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ABSTRACT

We consider the problem of learning a context-free
grammar from examples. In this paper, the prob-
lemn is slightly different from the usual grammati-
cal inference problem. The problem is to leamn a
contexi-free grammar adequate for bottom-up pars-
ing or designing bottom-up parser. Qur final goal
is to present an algorithm using grammatical infer-
ence methods to develop a grammar for bottom-up
parser. We present an efficient algorithm for learn-
ing a context-fres grammar from positive examples
of structural descriptions. Structural descriptions of
a context-free grammar are unlabelled parse trees
of the grammar, the shapes of parse trees. Thus
the input to the learning algorithm is a finite set
of shapes of parse trees. Our learning algorithm
has several desirable features that the output gram-
mar has the intended structure for parsing, allows
the process of bottom-up parsing to be made easily,
and the algorithm learns a grammar from positive-
only examples efficiently. Weshow that the learning
algorithm learns a grammar which is structurally
equivalent to the unknown grammar and achieves
the polynomial tirme bound.

1 INTRODUCTION

We consider the problem of learning a context-free
grammar from examples. The problem of learn-
ing a “correct” grammar for the unknown language
from finite examples of the language is known as the
grammmatical inference problem. In the grammatical
inference problem, a “correct” grammar only means
a grammar which correctly generates the langnage.
In this paper, the problem i5 defined to learn a
context-free grammar adequate for bottom-up pars-
ing. Our final goal is to present an algorithm us-
ing grammatical inference methods to develop (or
design) 2 grammar for bottom-up parser. In this

problem setting, it is quite natural for us to reguire
the learning algorithm to ocutput a grammar with
the following properties.

(1) The learned grammar should have the infended
strieeture, The traditional grammatieal inference
problem is defined to identify & grammar & from
examples of the unknown language L such that &
correctly gemerates the language L, ie, L = L(G).
However for any context-free language L there exist
infinitely many grammars G such that L = L{G).
Furthermore, those grammars may have different
structures. Consider the following example, The
grammmar &y below describes the set of all valid
arithmetic expressions involving a variable “v* and
the operations of multiplication “x™ and addition
ﬂ_l_ﬂl

S—v|Av

A— vt |oxfoe+d|vx A

(the grammar &)

However the structure assigned by the grammar Gy
to sentences 1s semantically meaningless. The same
language can be specified by the grammar Ga below
which has a different structure from &y.

S—=FE
E—~F|F+E
Foy|vx F
(the grammar G3)

Here the phrases are all significant in terms of the
rules of arithmetic. Although Gy and &5 are eqguiv-
alent (i.e. L{G)) = L(Ga)), this fact is not very rel-
evant from a practical point of view since it wounld
be unusual to consider such & grammar as ¢y which
assigns the structures to the sentences in a non-
significant manner. Thus if the learned grammar
must be used in & practical situation entailing the
translation or interpretation of sentences like in a
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compiler, the structure of the learned grammar is
more significant. However in the framework of the
usual grammatical inference problem, it is impossi-
ble to learn such a grammar (e.g. not the grammar
G but G3) which has the correct (intended) strue-
ture. To do so, it is necessary for vs to assume
that information on the structure of the grammar
is available to the learning algorithm. This hypoth-
esis is In egreement with studies on natural lan-
guage by Chomsky in terms of the theory of phrase
structure grammars which claim that the availabil-
ity of structural descriptions is prerequisite for lan-
guage deseription, since there must be a partially
sernantic basis in syntax acquisition. In the case of
context-free grammars, the structure of a grammar
is usually described by the shapes of the parse trees,
called structural descripiions. A structural deserip-
tion i= & kind of tree whose internal nodes have no la-
bel. The algorithm that we present learns 2 context-
free grammar which has the intended structure from
structural descriptions.

the big dog  chases a Young girl
Figure 1: A structural description

(2) The learned grammar should allow the process
of botlom-up persing io be made easily. Bottom-up
parsing consists of (i) successively finding phrases
and (ii) reducing them to their parents. In a cer-
tain sense, each half of this process can be made
simple but only at the expenze of the other. The
family of inveriible grammars allows reduction de-
cisions to be made simply. A context-free grammar
G = (N,E, P, 5) is said to be invertible if A — o
and B — o in P implies A = B. Thus invert-
ible grammars have unique righthand sides of the
productions and the reduction phase of parsing be-
comes a matter of table lookup. The motivation
for studying invertible grammars comes from the
theory of bottom-up parsing. Since the invertible
grammar is 2 normal form, for any context-free lan-
guage ‘L, there exists an invertible grammar which
generates L. Further for any context-free grammar
G, there exists an invertible grammar which has the
same structure as G and generates the same lan-
guage as G (i.e. which is struclurally equivalent to

). The algorithm that we present learns an invert-
ible contexifree grammar from structural descrip-
tioms.

