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ABSTRACT

We give a proof-theoretic characterization of
reason maintenance systems (REMS) as realizations
of finite non-monotonie formal systems (NMFS),
NMFS are built on the concept of a valid proof
relative to an overall coherent set of beliefs, and
the justifications of an RMS are seen as rules used
to construct such proofs, We introduce NMFS with
variables as o means to describe a certain class of
rule-based non-monotonic inference systems, and
thus provide a uniform framework bath for an RMS
and a problem solver that uses it.

Keywords: reason maintenance systems, non-
monotonic reasoning

1 INTRODUCTION AND OVERVIEW

The task of a reason maintenance system (RMS) is
to maintain coherent belief states for a domain
dependent problem solver (PS). The PS
communicates to the RMS the results of his
inferences in terms of formulae of some, not
necessarily, logical representation language, and

1 The major part of the work reported in this paper was
carried out during a stay of the first author at the Laboratory
for the Representation of Knowledge in Logic, Department of
Computer and Information Secience,
Linkoeping, 52183 Linkeeping, SWEDEN.

Umniversity of

justifications for derived beliefs, If the PS makes
non-monotonic inferences these justifications have
the general form "belief in py,...,pm and disbelief in
Q1seeesn justifies beliefin r", where the p's, 9's, and
rare formulae of the representation language?

The RMS then in turn uses this information to
determine sets of belief that meet the coherence
requirement, that for every member of the set,
there is some valid non-circular argument using
the available justifications. It is tmportant to note
that the RMS considers the PS3-formulae as
symbolic propositional entities without any further
internal strueture. Most RMS also support some
notion of consistency using contradiction nodes and
corresponding contradiction handling routines
that try to avoid inconsistent states.

Existing  formal descriptions of reason
maintenance usnally focus either on what it might
mean from a logical perspective ([1] is the root node
of this class of approaches, see e.g. [2] for one of its
mest elaborate representatives), or on the
algorithmic aspects of reason maintenance, often
formulated in terms of constraint labeling

procedures, such ase.g. [3] and [4].

Common to all of these approaches is that they
generally make only very wealk assumptions about

2 Some RMS only use monotonic justifications, but then
necessarily need some sort of contradiction handling and
premise control facility to support non-meonotonic inference.
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the problem solver, which - if at all - is described in
procedural terms, and thus doés not easily lend
itself to any systematic analysis, Since RMS are
inherently finite and propositional, this leaves in
particular the handling of variables, which is often
an important part of the whole problem solving
process, outside the formal description.

We suggest a uniform approach to describe both an
EMS and the PS on top af it. To this end, we first
develop a more functionally oriented description of
reason maintenance that focuses on the role an
RMS plays for a PS, as a complement to the logical
and algorithmic approaches mentioned above.

We i:;truduce non-moenotonic  formal  systems
{NMF3), a simple formalism which is built upon
the core concept of valid proof from a set of base
facts, relative to an overall coherent state of
beliefs. The justifications of the RMS then are
considered as rules being used to construct such
proofs, i.e, the process of reason maintenance can
be regarded as performing non-monotonic
inference in a formal ealeulus in order to determine
what can and should be believed in a certain
problem solving state.

We then extend the NMFS-framework to also
allow for rules with variables, which are used to
represzent the specific domain knowledge of a PS.

Such a rule essentially plays the role of a.

parametrized justification, and the connection to
the underlying EMS then is to identify the rule
with the set of its corresponding ground
instantiated justifications, the variables ranging
over a suitable universe of constants.

This way we achieve the following overall
perspective of the PS/RMS interactions. The PS-
rules deseribe an implieit network of justifications,
and firing a (ground instantiated) rule simply
means to make it explieit to the underlying RMS5,
which in turn determines an approriate set of
explicit beliefs the PS should be aware of, in order
to decide which rules to consider next.

Finally, we discuss some connections of our
approach to work going on in the area of logie
programming with negation, and to default logie,
thus demonstrating that it opens the way for a
theoretical analysis of the properties of RMS-based

problem solvers.

2 NON-MONOTONIC FDRMAL SYSTEMS
2.1 Basic Definitions

We assume that belief states are represented as
finite subsets of a possibly (countably) infinite
universe L. In principle, L may consisl of the well-
formed expressions of any formal representation
language if we consider reason maintenance in
general, but we will restriet our considerations to a
simple logic lahguage to be defined later.

