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ABSTRACT

In this paper we establish a semantics of a logic program
over a sequence domain. The domain is the set of 2l finite
and infinite sequences of ground atoms. The mnl.'i\ra.l.iu;:; is to
construct a recursion equation set involving m:iah]est OVED B
sequence domain, which is regarded as a dataflow program.
The datafiow program constructible from a logic program
denotes the formation of the minimal Herbrand model of
the original logic program by means of sequence variables.
It contains functions corresponding to the inferences cansed
by definite clanses, and fair merge functions necessary for
the purpose of taking set unions in terms of variables denot-
ing ground atom sequences. The [unctions in accordance
with the inferences concerning definite clanses are obtained
by eliminating nendeterminism usnally invelved in such in-
{erences. It is shown that the dataflow program defines a
continuous function from a direct product of a sequence do-
main to itself, therefore there exists a least fixpoint of the
function. The fixpoint completely representis the minimal
Herbrand model of the ariginal logic program, which is es-
sential for its finite computation. Finally the fixpoini is
interpreted as a semantics of the logic program.

1 INTRODUCTION

The semantics of logic programs have been investigated
[rom various points of view since van Emden and Kowalski
defined it from model-theoretic, fixpoint and operational ap-
proaches (Abdallah 1984, Apt etal. 1982, van Emden et al,
1976, Fitting 1985, Franden 1985, Lassez et al. 1984, Lasses
et al, 1985, and Yamasaki et al. 1987) . There is a way to
define the semantics in (Fitting 1985) distinguishable frem
others in the senae that it is defined over a sequence domain.

In this paper we demonsirate another semantics of a logic
program over a sequence domain. It is legal in order to ex-
press the demotations of logic programs and to realize their
computation mechanism based on dataflow nelworks. Also
it is mecessary to establish & method of transforming logic
programs into fumctional programs through dataflows over

sequence domains. Because it is rather difficult to find 3 di-
rect way to get & furctional program computing a given logic
program, which contains nondeterministic procedures and is
regarded as computing relations. Ii is easier to consiruct,
as an intermediate form, a dataflow program involving vari-
ables over a sequence domain such that a legie program is
transformable io the dataflow program amd any functional
program can be generated from it. [t is observed from (Apt
et al. 1982 and van Emden et al. 1976) that the denotation
of a logic program, that is, its minimal Herbrand model
is obtained by the limit of the following concecutive pro-
cedures:  First inder a set of (ground) atoms by means of
each definite clanse from an already acquired et of atloms.
{ At the beginning, the already acquired set is empty.) Next
unite such newly infered sets per a predicate symbol and

take the nnion of the nnited sets each of which is in accor-

dance with a predicale symbol. Then we regard the (whole)
union as an already acquired set. Repeat this procedure un-
til the acguired set can be no more expanded by the next
procedure. In addition, it is notable that 2 set of atoms with
a predicate symbol can be represented by 2 variable denot-
ing a finite or infinite sequence from the Herbrand base.

In order to represent the denotation of a logic program by
means of variables over a sequence domain, we first have a
relation among variables, in accordance with the inference
caused by each definite elause for an already given set of
atoms. Next we prepare for a satisfactory device of taking
the union of sets of atoms per a predicate symbol on con-
dition that the denotation of each sel of atoms is assumed
to be expressed by a variable. Then we make up the rela-
tions as to the inferences of definite clanses and the devices
of aniting sets of atoms, into a recursion relation set among
variables. The recursion relation set will realize the above
mentioned slep-by-stap procedore to get a newly acquired
aet of atoms from an already obiained set. A relalion as
to the inference of each definite clanse will be constructed
such that an ountput variable representing the conclosion-
part of a definite clanse may be infered from input variables
representing its premise-patl.