(8) The grammar should be learned from positive-
only exomples. In the case of learning an unknown
language L, there is a fundamental, important dis-
tinction between giving only positive information
(members of L) and giving both positive and neg-
ative information {both members and nonmembers
of L). A positive preseniation of L is an infinite
sequence giving all and only the elements of L. A
complete preseniation of L is a sequence of ordered
pairs {w,d} from £° x {0,1} such that d = 1 if w
iz a member of L, and such that every element w
of E* appears as the first component of some pair
in the sequence, where E is the alphabet which the
language L is defined over. A positive presentation
eventually includes every member of L, whereas a
complete presentation eventually classifies every el
ement of &° as to its membership in L. Intuitively,
an added difficulty in trying to learn from positive
rather than complete presentation is the problem of
“avergeneralization”. Learning from positive pre-
sentation is strictly less powerful than learning from
complete presentation. Gold [GolB7] shows that
any set of languages containing all the finite lan-
puages and at least one infinite language cannot be
identified in the lirnit from positive presentations.
This result applies to many important classes of lan-
guages (e.g., the regular languages and the context-
free languages). However Angluin [AngB0] gives a
characterization of the sets of recursive languages
that can be identified in the limit from positive pre-
gentation. In this paper, we consider the problem of
learning a context-free grammar from positive pre-
gentation because assuming the teacher giving pos-
itive information of the grammar is acceptable in
a practical use, whereas assuming the teacher giv-
ing complete information of it is not so easy for
users. Since, in our problem setting, information of
the grammar is the structural descriptions of i, it
is assumed that positive presentation of structural
descriptions iz given to the learning algorithm. As
we said before, the class of context-free grammars
cannot be identified from positive presentation. We
define a subclass of context-free grammars, called
reversible conteri-free grammars, that is still pow-
erful to define usual languages and invertible, and
show that the class of reversible context-free gram-
mars can be identified from positive presentation of
structural descriptions.

(4) The grammar should be learned efficiently. In
practical use of the grammatical inference, the cru-



cial point is the time efficiency of the learning al-
gorithm. - One of criteria for evaluating the time
efficiency of the learning algorithm is the polyno-
mial time bound. Several learning algorithms for
different domains [Ang87,5ak88] have been studied
te achieve the polynomial time bound. We investi-
gate an algerithm for learning a reversible contesl-
free grammar in polynomial time. It is known that
the set of parse trees of a context-fres grammar con-
stitutes a rational set of tress, where a ralional sel
of trees is a set of trees which can be recognized by
sore tres automaton. Further the set of structural
deseriptions of a context-free grammar also consti-
tutes 2 rational set of trees. Based on this observa-
ticm, the problem of learning a context-free gram-
mar from siructural deseriptions can be reduced to
the problem of learning a tree autoraton. Then
by extending various existing efficient learning al-
gorithms for finite automata to the ones for tree
automata, we can get various efficient learning al-
gorithms for context-free grammars. In this paper,
we extend Angluin’s efficient algorithm [AngB2] for
learning a finite automaton from positive presenta-
ticm and present an efficient algorithm for learning a
reversible context-free grammar from positive pre-
sentation of structural descriptions.

2 PRELIMINARIES

A ranked alphabet V is a finite set of symbols asso-
ciated with a finite relation called the rank relation
v CVx{0,1,2,...,m}. V, denotes the subset
{f € V| (fin) € rv} of V. Especially, we call
Vo, dencted T (i.e. & = V), the terminal alpho-
bet. In many cases the symbols in ¥, are consid-
ered as funclion symbols. The rank of a function
symbol is called its arity and a symbol of arity 0 is
called a consiant symbol A tree over V' is & map-
ping ¢ : Dom; — V, which labels the nodes of the
tree domain Dem;. V7T denotes the set of all trees
over V. A tree language is any subset of V7. A
terminal node in Dom; is one which has no descen-
dant. For a set of trees T, the set of subtrees of
elements of T" is denoted by Sub(T).