A non-monotonic formal system (WMFS) aver L
then is a set R of rules of the form <A|B-sc>,
where A and B are finite subgets of L, and c is a
singleton. We call the elements of A and B the
monotonic and non-monotonic antecedents of the
rule, respectively, and ¢ itz conclusion. (When
enumerating A and B, we omit the curly set
brackets.) Unless specified otherwise, we will
always assume R to be finite as well.

The slements of R are considered as rules to
construct non-circular arguments for beliefs within
a given state SCL, starting from some finite base
set P of premise beliefs that need neo Ffurther
justification. A rule <A|B—c> can contribute to a
non-circular argument for ¢ in 5, provided there
are such arguments available for all ac A and for no
beB. Formally, we define an NM-proof for g from
Pvalid in 8 as a finite sequence (py,....pn), Where:

-Wi:pe 8
_Fnzq

-¥Yi:piePor 3<A|B—p;=<¢R



5.t AC{pt....,.pi-1} and BNS = {}

Note that the property ofbaing a proof depends not
only on P and R but also on 8, and that it is non-
monotonic w.r.b. 5.

A superset S2JP is called an admissible
extension! of P iff it satisfies the following two
conditions:

S5 is grounded in P, i.e. for every g8 there is
an NM-proof for g from P validin 8

S is closed (wrt R), ie for every
<A|B—c=¢R, we have if ACS and BNS={ }
then ceS

As usual for non-monotonic caleuli, there are
combinations of P and R s.t. P has no, exactly one
or several admissible extensions; we will come
hack to that issue in section 5.

2.2 Some Results and Examples

The groundedness property directly reflects our
intuition on the existence of a non-circular
argument. To see that the closure property iz also
important, consider the NMFS
{<albsc>,<al-b>}, together with a single
premise P={a}. The set {a,c} iz grounded in P, but
not closed, sinee there is some valid reasen to
believe b as well, which would render the NM-proof
(a,c) for ¢ invalid in {8,b,c}. The set {a,b} is the only
admissible extension of P here.

This example also shows that maximal grounded
sets such as {ac} are not necessarily closed.
Conversely, closed sets are not
necessarily grounded, as the following example
shows: P={ }, R={<al+b>, <b|wa> <[beec>}].
Obviously, {a,b} is a minimal closed set, but it is
not grounded.The result here is even stronger:
note that {a,b} is in a sense locally grounded

minimal

I The terminalogy is partly borrowed from [5].
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because both a and b are conclusions of rules all of
whose monotonie antecedents are in {a b}, and none
of their non-monotonic antecedents are so. Since
{a,b} is also miniminal in that respect, we cannot
reduce the global property of being grounded to its
local equivalent. (McDermott's definition of "well-
founded" given in [6), though, would correspond to
minimal locally grounded and closed sets.)

In the case of multiple admissible extensions, one
might be tempted to try and define a unique sort of
theorem-hood ("q follows from P") by either of (1) g
is in every admissible extension or (2) q is in at
least one admissible extension. The following
example shows however, that neither the
intersection nor the union of admissible extensions
have the desired properties. The NMFES
R={<|a—+b>, <|b—a>, <a—c>, <boc>}
induces two admissible extensions {a,c} and {b,c} of
the empty premise set, but {a,b,c} is not grounded
and {c} i3 not closed, as could be expected. The
particularly discouraging result is that the
intersection is even not grounded. So there is no
obvious way to abstract from the existence of a
valid proof for beliefs being justified relative to an
overall coherent state,

So far, admissible extensions are defined in terms
of static conditions wupon belief states. The
following theorem gives a sort of pseudo-
constructive  equivalent characterization of
admissible extensions. The theorem intuitively
says that, if we already knew such an admissible
extension we could re-construct it incrementally,
and it gives us a way to check candidate sets for
their being admissible extensions. Actual
construction algorithms of course vse different
methods, see e.g. [4] and [7].

Given an NMFS B, a premise set P, and a
candidate extension 5, define a sequence of sets T;
as follows:

To=P
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Ti+1=Ti U {c| I<A[Bsc=¢R
s.t. ACT;and BNS={}}

Theorem: S=TyUTU...UT iff
Sis an admissible extension of P.