The relation comtains unbounded nendeterminism as a
function to define an ontput varizble from input varables.
For the relation to be equational, we will have a kind of or-
acle lo eliminate such nondeterminism. Also we shall make
use of the fair merge (with an adequate oracle) in (Park
1983) as a desirable tool to represent the union of sets of
atoms by means of variables over a sequence domain,

Finally we will have a set of recursion equations as a
dataflow over a sequence domain, transformed from a given
logie program swch that there exists a (least} fixpoint of the
recursion equation set. It will be shown that any ground
atom is in the minimal Herbrand mode] of the logic program
iff it is contained in the denotation of the least fixpaint of
the corresponding recuision equation set. In this sense, we
will come up with & conclusion that the least fixpeint is a
semantics of a given logic pregram.

2 BASIC NOTATIONS

In this paper, & logic program means a set of definite
(Horn) clauses. A definite clanse is a clanse of the form
A= B . By{n>0) where A, B, ..., and B, aze atoms.

For a definite clavse O, Head() means the conclusion-
part (head) of C, that is, the left-hand side of — in .
Bady(C") denotes the set of ztoms in the premise-part (pro-
cedure body) of ©, that is, the set of atoms in the right-hand
gide of += in C .

A substitution is a finite set of the form {zy | #,..., 24 |
iy} , where each z; is a vamable and each # is a term such
that z; does not occur in 4;. For a substitution o and an
atom A, A is en alom oblained by substituting terms in
o for all the corresponding varlables of o occurring in A
simultznecusly.

The Herbrand wniverse of a logic program L is the set of
all variable-free terms construetible from constant symbols
and fonction symbols in L. The Hechrand base Ny of L is
the set of all variable-free atoms consiractible from symbals
in L. A ground atom is an atom in the Herbrand base.

By AP}, AL(P), ..., AL(P), ..., we mean the sels of
ground atoms with the predicate symbol P. For T © Hp,
PRED(I) means the sei of predicate symbols in . For
A g Hg, Prid) denotes the predicate symbol in 4. For
I'C Hp and the predicate symbol P, we define [I]p = {A €
I'| Pr{A)=P}.

A logic program will be transformed inle & set of recur-
sion equations involving sequence varizbles, Each sequence
variable dencies a finite or infinite sequence of elements
from a base domain. As o base domain, we have a domain
Dy = Hy U {r}, where Hp, is the Herbrand base of a logie
program I and r is a special symbol not in &y, Intuitively
speaking, r demotes a time delay occurring in 2 sequence
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from Hy, and is similar o the hiaton introduced in (Park
1983 and Wadge 1979).

For a set F, 48 F denotes the cardinal number of F. F=
denotes the set of functions ({ftom w to F) such that if u £
F™ and wip) is defined, then u(g) is always defined for g <
P € w. Intnitively £ is regarded as denoting the set of
all finite and infinite sequences from F, nil ¢ F™ is the
function such that n# (p) is undefined for any p € w.

Foru € F=, let | u |= #{k | u(k) is defined }. | u |
is interpreted as the length of the sequence denoted by n.
Note that [ nid | = 0.

Neow let ulp] € F™ be defined by:

ulp){g) = u(g) i p 2 ¢ and

ﬂ[p]{gl} = m'J'[q:I olherwise.
it[p] is regarded as an initial part of the sequence for u, tron-
cated up {o length p+ 1.

A partial order < on Dy is defined hy:
T={dand 4 < A forany 4 € H;.
A partial order C on D Is defined by:

uC wforw, vin DP iff ulp) < olp) forp € w
whenaver u{p) ia defined.

The partial order C is extended to act on (DFP)™:

(1.0 y8m) C (21,00, 1) ifup C vy for 1 <
F=m.

The leasi upper bound of & C (DF)™ is denoted by LK.
The partial order C is sequentially complete in the sense
that any sequence wy C wiy C ... has a least upper bound
U,'Gu.tl.r.i.

