?”,
but it is impossible for someone who do not know this
identity.

In PROSIT we can express the difference beiween the
beliel of someone who knows the identity of Cicero and
Tully and the belief of someone who does net know this
fact. In other words, we allow assertions of sitnation-
dependent equalities between parameters. If a person
knows the identity of Cicero and Tully, his belief is clas-
sified by the siluational parameter s1 where

:{l= 81 {= cicero tullyl))
:{l= 81 (orator cicero))

On the other hand, the beliel of someone who does not
know the identity i classified by 52 where

:{|= 82 (orator cicero))
In this environment, our system works as follows:

?{l= 51 (orator tully))
yes

?{l= 22 (crator tully))
unknown

495

bird
{£1y)

Canaery] 5 CTowr

{color yellow) {coler black)

tee by i

Figure 1: Situations describing concept hierarchy

5.2 Describing Hierarchy and Inheritance

In our model, the world subsumes all other situaticns.
Lel 5 be the collection of all situations. Then, '

Vs € (s C world)

Any constraint supported by world is also respected by
all sub-situations. Moreover, any constrainl supported
by a larger situation is respected in its sub-situations.

We can use this partial ordering of situations to ex-
press class hierarchies and inheritance through classes ®
We can view the subset relation on situations as a gen-
eralization of the "a kind of” relation on classes,

:{|= bird (£ly})

:{|= canary (color yellow))
:{-> canary bird)

:{-> tweety canary)

Note that (£1y) and (color yellow) state that
{1y} and (coler yellow) held in any situation which
is subsumed by bird and canary, respectively.

If & user asks
?7(|= tueety (fly)),

the system answers “yes” by applying the constraint
(backward chaining). '

We discussed earlier (in section 2.1) that the above is
a situated way of representing knowledge.

In section 2.1, we considered the relationship between
situated and unsitnated knowledge. In Figure 1 we have
individuated 4 different situations: bird, where all infons
are relativized to the class of birds; canary, where all are

#This formalization is exactly the same as used in Pro-
log/EKR (Nakashima 1984} and its successor Uranus.

496

relativized to canaries; crow, where all are relativized to
crows; and fweely, where there is, let us assume, only ohe
individual, T'weety, and all infons are relalivized Lo him
{or is it her?). Given this range of situations, we can es-
tablish & conversion between situational parameters and
predicates, as follows.

{¢=> (|= world (<= (color X yellow)

(canary X))
(|= canary (ecolor yellow)))

This two-way consiraint says that

(= werld
(<= (color % yellow) (canary X)J)

and
(|= canary (color yellow))

are equivalent. But procedurally, that is, from the
situated-inference point of view, these propositions ex-
press two different things:

1. When we are told an unsituated statement:

{l= world
(¢= (color ¥ yellow) (canary X))}

(and believe it), we should adjust our model of the
sitnation so that it reflects this fact (forward reason-

ing).
2. When we want to see if

(l= world
(<= (color X yellow) (camary X)})

is true, we can just check the situation (backward
reasoning).

We could also provide a meta-level constraint to con-
vert sitnated knowledge into unsituated. It is an impor-
tant feature of cur system that the conversion rule itself
is within the scope of the system's descriptive power,
due to the fact that situations are themselves first-class
objects,

(<=> (|= world (<= (Rel X . Args) (8 X))
{I= 5 (Rel . Azgs)))

5.3 Qmuery Featnre
Consider the following information:

John is Mary's grandfather.
John is Bill's grandfather.

How should the following question be answered:

Are Mary and Bill cousins?
A desirable answer would be:
Yes, if they are not siblings.

Here is how PROSIT handles this situation: First, we
assume several constraints on family relationships.

:(<=> (grandfather x= y)

(parent x z) (parent = y) (male x))
:(<=> (father X Y} (parent X ¥) (male X))
:(¢=> (mother X Y) (parent X ¥) (female X))}
:(<=> (cousin X Y)

(parent W X} (parent ¥ Y

(eibling W V1)
:(«=» {(cousin X Y} (cousin Y X))
:(e=> (sibling X [V:{=/= X ¥)1)

(parent Z X} (parent Z Y))
:(¢=> {sibling X ¥) (eibling Y X))

Note that the cousin and sibling relations are com-
mutative. Forward chaining of commutative rules must
terminate after its first application. In general, for circu-
lar chains & loop test s required. This is easily handled
given the graph representation of constraint dependency.

Note also the use of a term to test non-equality. Pred-
icates which are omly testable (i.e, cannot be used to
return any value) should only be used as constraints on
variazbles. They cannot occur on the right-hand side of
consbraints.