One immediate consequence of the reconstruction
theorem for a monotonic NMFS R, i.e. one where
no rule has any non-monotonic antecedents, is that
every premise set P has one and only one
admissible extension, which we denote by Ext{P),

2.3 Rules with Variables

We now proceed to define a simple predicate
language in order to be able to represent PS beliefs
and rules, We start from a finite vocabulary that
ronsists of a number of relation symbols
REL={P,Pz,... Py}, having some defined arities,
and &  number of ohject  constants
OBJ={a1,ag,.,a1.. Additionally, we use a
countable set VAR ={x,%g,...} of variables. In this
basic version, we do not consider any quantifiers or
connectives. Let

L = {P(ay,...,ap)| PeREL, with arity n, and
ay,....ant OBJ}

Lx = {P(ay,...,an)| PeEREL, with arity n,
ﬂ.]’_,..aﬂnEDBJu?AR}

Dwur universe L of beliefs consists of all ground
atoms that result from combining a relation
symbol with an approriate number of constants, As
before, we consider formal systems over L, but we
now will also allow for rule-schemata ranging over
L, for the purpose of specifying such an NMFS,

A rule schema has the form  [AlB-e], where
ABCLx, and celx, and we use the different
syntactical notation to distinguish it from a proper
rule, We consider such a schema as a deseription of
all of its ground instances that can be achieved by
:ongistently replacing every wvariable in the
schema by an object constant,

Formally, if v is a ground instantiation defined in
the usual way for atomic formulae, we define

LN T W 1, T I |
= <wip),..¥(pmvlqrh,..vign) = virl>

and let a schema [A|B—¢] denote the following set
of rules over L: '

{<AB'>c'>|<AB'>¢'> =v([A[B—c]), for some
ground instantiation v}

A finite set of schemata then defines an NMFS in
the obvious way. Clearly, this NMFS is also finite,
as long as onr veeabulary is so (and contains no
function symbols, of course),

As an consider the well-known

paradigmatic "usually, birds fly"-case.

example,

Voecabulary: REL = {BIRD, AB, FLIES, KIWT}
OBJ = {harry, sam}

Schemata: [BIRD(x)|AB(x)=FLIES(x)],

[EIWI{=)|-AB(x)]
Premises: KIWIharry), BIRD(harry), BIRD(sam)

The two rule schemata describe an NMFS that
containg, among others, the following rules:

<BIRD(harry}|AB(harry)=FLIES(harry) >
<KIWI{harry)|~AB{harry) >

It induces exactly one admissible extension of the

given premise set, namely {BIRD(harry),
EIWTtharry), AB(harry), BIRD{sam},
FLIES(sam)}.

3 ANNMFS-BASED ARCHITECTURE

We are now ready to sketch a simple architecture
for a rule-baged inference gystem that uses an RMS
to maintain its states of belief. The PS itself uses
schemata to represent its domain specific
knowledge. Let R be the NMFS defined this way,
and P a finite set of ground instantiated premises.



Furthermore, let B' be the set of rules that have
been eonsidered so far by the PS. The RMS then
always maintains an admissible extension of the
{current) premise set P, w.r.t. to R". In order to do
50, it is elearly sufficient to explicitly consider only
the following set N of formulae:

N =PU{g 3=<A[B-se>¢R's.t. qe AUBU{c}}

No qeLAN ean belong to an admissible extension of
P wort. R. We call such a triple (N,P,R") a
dependency neiwork, and representations of
such networks are the principal datastructures an
RMS works upon, The probably most prominent
RMS of today are Jon Doyle's TMS [8] and its
descendants such as [4], and Johan de Kleer's
ATMS [9], The usual approach to represent belief
states in dependency networks is to attach specific
labels to the formulae in N,

TMS represents one admissible extension E with
IN/OUT labelings:

a:N— {IN,OUT} al(p)=INiff pcE

The ATMS is restricted to monotonic rules only,
but offers the additional possibility of considering
multiple premise sets at a time. Actually, ATMS
stands for assumption-based TMS, but we consider
this a matter of perspective: the ATMS accepts the
PS assumptions as premises without further
justification, and finds out what can be concluded
from them.