A (deterministic frontier-io-reol) tree auioma-
fon is & quadruple 4 = (@, V,§, F) such that Q is a
finite set, F' is a subset of @, and § = (6, 85,.. ., 8m)
consists of the following maps:

b Vi x (QUVp) = Q
for a € V.

(k=1,2,...,m),
bpla)=n

& is the set of states, F' is the set of final states
of 4, and & is the state fransition funclion of 4. In
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this definiticn, the terminal symhbols on the frontier
are taken as “initial® states. & can be extended o

VT by letting -
5:(F,8(ta), .., 8(tx)) if k> 0,
5o(f) i E=0.

The tree t is accepied by A iff §(f) € F. The set
of trees accepted by A, denoted T{A), is defined as
T(A) = {te VT | 6(t) € F).

If & is a state transition function from Vi, x (QU
Vo)* to 29 (k = 1,2,...,m), then the tree au-
tomaton is nondeterministic, For a nondetermin-
istic tree automaton NA = (@, V,§,F), we define
T(NA) as follows. § can be extended to V7T by
letting :

S(ft1,. . tk))
{ U 5#“:911---:%) HE}U!

{f(t,....t)) = {

quEf(ty Yy g E S i)
{f} if k=10.

Then the set T(NA) of trees accepted by VA is
defined as T(NA) = {t e VT | §(t)n F # ¢}. Note
that nondeterministic tree automata are no more
powerful than deterministic tree automata.

Let A be a tree automaton which accepts a set
of trees T. A iz minimum iff A has the minimum
number of statez amaong all tree antomata which
accept T'. The minimum tree automaton is unigoe
up to isomorphism [Brafg].

A context-free grammar is denoted G = (N, E,
P, S:], where N and T are alphabets of nonterminals
and terminals respectively such that NNE = 4. P
is & finite set of productions; each production is of
the form A — &, where A iz a nonterminal and e 15 8
string of symbols from (WUZI)*. Finally, S is a spe-
cial nonterminal called the stari symbol. If A — 78
is a produoction of P and o and -+ are any strings in
(NUZI), then aAy = afy. = is the reflexive and
transitive closure of =. The language generated by
G, denoted L(G), is {w | w € Z* and 5 = w}. Two
context-free grammars Gy and Gy are said to be
equivalent if L(G,) = L(Gz). A parenthesis gram-
mar iz a context-free grammar G = (N, I, P, 5)
such that the prodoctions in P are restricted to the
form A — (o), where { and } are special symbols
not in ¥ and & contains neither { nor ). Without
loss of generality, we restrict our consideration to
only e-free context-free grammars.

Let G=(N,E\P,5) and G' = (N',E,P',5") be
context-free grammars. & is isemorphic to G' iff
there exists a bijection @ of N onte N such that
@(S) = 5', and for every A, 5y,...,By € NUE,
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A— By---By € Piffp(A) — B} --- By € P/ where
Bi=§nl:B.'}ifB;_ENEMBE:B;HB;EE&E
1<i<kh _

Let G = (N, I, P, 5) be a context-free grammar.
For 4 in N UE, the set D4(G) of trees over NUE
is recursively defined as :

{a} HA=aek,

{Alts,....1) | A— By -+ By,
i,'EDBi[G][li:'ﬂ_:k)} ifAe N,

A tree in Dy(G) is called a porse tree of G from
A. For the set Dg(G) of parse trees of G from the
start symbol 5, the S-subscript will be deleted.

A skeletal alphabet Sk is a ranked alphabet con-
sisting of only the special symbol & with the rank
relation rgg C {o} x{1,2,3,...,m}. A tree defined
over SkUT is calied a skeleton. Let t € V7. The
structural description of ¢, dencted s(t), is a skeleton

- with Do,y = Dom, such that

Da(G) =

iz} if z is a terminal node,
00={ ;" e

Let T be a set of trees. The corresponding skeletal
set, denoted K(T), is {s(t) |t € T}

Thus a skeleton 1s & tree which has & special
symbol & for the internal nodes. The structural de-
scription of a tree preserves the structure of the tree,
but not the label names describing that structure.