For forther discussions, we have some nolations:

w means the set of natural nombers, Lot fp: w — w™
(m 2 1} be & bijection such that if L.(p) = (B1,....0m)
then p; < pfor 1 < ¢ < m. [, I8 necessary to indicate an
m-inple by & natoral number such that each element of the
m-tuple is not greater than the nomber. Also let a projec-
tion Ju it w™ — w be defined by Joi(p1, .- Pl = P T
provides the i-th element of an m-tupla.

first: F™ — [ js the funetion satisfying

first (w){p) = u(0) for ¢ € F**, and p € .
nexl: £ — F 15 the Ianction satislying

next {u)(p) =ulp+ 1) for u € F*, and p € w.

Note that p+1 means the successor of p. For first and nest,
refer to (Asheroft et al. 1976).
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ep (E™)® = { true, false ) is defined by

eg {e,b) = trueif o = b, and eg (c,b) = false
olherwise.

i-then-clse: { truefelse } % (F™=)? = F™ s defined by

if-then-elze (8, f1, f2) =

Il if t=trueand fi € F™,
;] if t =false and fo € F*,
undefined otherwise,

if-then-else (t, %, y) is expressed by (¢ — =, ).

3 REPRESENTATION OF SET OF ATOMS
BY SEQUENCE VARIABLE

First we have semantics of logic progeams, which are con-
cermed with their finite computations,

Definition 1. Given a logic program L, TRy L= 2fe
25% js defined by

TRL{A — B:_.-.--anfj =

{Ar € Hy | 3o substitution ): Byo,..., Bye e I},
The semantics of L is Sem(L) = n{] c H | Ugg TR (C, 1)
c I.

Note that TRy (C, I} denotes the set of all ground atoms
deduced from IU{C). Now lel

Transp(J) =Upgr TRe(C, 1) =
Upepagoiss) Ur=rrifeadcn T Ro(C,T).
We have Lo find a method of expressing (i) TRy, and (i)

UP:P!(H::.&I_C’]}: in addition to UPEPRED[HL:II in terms of
the sequence domain Df°.

To reach the method, we nead the definilion of the repre-
sentation of At(P) C Hy by upe € D},

Definition 2. We say that up € Df® represents At{P)
if (1) for any 4 € AHP) there exisis k £ w such that
wp(k) = A, and (2) for any { € w either wp(i) is unde-
fined or up(i) € Af{Pu {r].

1t is meant by we =+ At{P) that up represents A#( P). For
the purpose of expressing * Upeprepgs,) | over the sequence
domain, the following defimition will be satisfactory.

Definition 8. We say U C D represents T © Hy if (1)
for any P € PRED(I) there exists wp € U7 such that up =
Hlp = {4 € I'| Pr(A) = P}, and (2) Upeprepy vp = U.
By I = [, it is meant that I represents 1.

Never we investigate the relation among variables over DF,
which is concerning &n inference * THp * cansed by each
clanse of L. Assume that Pr(B;,) = Qi (1 < 7 < n;)
for each C; = A; +~— Biyy...  Bipn, In L = {Cy,...,Ci} .
The first subgoal we will reach iz to constenct w; € D
such that if w, = AWQ;,) for 1 £ » € n;, then u; =
TR(C;, U A{Q: )} Then w51, .., %4, which aze inpat
sofuence variables, are related with w;, as an ouipunt se-
quence variable, through the elause C;. To do so, for O,
wa define the sel the member of which iz the expression of
the form Az & Ky such that each Bi.o matches the gi.-th
denotation of v, for gi, = Ju,o(Tng)) < 0.

Thal is, let '

(5.1) Outi(g) =

{Ae e By | 3o Bypr = v o(Jy o Tn ()0 T 2 r S}
for O = d; = Big,. .., Bin; € L, where v, = At{Pr(B;.))
for 1 <r < m;.

Note thai Ouiylg) = {Ac € Hplforany g e wl Oy =
A; . It is eazy to have the following lemma.

Lemma 1. Let Cuti{g) be the set defined by (3.1}, Then
Ugew Qutilg) = TRL(C}, Ugr g, AU Pr(Bi,)).