Hecall that for a monotonic NMFS R, every
premise set P has exactly one admissible extension
Ext(P). Given a network (N,P,R"), the ATMS

simultaneously  represents the admissible
extensions of every subset §CP. This is done by
means of ATMS-labelings

f: N - 22F

KeBlp)iff (1) peExt(X)
(2) = 3Y: YCX and peExt(Y)

That is ATMS-labelings exploit the fact that
admissible extension membership is monotonic
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w.r.t. the premises for a monotonic NMFS, and
only include minimal premise sets,

We now can see that the wvarious labeling
algorithms developed for reason maintenance
finite

essentially perform inference in a

_propositional NMFS, and play the role of an

efficient core inference engine for the overall
system, By constructing valid NM-proofs using the
available premizes and justifications, it determines
what can and should be believed NOW. In the case
of the TME, it is non-monotonic inference in the
proper senze of the word, in the case of the ATMS,
it is simultanecus monotonic inference from

multiple premise sets.

The PS itself then mainly has to identify which
rules apply in a given situation, select one or
gseveral of them, and finally fire. Rule firing
corresponds to adding the rule to the NMFS R
maintained by the EMS and letting the RMS
incrementally recompute an admissible extension
of the so-modified system,

In a companion paper (10, we describe an efficient
inference procedure for a restricted class. of
schemata that have the property that every
variable that ocours in the conelusion or in &2 non-
monotonic antecedent of a schema also occurs in a
monotonic antecedent of the same schema. This
restriction is mostly for pragmatic reasons: the
interpreter first tries to match the monotonic
antecedents of a schema agadinst formulae in the
network and relies on the fact that afterwards, the
achema is ground instantiated.

The system uses as a simple condition to decide
whether to apply a ground instance <A[B—c> ofa
schema to a current belief state S that ACS and
BNS={} and c£S helds. This way, rule schemata
get some sort of operational semantics on how to -
tentatively - construct valid NM-proofs.

ATMS-based multiple context reasoners of course
would have to rely on a somewhat different
condition for when te apply a rule, A reasonable
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method is to check whether all of the antecedents
of a rule belong to Ext(@)) for at least one QCP.

4 ANOTE ONCONTRADICTIONS

One important feature of many RMS is their
capability to handle some types of inconsistencies.
The usual approach is to have special contradiction
formulae and to try to avoid extensions that
contain such Conceptuaily,
contradictions are hest thought of as

formulae.

complementary to premises in that they must not
belong to any consistent extension. Formally
speaking, we distinguish another finite set CCL of
contradictions, in addition to a premise set P, and
define the consistent admissible extensions of P
relative to C {given an NMF3 R) as those
admissible extensions E of P that are disjoint from
C. The way contradictions are handled in the
different RMS heavily depends on how FPS-
assumptions are representad,

As we have argued e.g. in [11], contradiction
handling routines - both in the TMS and in the
ATMS - perform essentially meta level reasoning
relative to the basic NMFS, in that they inspect
NM-proofs to identify the source of a contradiction,
and they  usually also moedify the NMFS
maintained by an RMS, in order to invalidate such
proofs. We think that meta schemats are a
promising yet still unexplored candidate for
descriptions for consistency
maintenance routines.

providing clear

5 DISCUSSION AND COMPARISON TO
OTHER WORK

The standard architecture for an RMS-based PS is
a collection of some sort of pattern-directed
procedures, such as e.g. ATMS-Consumers [12], or
RUP-Noticers [13]. Such a procedural approach
gives the user a considerable power and flexibility
in realizing applications, but it does not support
any kind of theoretical analysis. On the other
hand, one particular advantage of using NMFS

and schemata - besides {ts uniformity with the
basic RMS - is the fact that it opens the way to
investigating formal properties of the system as a
whole. In this chapter, we briefly sketch two lines
of such an investigetion, and for lack of space, we
defer a detailed discussion to a forthcoming long
version of the paper,

5.1 Schema-Level Stratification

It iz well-known (for a formal proof see e.g. [14])
that the absence of so-called nen-monotonic loops is
a sufficient condition for the existence of a unigue
labeling in dependency networks. In terms of an
NMFS B over L, a non-monotonic loop is a

sequence of formulae (po,prae.Pa) 8t
- P0=Pn

foralli=12. n: I<ABi—pi>€R
gk pi1€AUB;

- for at least one i; pi:1€ B;

Given a vocabulary with relation symbols
REL ={Py,.., Pi}, and a set of rule schemata, we say

‘the set is stratifiable if there is a partial ordering

< on REL such that the following holds (P-atom
here means an atomic formula in Lx with relation
symbaol P

- if J[A|B—e] 5.t ¢ is a Q-atom and there is a P-
atomin A then P = Q

- if 3[A|B—c] s.t. ¢ is a Q-atom and there is a P-
atom in B thenP < Q

This definition is chosen in accordance to related
work onstratified logic programs with negation, as
described e.g. in [16]. Actually, stratifiability
analysis for logic programs is often carried out on
so-called dependency-graphs, which correspond to
RMS dependency networks on the schema level.