The struclural deseriplion of a context-free gram-
mar G is the skeletal set K(D(G)). Two context-
free grammars Gy and Gs are said to be structurally
equivalent if K{DG1)) = K(D{Gz)). Note that
if Gy and Gy are structurally equivalent, they are
equivalent, too.

Mext we show two important propositions which
connect a context-free grammar with a tree antoma-
ton.

Proposition 1 Let G = (N,E,P,5) be a contexi-
Jree grammar. The corresponding nondelerminisiic
tree automaton N A(G) = (Q, SkUE, §, F) is defined
as follows.

Q@=N,

F= {5},

5&[#,51..,”5‘;}3#‘1 ifAd=DBy--B, P,
bpla=a for a € L.

Then T(NA(G)) = K(D(G)). That is, the sel of
trees accepled by NA(G) is equal do the siructural
description of G.

Proposition 2 et A=(Q,5kUE,§ F) be a tree
aufomaion. The corresponding conteri-free gram-
mar G(A) = (N,L, P, 5) is defined as follows.
N Qu{s},
P {6e(ov 21, ) = 2132
| o € 5k and 33,..., 7 € QuUI}
U{S —+ 2y --- a3y | Sploy2q,...,25) € FL
Then K({IDNG{A))) = T(A). Thal is, the struclural

description of G{ A) is equal o the sef of trees ac-
cepled by A.

I

Hence the problem of learning a context-free gram-
mar from structural deseriptions can be reduced to
the problem of learning a tree automaton. All fol-
lowing results for context-free grammars are derived
by using Proposition 1 and 2 from the similar re-
sults for tree automata. Thus behind the theory
for contexi-free grammars concluded in this paper,
there always exists the corresponding theory for tree
automata.

3 STRUCTURAL
IDENTIFICATION

Gold’s theoretical study of language learning intro-
duces a fundamental coneept that is very important
in inductive inference : identification in the limil
In the Gold's traditional definition, for an induc-
tive inference algorithm A that is attempting to
learn the unknown language L, an infinite sequence
of examples of L 15 presented. Then after some fi-
nite number of example presentations, /A guesses
the correct conjecture of the language and never
changes (converges to) its guess after this. In the
case that the comjectures are in the form of gram-
mars, [A identifies in the imit a grammar G such
that L{G) = L.

On the other hand, as in [Sak88], in order to
identify a grammar which has the iniended struc-
ture, it 1= necessary to assume that information on
the structure of the grammar is available to the
learning algorithm. In the case of context-free gram-
mars, the structure of the grammar - is the struc-
tural description of it. Suppese G i= the unknown
grammar (not the unknown language). This is the
grammar that we assume has the intended struc-
ture, and that is to be learned (up to structural
equivalence) by the learning algorithm. In this cass,
a sequence of examples of the language L(G) is
replaced by a sequence of examples of the struc-
tural description [{{ING)). Then a learning al-
gorithm identifies in the limit a grammar G' such



that K(D(G") = K(D(G)) (i.e. structurally equiv-
alent to G). This type of identification is called
structural identification in the limit.

By Proposition 1 and 2, the problem of struc-
tural identification of context-free grammars is re-
duced to the problem of identification of free au-
tomata, and hence to the problem of identification

of tree languages.

4 CONDITION FOR POSITIVE
INFERENCE

In order to do correct identification in the limit
from positive presentation, we must aveid the prob-
lem of “overgeneralization”. Angluin has shown in
[Ang80] various conditions for identification from
positive presentation that aveids overgeneralization.
In her framework, the domain is & family of lan-
guages £ = {Ly, Ls,Ls...,}. A positive sample of
the language L is a finite subset of L. One of con-
ditions for identification from positive presentation
is following,

Condition-1 A family of language satisfies Condi-
fion-1 iff there exists an effective procedure which
on any input i > 1 emumerates a positive sample 5;
of L; such that for all 7 > 1, if 5; C L; then L; is
not a proper subset of Ly

This condition requires that for every language
L; of the family £, there exists a “telltale” finite
subset 5; of L; such that no language of the family
£ that also contains 5 is a proper subset of L;.

These discussions and formulations can be ap-
plied to the case of identification of ires languages,
and hence to the strustural identification.