We assume that the g-th denotation of w; depends on
vialg],- - ing[g], that is, wi(g) depends on the finite part
oblained by truneating v;3,...,%,; Up to length g4 1. The
assnmplion is taken for a simple treatment of the relation
canged by “T'Rp*in terms of ssquence variables.

Then we define

ui{g) € UpggOuti(p)

if Upeq Outi(p) is mot empty,
wlg)= r

H Upgy Outi(p) is empty.

(3.2)

Mote that Outi{p) depends on gy, . . ¥ n;. It 15 also notable
that this definition is not absolutely unigue, but is enough
for u; to satisly w = TRp(C;, U At Pr{Bi,))). We shall
show it later.

In order to select one as w;(g) from Uye, Gut;(p), we first
choose Out;(p) for some p < ¢, and next pick up 2 ground
atom from Cut;(p).

By Lemma 1, Upey Outi(p) = TRE(Ci, U, At(Pr(Bis))).
Thus each element in Upe, Cut;(p) should be chosen as wi(g)
(g € w)in order that w; = T Re(C;, U At{ Pr{B; +))). This
means in general that p € w should be taken to indicate
Out:(p). In addition, to cope with the case that $#Outi(p)
is w, p shonld be selected an arbitrary number of fimes for



each element in Outi{p) to be chosen. To satisly the above
conditicns, we make use of a function (in «*), where any
natural number ecents an arbitrary number of times.

Definition 4. We say that a function [ in o is fair if
#{Plf[ﬂ=q]~=w for any ¢ € w.

Note that o is the set of functions from w to w, and is
regarded as the set of infinite sequences from w.

To provide fair functions in ", we utilize the dmerge fane-
tion as below. Il was investigated in (Park 1983).

dmerge : F™ x F™ x {0,1}*° — F* is defined by:

(3.3) dmerge(u,v,8)}p) =
( eq(é, nil) — nil(p),
(ea(p,0) — ( e(8(p),0) — u(0),2(0) ),
{ eq(&(p), 0 ) — { eglu,nil) — ntlp),
dmerge(nezt{u), v, nest(8))(p - 1))
{ eq(w, nil) — nil{p),
dmerge(u, nesi{v), nect(§))(p - 130
for p € w.

Now FMs : F= x I — F* is defined by FMs(u,v) =
dmerge(u,v,§). FMj is said a fair merge function if #{k |
6(k) =0} = #{k | 8(k) =1} = w.

Using dmerge, we define a recursion equation by:
(3.4) w = dmerge{Succ{w}, 0¥, §) = F Mg Sueelu), 0],

where (1) Suec @ w™ — W™ is defined by Suceludg) =
u(g)-+ 1 for u € w™ and g € w, and (2) § is a fanction from
w to w such that 6(0) = 1 and #{k | &(k) = 0} = #{k |
fE)=1}=w.

It is not difficult to see that the recursion equation (3.4)
has the fixpoint, because of properties of dmerge. Let Fs® €
w* be the fixpoint of (3.4).

Lemma 2.
(1) Fs® is a fair function in «*.
(2) Fs’(j}l < j for j € w.

Proof. (1) Fs*(0) =0, since §(0) = 1. Now let Occur(k, h)
mean that #{p | Fs®(p) = k} > h.

(1) It is seen that Occur(0, k) for any b € w, because
Fsb = dmnerge(Suce Fs®),07,6) and 4{k | 8(k) =1} =w.