MNow, Lhe system is ready to accept the assertion:
:(grandfather "Joha" "Hary")

When this is asserted, forward-chaining rules are acti-
vated and the following assertions are also added:

:{parent "John" =)
:{parent z "Mary"}
:{male "“John")

Note that the link between two 2's s maintained. An-
choring one of them should also anchor the other one to
the sarme thing. Similarly, when

:{grandfather "John" "Bili"}
is asserted,

:(parent "John" =')

:(parent z' "Bill")

:{male "John")

are also added. At last, the question is enteraed:

P{cousin "Nary" "Bill")

After trying to prove the above propesition, the term
[z:(=/= 2’)] remains. By default this relation is
true since no two parameters are equal. Nevertheless,
there still is a possibility that they are equal. We can
define a “careful” equality check, so thal

{|= careful-mode (=/= z z'})

is onknown. This should be enough information to an-
swer: Yes il (=/= z z').

Acknowledgments

We would like to thank CSLI and the System Develop-
ment Foundation for providing a cooperative and stimu-
lating environment, We are also grateful to the members
of the MOST group at CSLI, especially Syun Tutiya, for
detailed comments az well as enlightening discussions.

Appendix A Operational Semantics of
PROSIT

In PROSIT assertions associate each situation s with a
set of infons, (f= s ¢) means that the infon ¢ is in the
set associated with 5. PROSIT allows declagaticons that
the subset relation holds for the infons associated with
two situations. (C & 57) represents that the set of infons
associated with s is a subsel of that for &',

{E* # o) means that PROSIT will make an affirmative
answer for the propoesition that o holds in s if queried.

Cenvention: A variable in a constraint (= e 7), (&
g 7), or (& ¢ 1) is bound by the invelves relation of
the constraint iff no proper subformula is a constraint
containing all occurrences of the variable.

Notation: A substitution pis a partial function from the
get of variables to the set of parameters, constants, and
complex expressions. o[p] denotes the resuli of replacing
all occurrences in o of each variable X in the domain of

p by p(X).

(s(=ab)(F so) (E s(=ab)(E o)
(= s ola/t)) (= s ofb/a])

Note: Here ofa /] denotes the result of replacing @ in ¢
by B

(E s(= an)(E sall
(E s le])

whenever g is defined on the variables bound by the in-
volves relation.

(s (e o) s ol

(=)
{Es(ande 7)) (Eslande7)) (F2e)iEsT)
{(Eseo) (Est) (s (and & 7))

497

(2 & &),(F s0a)
(= & o)

(E s s(E sa)
(Fs'wo)

(F sa)
(= s9)

(£ s(= ab)(=" so) (E s(= ah)(= s0)
(= s ole/E) (=5 ol6/a))

(" s (= 7)) (=" s o))
(E* s 7lel)

as above.

(B s (s 7o), (= sold)
(F s o) s above,

{i=' 3‘f[lﬂlnr"':ﬂ=. ST[-IHH]}_
[s(& ro))

whenever gy,. .., p. &0 all the substitutions defined on
the variables bound by the involves relation such that
(s ofp) for 1< i< n. -

“=’ 3 r{lﬂlj:ls"~|”=- ST[FH]] ﬂ.S'I'I‘II. iate sbove
s 7o) i

(s rlo]). (=" 8 oo}, . .., (E° 8 tloal), (E” 5 oleal)
(Fs(e ra)

whenever py,...,p, are defined on the varables bound
by the involves relation and (E* s r{g]) or (E* s ofg])
for any such substitution g just in case p = p; for some
i=1,...,n

(" s (and o 7)) (s (and o 7)) (" s9),(F" s 7)
(E* s) (=8 7) (i s (and o 7))

REFERENCES

[1] Hassan Aft-Kaci and Patrick Lincoln. LIFE: a Nat-
ural Language for Natural Language, Technical Re-
port aca-st-074-88, MCC, ACA program, 1988,

[2] Jon Barwise and Stanley Peters. Naive Sifuation
Theory. Technical Report to appear, CSLI, 1888,

[3] R. J. Brachman and Hector J. Levesque. Krypton:
a functional approach to knowledge representation.
Computer Oct., 67-T3, 1983,

[4] Keith Devlin. Logic and Information I: Situation
Theory. to appear, 1589,

498

[5] J. E. Fenstad, P.-Kr. Halvorsen, T. Langholm, and
I. van Benthem. Silualions, Language and Logic.
D, Reidel, 1987,

[6] David Isrezl and John Perry. What is Information.
Technical Report, CSLI, 1988.

[7] Kuniaki Mukai. Anadic Tuples in Prolag. Technical
Report TR-239, ICOT, 1987,

[8] Kuniaki Mukai. Horn Clause Logic with Parameter-
ized Types for Sitwation Semantics Programming.
Technical Report TR-101, ICOT, 1945,

[#] Hideyuki Nakashima. Knowledge representation in
Prolog/KR. In Proc. of 188 International Sympo-
sium on Logic Programmaing, [EEE, 1984,

[10] Hideyuki Nakashima. Term description: a simple
powerful extension to prolog data structures. In
Proc. of ITCAT 85, pages T08-T10, 1985,

[11] Hideyuki Nakashima. Uranus reference manual.
Bulletin of Electrotechnical Laboratory, 50, 1986,

[12] Gordon Plotkin, Personal communication. 1988,

[13] William Rounds. Set Valwes for Unification-
Based Groammar Formalisms and Logic Program-
ming. Technical Report, CSLI1, 1988,