5 REVERSIBLE GRAMMARS

A context-free grammar G = (N, E,P,5) is said
to be invertible if A — o and B — & in P im-
plies A = B. Invertible grammar is one of nor-
mal forms for context-free grammars. Thus for any
context-free language L, there is an invertible gram-
mar G such that L{G) = L. A context-free gram-
mar & = (N,L, P,5) is reset-free iff for any two
nonterminals B,C and &, f € (NUI)*, A — B
and 4 — aC' 3 in P implies B = C. A context-free
grammar G is said to be reversible ifl G is invert-
ible and reset-free. A context-free language L is
defined to be reversible iff there exists a reversible
context-free grammar G such that L= L(G).
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The idea of the reversible contexi-free grammars
comes from the “reversible automata”™ and “reversible
languages” in [AngB0]. Basically, the corresponding
tree automata for reversible contexi-free grammars
are the extensions of “zerc-reversible automata”.

We now consider characteristic struetural sam-
ples for the reversible context-free grammars. A
positive struciural sample of a context-free gram-
mar G is a finite subset of K{D(G)). A positive
structural sample €5 of a reversible context-free
grammar (& is a characteristic structural sample for
G iff for any reversible context-free grammar &,
K(D(G") 2 €5 implies K{D(G)) € K({D(G).
The following result is necessary for the proof of
correct structural identification in the Limit of the
reversible context-free grammars from positive pre-
sentation of structural descriptions.

Proposition 3 For any reversible conlexi-free gram-
mar G, there ezisis @ characteristic structural sam-
ple.

6 LEARNING ALGORITHM

In this section we describe and analyze the algo-
rithm RC to learn a reversible contexi-free gram-
mar from positive structural samples. '

The input to RC is a finite nonempty set of
skeletons Sa. The output is a particular reversible
context-free grammar G = RC(Se). The learning
algorithm RC begins with the primitive context-
free grammar for Sa and generalizes it by merging
nonterminals.

A partition of some set X is a set of pairwise
disjoint nonempty subsets of X whose union is X.
If 7 is & partition of X, then for any element z € X
there is & unique element of # containing =, which
we call the dock of = containing =. A partition =
is finer than another partition #' iff every block of
7' is & union of blocks of x. The irivial pariition of
a set X 15 the class of all sets {z} such that x € X

Let G = (N, L, P, 5) be any context-free gram-
mar. If 7 is any partition of N, we define the
context-fres grammar G/r = (N, L, P', §*) induced
by « as follows. N' is the set of blocks of = (i.e.
N'= ). &' is the block of = that contains 5. The
production Bl — Bl --- Bl is in P’ whenever there
exist Ac Bland A, e Blievor A; =Bl €L for
1<i<ksuchthat 4 — 4; - A isin P.

Let Sa be a finite set of skeletons. Define the
primitive conteri-free grammar for Sa, G(S5a) =
(N,E, P, 5), as follows :
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=
I

(Sub(Sa) — T)uU {5},
{di‘.-‘il,.. .,Jik:i — Alr- A.I*

| e(Ar,..., Ax) € N}
U{Sﬂiﬁll-fﬂtlﬂ'fﬂl,...,ﬂt) &= Sﬂ}.

Then G(Sa) is & context-free grammar such that
K({DG(5a))) = 5a.

Algorithm RC

Input : a nonempty positive structural sample Sa;
Cutpul ; a reversible context-free grammar G;
Procedure :

On input Sa, RC first constructs Gy = G{Sa)
(= (Ng, B, Py, Sp)), the primitive context-free gram-
mar for Sa. It then constructs the finest parti-
tiom 7wy of the set Ny of nonterminals of Go with
the property that Gp/fw; is reversible, and outpuis
Gy,

To construct 7y, RC begins with the trivial par-
tition of Ny and repeatedly merges any two distinet
blocks Bly and Bl if either of the following condi-
tions is satisfied.

1. There exist two productions of the forms 4 —
Ap--- A and A" — Aj --- AL in Fg such that A €
Bl and A’ € Bly, and for 1 < j < k, A; and 4}
both are in the same block or are the same terminal
symbols.