(i} Assume that for some A, Oceur(n, k) for n < k. Note
that Fs%(g) = k + 1 for some g > p if Fs*(p) = k, since Fs*
is applied to an argument of dmerge. Thus Oecur(k -+ 1,A).
By mathematical induction, for some b € w, Oceur(n, i) for
any m.
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(iii) Since Occur(0, 1) from (i), it follows from (ii) that
Oceur(n, 1) for any n € w. Suppose that Cecur(k, A) for any
and & < m. Fs¥(p) =k (k > 0) means that Suce(Fs')(r)
= k for some r < p. Thatis, Fa®(r) = k—1. Thus Occur(k—
1,m). Finally Occur(0,m). It follows from (i) that Occur(D,
m + 1) holds. Thus Qeccur(k,m +1) must hold. That is,
Crecur(k, k) for any k and any &,

{2} If j =0, then the lemma holds, since Fs*(0) = 0. As-
sume that Fs®(h) < h for k < k. Since dmerge(Suce{ Fs’),
0%, 6Y(k + 1) = Fa(k + 1) is either Suce(Fs*)(k) < k+1
o1 0, Fs®(k+1) € k+1. This completes the proof. Q.E.D.

4 RECURSION EQUATION SET
FOR LOGIC PROGRAM

In this section, we first have recursion equations as lo se-
quence variables, based on the relation (3.2). Next we have
& matisfactory device of laking unfons of sets in terms of
saquence variables. Then we compile them into a set of re-
cursion equations.

4.1 Equation Derived from Definite Clause

By lemma 2, Fs(g) < ¢ and any p € w occurs in Fs®
an arbitrary number of times. Thus, Fs* is feasible o in-
dicate Fs(3) = p and the set Ouzi(p) when we identify
w;(g) by (3.2). Here note that we have to select any atom in
Out;(F5*(g)) at least once in order that a variable, say u,
raay Tepresent Ugg. Outi( F5%(g)) = Upew Outi(p). To have
a correspondence of g € w with the set Qut;(g) and enumer-
ate all the members in the set, we assume the function

(1) Bi: w = [w— 28y

such that R;(g) is a bijection from {0,1,.. L HOu(g) -1}
to Out(g).

Suppose that forpg < o1 < ... E W, Fsfi(pg) = Fefi(p) =
...# Fsfi(g) (g # pi for i € w). Then Out;( Fs¥i{pe)) =
Out;(Fs%i(py)) = .... To get all of Out(Fs%(po)), it is
sufficient to enumerate its members by R Fs¥(pg)): w —
Outi( Fs®(po)) and by Fe"(0), Fs™(1),..., on the basis of
some fair fenction Fs™. (Note any r € w ocenrs in Fs™. )

To get ¢ from Fs® and Fs¥i(p), it is sufficient to define
Ord:w® ¥ w—w by

(13) Ord(Fs¥ ) = #{r | Fs¥(a) = Fsb(r),r < g} =1
Then Ord{ Fs%, py) = ¢, and

Ri(Fs*(po))(F5(2)) = R Fa® (p))(Ps7(Ord (Fs%,po))).
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Finally, on the basis of (3.1)-(3.4) and (4.1)-(4.2), we de-
fine

{4.3) for g € w

wlg) = R(FsS(q))(Fam(Ord(Fs%, g)))

it Fs(Ord(Fs',q)) < #0ut,(Fs(g)) -1,
wigl= r

i Fsm(Ord(Fs%, q)) = #0ut;( Fs¥{q)).

We have the following theorem which shows legality of
{4.3) to express the inference concerning each definite clanse
by means of sequence variablas.

Theorem 1. ILet [ = {{,...,C;} be a logic program
snch that C; = 4; « B;j ... 8;,.,1 £ < k. Assume that
u; is defined by (4.3), on condition that v, = A Pr(5;.))
for 1 < r < ny. Then w; = TRy(C;, U, At Pr( B;.))) and
| 4 |= w.

Proof. By Lemma 1, it is sufficient to show that w; =
Ugews Outi(g). Now take any 4 € Outi(p) (p € w). By
Lemma 2, p = Fs®{t) for some t € w. Since B;(p) is a bijec-
tion from {0,1,. .., #Outi(p)~1} to Ctuty(p) from (4.1}, and
P is a fair function in o, it follows from (4.2) that there
exists ' such that A = Ri(p)(Fs"(Ord(Fs®, ¢))) = u(t"),
where p = Fs%(#"). On the other hand, whenfor1 <r < n;
v, = At{Pr{B;.)), it follows from {4.3) that given p € w,
ui(p) € Outi(g) U {7} for some g < p. This completes ihe
proof of u; = Uge,Outi(g) and | w; [=w. Q.E.D.