It is now easy to see that stratifiability of a set of
rule schemata gunarantees that there are no non-
monotonic loops in the NMFS defined by the



schemata, and hence the NMFS induces unigue
extensions for every premise set.

Schema level stratifiability is a rather strong
condition, and excludes also some NMFS where no
non-menotonic loops ocear at the instantiated
level, Furthermore, there are certain kinds of non-
monotonic loops that do not really hurtin that they
"only" lead to multiple admissible extensions,
though many researchers from the logic
programming area might feel uneasy about the
resulting sort of .three-valued theosremhood.
Nevertheless, knowing whether a set of schemata
will always lead to a unique and well-defined

solution is often an important resals,

Also, stratifiability is of considerable practical
relevance concerning the algorithmic complexity of
admissible extension construction, While there are
rather strong polynomial bounds known for loop-
free NMFS [4], the unrestricted problem is MP-
complete [14].

5.2 Semantical Considerations

Our treatment of rule schemata is similar to Ray
Heiter's open defanlts [16], which are also
considered as a definition of a corresponding set of
ground instantiated defaults. A default has the
form (p:Mgqy,....Mgn/r}, where p, the q's, and r are
formulae of a full-fledged logic language.

As has been observed independently also in [17],
the obvious way to relate an NMFS to default logic
is to represent & rule <pi,..., Pm|Qi,.Qn—=r> by

the default (prAApmeMogqre. Mogefr). A
default extension of a premise set P iz a fixed point
of the following operator 5:

8:2L 2L

S=E|UEsU...UEx
where

Ei=P
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Th(E;) U
{r] there is a defanit (p:Maqy..... Ma,/r),
s.t. peB;, 2q1¢8,...,7gneS}

Ei+1=

ThiEi)} here stands for the deductive closure of Ej,
w.r.t. to some underlying complete inference
system for standard logic. This fixed point
characterization corrvesponds closely to  our
reconstruetion sequence for admissible extensions,
and Brewka [17] has shown that for every
admissible extension of an NMFS, there is a
default extension of the corresponding default
theory such that the set of ground atoms therein
coincides with the admissible extension,

This result, of course, does no longer hold if we
allow for compound formulae alse in NMFS-rules,
since WMFS do not assume an underlying complete
set of logical inference rules as default logic doesl.
E.g., the NMFS {<plpvg=q>=} will induce the
admissible extension {p.q} of {p}. Thé point in case
is not really that pvq is not coneluded, bot that g is
consequently, and there is no default extension
which would contain g.

Originally, defanlt logic only had a fixed point
semantics, based on the d-operator above, which is
readily available for NMFS without recurring to
any logic, by view of the reconstruction theorem,
However, default logic has recently been provided
with a model theoretic semantics in terms of
preferences among sets of models [18],

The main obstacle to inheriting this semanties to
HNMFS is their inherently finitary and hence
logically incomplete character. In a separate paper
[18], we have rerepresented Etherington's results
using preferences among partidl non-truth-
funetional valuations [20]. Such partial valuations
provide a model-theoretical tool to semantically

1David Etherington has pointed out Lo me thal - in some
utpublished work - Prof, Reiter hes studied also other
versions of default logie, built on arbitrary basie legics.
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deal with incomplete belief states, and we are
currently investigating ways on how to define an
intuitively appealing semantics for NMFS along
these lines.

6 CONCLUSIONS

We presented a simple formal framework for RMS
that takes into account their inherently finitary
and propositional character, and that gives the
core concept of valid proof relative to a coherent
belief state the predominant role that it deserves.
Built on this basic theory, we intreduced an
approach to truth maintenance with variables,
thus providing a uniform framework both for
RMS and RMS-based inference systems. One major
advantage of our theory is that it offers a sound
basis for a systematic analysis of such systems, and

in particular supports formal semantical
considerations.
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