2. There exist two productions of the forms 4 —
Ap-+ Ay and 4" — 4] ... A} in Fy and an integer
i(1 <1< k)suchthat 4; € Bly and 4} € Bly, A
and A4’ are in the same block, and for 1 < j < &,
js# i, Aj and A;— both are in the same block or are
the same terminal symbols,

When there no longer remains any such pair of blocks,
the resulting partition is =y,

This completes the description of the algorithm
RO, and we next analyze its correciness and time
efficiency. -

Theorem 4 Lei Sa be o nonemply positive siruc-
tural sample of skeleions, and Gy be the ouiput of
the contexi-free grammar by the algorithm RC on
input Sa. Then Gy is reversible and for any re-
versible conterl-free grammar G, K(D{(G)) 2 Sa

implies K (D(Gy)) € K(D(G)).

Theorem 5 The algorithm RC may be implemented
to run in dtme polynomial in the sum of the sizes of

the input skelelons, where the size of a skeleton is

the number of nodes in .

Next we show that the algorithm BC may be
used at the finite stages of an infinite learning pro-
cess to identify the reversible contexi-free grammars
in the limit from pesitive presentation of struetural
deseriptions. The idea is simply to run RC on the
sample at the nth stage and ovtput the result as
the nth guess. Define an operator RC., from infi-
nite sequences of skelelons sy, 89, #3,... to infinite
sequences of context-free grammars Gy, G2, G, ...
by

Gn = RO({s1,82,....8.}) foralin> 1

We need to show that this converges to a correct
guess after a finite number of stages.

An infinite sequence of skeletons s, 85,83, ... i8
defined to be a positive siructural presentaiion of a
context-free grammar G iff the set {sy, 53,53,...} is
precisely K(D(G)). An infinite sequence of context-
free grammars Gy, Gz, Ga,... Is sald to converge to
a context-free grammar G iff there exists an integer
N such that for all n > N, Gy, is isomorphic to G.
By Proposition 3 and Theorem 4, we conclude the
following result.

Theorem 6 Lei G be a reversible contexi-free gram-
mar, §;,8z,83, ... be a positive siructural presen-
tation of G, and G,,Gy,Ga,... be the outpul of
RCq, on this input. Then Gy,Gy,Ga,... converges
to @ reversible confert-free grammar &' such that

K(D(G") = K(D(G)).

‘We may modify RC by a simple updating scheme
to have good incremental behavior so that G4
may be obtained from G, and s,4;.

T AN EXAMPLE

In the process of learning a contexi-free grammar
from structural descriptions, the problem is to re-
construct the nonterminal labels because the set of
parse trees of the unknown context-free grammar is
given with all nonterminal labels erased.

The structural description of a context-free gram-
mar can be equivalently represented by means of the
parenthesiz grammar. For example, the structural
description in Figure 1 can be represented as the
sentence of the parenthesiz grammar:

{ { the { big dog ) } ( chases ( a ( young girl ) } ) )

Now suppose that the learning algorithm RC is
going to learn the following unknown context-free
grammar Gy for simple natural language,



Sentence — Noun_phrase, Verb_phrase.
Noun_phrase — Determiner, Noun_phrasel.
Noun.phrase2 — Noun.

Noun_phrase? — Adjective, Noun _phrasel.
Verbphrase — Verb, Noun_phrase.
Determiner — the.

Determiner — a.

Noun — gll']..

Noun — cat.

Noun — dog.

Adjective — young.

Verh — likes.

Verb — chases.

First suppose that the learning algorithm RC is
given the sample

( { (the) ( {girl) ) ) ( {tikes) ( (a} { {cat) }}))
( ( (the) { {girl} } ) { (likes) { (a) { {dog) ) } } )

RC first constructs the primitive contexi-free
grammar for them. However it is not reversible.
So 2C merges distinet nonterminals repeatediy and
produces the following reversible context-free gram-
mar:

S P1,P2
Pl— P3,PA
P4— Ph.
P2—= P8 PI.
P7—=FPB PO
P9= P10
P_3 — the.

P_b = girl.

PG — likes.
PB—a.

P_10 — cat.
P10 — dﬂg.

R has learned that “cat” and “dog” belong to
the same syntactic category. However RC has not
learned that “girl” is the same syntactic category
(noun) as “cat” and “dog”, and “a” and “the” be-
long to the same syntactic category (determiner).
Suppose that in the next stage the following exam-
ples are added to the sample:

({(a) ( (dog) ) )} ( (chases) ( (the} ( {girl} ) )} )
({ (=) ( (dog} ) ) ( (chases) { {a) ((cat)))))

Then RC produces the reversible context-free
ETAIMMAL:
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5= FP1, P32
FPl— P23 P4
P.d4— FPA5.
FP2— PG P.
P1— P11 FA
PR— P9
P_3 — the,
P.5 — girl.
P_f — likes.
P_§ — chases.
P.T—a
P8 — cat.
P9 — dog.

