FROCEEDINGS OF THE INTERNATIONAL CONFERENCE
ON FIFTH GENERATION COMPUTER SYSTEMS 1982,
edited by ICOT. & ICOT, 1988

Meta-interpreters and Reflective Operations in GHC
Jiro Tanaka

International Institute (ITAS-SIS),
Fujitsu Limited, 1-17-25 Shinkamata, Dta.—i:u, Tokyo 144
e-mail: jiro%flab.fujitsu.junet@uunet.uu.net

Abstract

Starting from the simple self-description of GHC [Ueda 85a, Tanaka 86a], we have derived various kinds of
meta-interpreters by stepwise enhancement. Special attention is paid to the meta-interpreter which has wariabls
managerment facility. Preliminary implementation has been performed with these meta-interpreters and the execn-
tion time has been measured for simple benchmark programs. It is shown that the overhead of variable management

is not too much comparing with its merits.

Various reflective operations, such as geen in [Smith 84, Maes 86], are also described. Implementations of these
operations are shown using those enhanced meta-interpreters. Applications of reflective operations, i.e., “reduction
count control,” “garbage collection” and “load balancing,” are also shown. This paper assumes a basic knowledge
of parallel logic languages such as PARLOG [Clark 85], Concurrent Prolog [Shapiro 83] or GHC.

1., Introduction

The original notion of self-description seems to derive
from the description of EVAL in LISP. It tries to describe
its language features by itself. Since both of programs
and data structures were expressed as S-expressions in
Lizsp, the self description of Lisp was not very difficult.

On the other hand, in Prolog world, the following
4-line program has been known as “Proloeg in Prolog”
[Bowen 83).

exec(true):-!,

exec((P,Q))=! exec(P),exec(Q).
exec(P):-clause((P:-Bady)) exee(Body).
excec{ P)-sys(PY,LP.

The meaning of this meta-interpreter is fairly simple.
The goal which should be solved is given as an argu-
ment of exec. If it is “true,” the execution of the goal
succeeds. If it is a sequence, it is decomposed and exe-
cuted gequentially. In the case of a user-defined goal, the
predicate “clause” finds the definition of the given goal
and the goal is decomposed to its definition. If it is a
system-defined goal, it is solved directly. If all of these
trials fail, this means that the execution of the given goal
fails. Though this 4-line program is very simple, it cer-
tainly works as “Prolog in Prolog”.

In this paper we discuss the self-description of par-
allel logic language GHC [Ueda 85a, Taneka &6a]. The
GHC version of this meta-interpreter can similacly be
written as follows:

exec(true):-true | true.

exec((F,Q))-true | exec{P)exec{ Q).
exec(P):-not_sys(P) | reduce{P,Body),exec(Body).
exec(P)-sys(P) | P.

This ' GHC program is almost the same as the Prolog
prograrr. Hewever “I" iz replaced by | ." In GHC
every clause definition includes the “ | " operator. The
predicate “clause™ has also been replaced by “reduce.”
“reduece(P,Body)” finds clauses whose heads are unifi-
able to “P,” selects one clause which satisfies guard, and
instantiates “Body" to the body part of that clause. It
is possible to define “reduce” as a user defined predicate,
However, we assurme it as a “primitive” function for the
time being for simplicity. A more complete definition of
“reduce” appears in Section 4.

If we compare this 4-line program with the self-
description of Lisp, it seems to be too simple. Tt only
simulates the top-level control flow of the given program.
Therefore, we would like to “enhance® this 4-line pro-
gram and obtain more useful information from the pro-
gram.

2. Meta-interpreter enhancement

How we extend this meta-interpreter is our pext
problem. We gained a hint from Kurusawe's paper
[[urusawe 85). He assumed an abstract Prolog ma-
chine which could execute Prolog programs. He de-
rived Warren-like code from the given Prolog program
by changing the border between the machine and the
program. Staring from the ordinary Prolog program, he
made explicit various hidden operations, such as unifica-
tion or operations which handle memory structures, step
by step to get Warren-like code.

However, we are not too interested in transforming
the source program. We are interested in the description
of “abstract machine,” which we try to express in the
form of 2 “meta-inferpreter.”

In Prolog and parallel logic languages, various exten-
sion has already been proposed. They are:

(1) “demo” predicate by Bowen and Kowalski [Bowen

82]. This predicate is used in the form of “demo(
Prog, Goals)” and shows that Goals are provable
from “Prog.” This is ideritical to the "exec,” shown
above, except that program definifion is explicit in
“demo™ predicate.

Failsafe exec. “exec{G,R)" executes the given goal
3" and returns “success” if succesded, “failure™ if
failed. This prevents the program from the failure
even if the goal *G” fails. This predicate has been
proposed by Clark & Gregory in parallel program-
ming language [Clark 54].