4.2 General Fair Merge Punction

We have 2 representation for the nnion of sets of atoms
with a predicate symbol by means of general fair merge fanc-
tiows of sequence variables. The definition of general fair
merge functions ia given as follows.

Definition 5. Let o = (o,...,05-1) (n = 2), where each
o is a [unction in o™ such that #{k | ay(k) = 0} = #{k |
ei(k) = 1} = w. Then FMP® : (F2)" - F* is defined
recursively as follows:

(1) FM3(uy, w3) = FMa{uy,uz).

(2) FM2(uy,... ) = FM2 (u1, FMY ug,. .., un)),
where n > 2 and o' = (&g,...,00-1).
FMZ is called a general fair merge function.

Lemmea 3. Assume that w; = A4(P), | w |= w (1 <
i £ n). Then, for a general fair merge function FMZ,
FMMuy, ... u,) = UAL( P).

Proof. Let v = FM%uy,...,u,). Then, it follows from
the definition of general fair merge funciions that for any
7 € w, there exists u; and p € w such that v(g) = wi(p). On
the other hand, for any 1 < i < n and p € w, there oxists
¢ € w such that w(g) = wi{p). These are sufficient to see
that v = U A P). Q.ED,

4.3 Recorsion Egquation Set

Fow assume that L = {C),...,0,} is a logic program
and each C; takes the form 4; — Bj...Bi,.,. Suppose
that PRED{H;) = {Py,..., B\}. That is, the set of prod-
icate symbols in L is {Py,..., By}, Let Pred(j) = #{4; |
Prid)= P} for 1 £ £ h. Pred{j) means the number of
definite clauses whose heads have the predicate symbol F;.
Then let

S = TRy(C, Sem(L)),1 < ¢ < k, and
T, = [Sem{L)|p, = {A € Sem(L) | Pr(4) = F}},
1<j<h

Note Sem{L} = Ug,grS: and 5; denotes the set of all ground
atoms to be infered from Sem{L)U{G}. Ty is the set of all
ground atoms in Sem(L}, with the predicate symbol F,

It is assumed that

forl<ji<h

Pr{Head(C},)) = Pr(A,,) = P;,1 < 5 < Pred(j), and
for 1<i<k,

Pr(Bis)=FR.1<r<n

Using the above notations, we have:

Lemma 4.
(1) Tj = Uicucpreds) Sie-
EEI 5 =T Re(C;, Wirn; I )

Proof. {1} Since SJ', C W 5 = SE!’R[LLUiE‘EP"ﬁ] 5.-‘*
[ Sﬁm[.ﬂ}. HAEe s Pread(y) SJ'., then P!‘I:A:i = Fj.
Thns, Uicigpreas) S5, C T; = [Sem(L)]p,. On the other
hand, 4 € T; = [Sem(L)]p, implies that A € Ug,er Si and
Pr{A)=F;. Thatis, f A€ T, then A £ Ve Head{o) =Py i
= UseygPred(s) 54, This completes the proof

@) TR(Ci,Sem(L)) = TR(Ci,UgrgmlSem(L)la, ),
by the definition of ° TRy, . Tt follows from 5; = TRy (C,
Sem(L)) that S; = TRy(C;, Ur<ren; Ti,). Q.E.I.

Now we need I7;,1 < i < &k and V;,1 < § < h such that
Ui = & and ¥ = T3,
By Lemmas 3 and 4, for each 7,



Predlj =
M T Uiy = 1
H T, = S| T, |= w,1 £ 8 < Pred(5).