RC has learned that “likes” and “chases” be-
long to the same syntactic category {verd) and “the
girl®, “a dog” and "a cat” are identified as the same
phrase (noun. phrase). However RC has not, learned
yet that “a” and “the” belong to the same syntac-
tic category, Suppose that in the further stage the
following examples are added to the sample:

({ (a) ({dog) } } { {chases) { (a} { {gix]) ) ) ) )
{{{the}{{dog})}{{chases)((2) ((young) {{gir])))})

RC produces the reversible context-free gram-
A

5= P1, P2
Pl=— P33 P4
P4— P5.
F4— PG P4
FP2— P, P
P53 — the.
P3—a

P_5 — girl.

P.b — cat,

P5 — dog.

P_i — young.
P_7T — likes.
P_T — chases.

This grammar is isomorphic to the unknown gram-

mar Frr.

&8 CONCLUDING REMARKS

In this paper, we consider the problem of learn-
ing a context-free grammar adequate for bottom-
up parsing. We make much more of the “opera-
tionality™ of the grammar learned by the learning



454

algorithm in contrast to traditional grammatical in-
ference problems. We set up the new learning prob-
lem for context-free prammars that is slightly dif-
ferent from the uwsual grammatical inference prob-
lem. Then the grammar learned by our algorithm
iz quite adequate for designing bottom-up parser or
efficient bottom-up parsing. Thus this problem set-
ting makes our learning algorithm practicable,

Lastly weremark on related work. Crespi [CreT2)
is most closely related, as it describes a constructive
method for learning a context-free grammar from
positive examples of structural descriptions. How-
ever his algorithm and our one uge completely diffar-
ent methods and learn different classes of context-
free grammars. Since our formalism is based on tree
automata, one of merits of our way is the simplic-
ity of the theoretical analysis and the casiness of
understanding the algorithm, whereas the time ef-
ficiency of his algorithm [Cre72] is still not clear.
Perhaps there may be a useful synthesis of thess
iwo approaches. The investigation that we must
do but have not done yet is the characterization of
the “reversible context-free langnages®, Especially
it is interesting to contrast them with noncounting
context-free languages [CGMTE].

ACKNOWLEDGEMENTS

The author would like to thank Dr. T.Kitagawa, the
president of [TAS-SIS, and Dr. H.Enomoto, the di-
rector of ILAS-SIS, for giving him the opportunity to
pursue this work and warm encouragement. Discus-
sions with the colleagues T Yokomori and Y. Takada
were very frmtful.

This is part of the work in the major R&D of
the Fifth Generation Computer Project, conducted
under program set up by MITL

REFERENCES

[Ang80] Dana Angluin. Inductive inference of for-
mal languages from positive data. Tnfor-
malion and Coentrel, 45:117-135, 1950,

[Ang82] Dana Angluin. Inference of reversible
languages. Journal of the ACM, 29:741-
765, 1982,

[Ang87] Dana Angluin. Learning regular sets
from queries and counter-examples. Jn-
formation and Computation, TH:87-106,
1987.

Walter 5. Brainerd. The minimalization
of tree antomata. Infermation end Con-
irol, 13:484-401, 1868,

[CGMT8] Stefano  Crespi-Reghizzi,  Giovanni
Guida, and Dino Mandricli. Noncount-
ing context-free languages. Journal of the
ACHM, 25:5T1-580, 1978,

Stefano Crespi-Reghizzl, An effective
model for grammar inference. In B.
Gilchrist, editor, fnformation Process-
ing 71, pages 524-529, Elsevier North-
Holland, 1872,

[Brafig)

[CreT2]

[Gold7] E Mark Gold. Language identification
in the limit. Information and Contrel,

10:447-474, 1967.

Yasubumi Sakakibara. Learning context-
free grammars from structural data in
polynomial time. In Proceedings of Ist
Workshop on Computational Learning
Theory, pages 206-310, 1988,

[Salkas]