If we define w; by means of (4.2} lot v, = ¥i,, 1 <7 < n;,
then it follows from Theorem 1 that ¥V, == T, 1 < r < n;
implies w; = 5 = TRL(Ci, V1grgn; Ti.:l-

Therfore we have a set of recursion equations for [7,1 <
i<kand Vi1 <5<k

{‘-i-'ﬂ i’; =F:[:UJ'1!' UJp"ﬂ_,;]r-l Ligh,
0= (Vi oy .M},i'fl'{#

where {1} g, is a general fair merge function FH;:"‘T‘],
and (2) f;is a function from (DF)™ — DF, defined by

{4.9).

The set of recursion equations by (£.4) i3 rewritten as

(4.5)

{E]J""! Uﬁ!“l"wvﬁ}= IL[UII"'lF#rV]:"':Vﬁ]'

5 SEMANTICS OF LOGIC PROGRAM

In this section we assume the set of recursion equations
comstructed as in (4.4) andfor (£.5). First we see the (least)
fixpoint of fr in [(4.5).

F: (D)™ — DP iz continnons if for any chain {wy C
C.ob S({w | { € wh) = L{f(wi) | i € w}.

Lemma 5. In (4.4), fi,1 €7 <k and g5;1 £ 7 < b are
continnous,

Proof. Note in (4.3) that R;(Fs%(g)) is a bijection from
{0,1,2,..., #Ou(Fs¥(g)) 1} to Out(Fsh(z)), where
Outi( Fs%(q)) depends on vy, [p], ..., i, [p] for p < Fs¥ifq) <
g. Note that 7 < 4 for any 4 € Hg. Thus, for any
r € w, filwi o], - v [PD) C© w = filw, ... %, ). There
fore U fi(ui [l Single]) | 2 € @} T filwiys-- 3 4a) = A
W (viylp),- - -5 i [F]) | P € w}). On the other hand, for any
g € w, wifg] = filwiy, .-, vio, o] € filwir [l - .. w [p]} (for
some p > g), since u;(g) is determined by w;, [g),. .. v, [g]-
Thus Ii{ﬂij_: e |""i.|.‘} L U‘[“i[@] | qE ‘-‘-'] C U‘{.ﬁi"h[F]: 1423
viy o) | p € ).

This completes the proof for the continuity of f;.

To prove the continuity of general fair merge functions,
it is sufficdent to show the continuity of fair merge func-
tions, since a gemeral [air merge funetion is composed of
fair merge functions by Definition 5. Note a fair merge
fonction FMy is defined by using dmerge: FMg(u,v) =
dmerge(u,v,§). Since dmerge(nil v, §;) = nil if §;(0) =0,
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and dmerge{u, nil, ) = nil il §(0) = 1, for any chain
{(ug,vo) C (wy,v1) C...}, whose least upper bound is (x, v),
FMg(u;,v) C FMg{u,v). Thus U{FMu, ) [i ewlC
FMs(u,v) = FMs(U{(u;, ) | i € w}). On the other hand,
because of the property of FMy, for any p € w there ex-
ists § € w such that FMg(u, v)p] C FMs(u;, ). Therefore,
FMy(U{(si, w) | § € w}) = FM(u,v) = U{FMe(u, )] |
pew} C W FMi{u;,w) | ¢ € wh. This completes ihe prooi
for the continwity of FM;. Q.E.I.

Thus, there exisis a (least) fixpoint of the recursion equa-
tion set (4.5). Imdeed, it is U{ff(nil,. .. nil) | p € w],
whers fE{ﬁiI,...,nii} = (mil, ..., nil) and fE(nil, ... nil)
= filfF (ndl, ..., mil)) for p 2 1.

From now om, let fI(nil, .. nil)= (07, .. UL VF,...,
V7). Ti follows from Theorem 1 and (4.4) that | IF | = w
(1<i<k)ifp2land |V [=w(l<j<hifp22

How we have the primary theorem, which states that the
recursion equation set expresses the denotation of a given

logic program.

Theorem 2. Let (T7),.... 07, V7, ..., V) be a (least) fix-
peint of the recurtion equation set (4.5). Then {V/,..., ¥/}
== Sem(L).

Proof. For Transp(f) = Uger TRE(C, L), we show by in-
duction on p that V™' = [Trans](®)]p, 1 £ j £ b, where
@ is the empiy set, and Transf(®) is defined recursively:
Trans}(®) = &; Trans}(8) = Trdﬂ:L{Tmna""{ﬁ]} for
Pzl

(i) In case p=0:
Vienl(l1<j<h)since I} =nil (1<i<k) On
the other hand, [T‘T‘E-M%{Q:I]p, =& (the empty set). By the
meaning of ‘=+*, nil =+ $. Thus this step holds.

(i) Assume that VFT' = [Transt(8)]p, 1€ 5 < b, for
pEp:
It is easy to ses Tmns;{ﬁl} = Ui 5_.;[5":-:::1.% (ﬁ}]p. Since
{vf 'H' . W 'H_] = Tmm—i [E], it follows from Theorem

1 that UP 2! = TRy(Ci, Transs (®)), 1 i < k. Becanse
|07 |=w(l€i<k)forpz1and V™" = (08",

L UEM Ydor 1€ € h, we can see that VP =

IPredd)
UP,{HM{]‘)}:F’TRL(Ci,T'FﬂﬂEgE'@_}] = [Tramsf“{‘i‘}]pj.
This completes the indection step,

Now assume that A € [Sem(L)]p; for some j. Then there
exists m € w such that A € [TransP(®)]s,. This is be-
cause Sem(L) = UgsTransf($) (Apt et al. 1982 and
van Bmden et al. 1876). Since V™! = [PransT(#)]s;,
there exisis ¢ € w such that 1’}"""1[191 = A. Ii follows from
VPt © v/ that V/(g) = A. On the other hand, we see
that V/(g) is defined for any ¢ € w. Then there existe
m+1 € w such that V™*(g) = I‘f{q}. It follows from
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VP = [PransT ()5, that V"t(g) is in [TransT()]p,
U {7} C [Umz:Trans§{#)]p, U {r}. This means that ¥
= [Umz1TransT(3)]p;. Finally we come np with the con-
cusion tjat {V{, ..., ¥} = UpsiTrans™(®) = Sem(L).
Q.ED.

To delete r in 2 sequence rom Dy = Hpu{r} and to get
a sequence from Hy, the following function is wsefal.
L D — H§ is the function satisfying

E(u)(p) = (eg(u(0), ) — E(nest(u))(p), E(nest(u))(p=—1))
for w e D7 and p € w.

Since {V{,... . ¥} = Sem(L), (B(V{),..., B(V{)} can
be regarded as a semantics of L.

6§ CONCLUDING REMARKS

In this paper, a semantics of a logic program was defined
over a sequence domain. Il s a least fixpoint of a recursion
equation set constructed from a given logic program. To
have ihe recursion equation set, we begin with the interpre-
tation of the inference caused by each definite clause as a
relation ameng sequence variablas. The relation is reduced
to a function by imtroducing eracles based on fair functions
in w®. Also fair merge functions are made use of | to real-
ize a sequence variable whose denotation is the nnion of the
denotaiions of other sequence variables. The newly defined
semantics represents the minimal Herbrand model of the
original logic program in lerms of sequence variables based
on the Herbrand base. Thus, the recorsion equation set is
& dataflow program computing the eriginal logic program.
This is the primary asped. of the present papes.

The method of transforming the recursion equation set
into a functional program is worth while studying, in order
to give an insight of establishing the way how the iransfor-
mation of logic programs into functional programs can be
performed through recursion equation seis. It is left for the
next work to construct a sequence domain based on subati-
tutions for semantics of a given logic program, combining
the result of this paper with the method in (Yamasaki et al.
1987).
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