(3) Conmtrollable exec. It is used in the form of
“exec(G,1,0)," where “T" is the input stream and
"0 ig the output stream. This “exec” is very use-
ful if we would like to contrel the program execution
fram the outside. We can “suspend,” *resume,” or
“short” the execution of the given goal. This predi-
cate has also been proposed by Clark & Gregory in
parallel programming language [Clark 84).
“gxec(G,History)” which is the extension of the fail-
safe exec. It returns the execution history instead of
result. This exec is useful to build debuggers. Vari-
ous works have been dene at ICOT in parallel logic
languages.

These proposals seem to answer the question how we
extend our meta-interpreter. That is, we should extend
our meta-interpreter to make explicit what we would like
to know or control.

(2)

(4

3. Stepwise enhancement of meta-interpreters

What we would like to do is to derive vami-
ous enhanced meta-interpreters, starting from the sim-
ple self-description of GHC. Our appreach is simi-
lar to those which have already been proposed by
Hirsch & Safra [Hirsch 86, Safra 86]. They have
proposed various enhanced meta-interpreters, such as
®trusted,” “failsafe,” “interruptible” and “controlled”
meta-interpreters. Their motivations were mainly to de-
velop those meta-interpreters suited for program execu-
tion in their “programming system.” A “programming
system” can be considered as a mini-operating system
where one can input and execute user programs. How-
ever, our motivation is slightly different. We are more
interested in “reflective” capabilities, such as seen in
[Weyhrauch 80, Smith 84, Maes 86, Tanaka 83a, Watan-
abe 88]. We sometimes want to catch the current state
of the system and modify it dynamically. These kinds of
“reflective” capabilities seem to be very useful in writing
a programming system. In 3-Lisp [Smith 84], we could
eagily obtain the current “continuation™ and “environ-
ment” from the program. Smith used “meta-circular in-
terpreters” as a mechanism to obtain information from
the program.

We extend our meta-interpreter in a similar way to
Smith’s approach. The extension depends on what kind
of resources we want to control. We try to enhance the 4-
line GHC meta-interpreter and realize these “reflactive”
eapabilities.

7157

3.1 Two argument meta-interpreter

Firat extension is to get a “failsafe™ meta-interpreter
by modifying the original 4-line GHC meta-interpreter.
This modification is very simple and can be expressed as
follows:

exec(true,R):-true | R=success.
exec| false R):-true | R=failure.
exec((P,Q),R):-true |
exec(P,R1),exec(Q,R2),
and.result{R1 R2,R).
exec(P,R):-not.sys(P) |
reduce(P,Body),exec(Bady,R).
exec(P, R):-sys{P) | sys_exe{P,R).

The notion of "success™ and “failure” appears in this
two argument meta-interpreter. Here *success” means
that the given goals are all processed successfully. *fail-
ure” occors when system goal is failed or' there are no
commitable clauses in “reduce.” We assume “Body™ is
instantiated to “false” in the latter case.

Note that the notion of “suspension” or “deadlock”
cannot be detected by this meta-interpreter. When “sus-
pension” occurs in “sys.exe” or “reduce,” the execution
of that predicate simply suspends.

3.2 Three argument meta-interpreter

We sometimes want to manage processes dynam-
ically at execution time. Therefore, we introduce a
“scheduling queue” explicitly in cur meta-interproter.
The “continunation” of the program was explicit in the
meta-circular interpreter in 3-Lisp. We have thought
that the “scheduling queue” acts as a “continuation™ in
GHC. The meta-interpreter which contains a scheduling
queue inside the meta-interpreter becomes the following
three argument “sxec.”

exec(T,T,R):-true | R=success.
exec{[true | H], T,R):-true | exec(H,T,R).
exec([false | H], T,R):-true | R=failure.
exec([P |], T,R):-not_sys(P) |
reduce(P, T NT),exec(H NT,R).
exec([P | H], T,R):-sys(P) |
sys_exe{P,T,NT),exec(H,NT,R).

The first two arguments of "exec”, “H" and “T," ex-
press the scheduling queue in Difference list form. The
use of Difference list for expressing scheduling queune was
originally invented by Shapiro [Shapiro 83]. We remove
a goal from the top of the queue. Then “reduce” or
“sys_exe” processes that goal. In the former case, the
goal is decomposed to sub-goals and they are simply ap-
pended to the tail of the scheduling queue.

We should note that -goals are processed “sequen-
tially” becanse we have introduced a scheduling queue,
Thus far, we assumed that the goal execution was
suspended when “suspension™ occurred in “reduce” or
“gys_exe.” However, it means the suspension of the whole

776

system in this interpreter. Therefore, we have modi-
fied the meaning of "“reduce” slightly,. We assume that
suspended goals are simply appended to the tail of the
scheduling queue.

However, we should note that the introduction of the
scheduling queue does not mean that the whole werld
becomes sequential. It simply means that the enqueving
and dequeuing processes just become sequential and the
rest of the system can still work in parallel.

3.3 Five argument meta-interpreter

Then we introduce two more arguments, “MaxRC”
and “RC," to control “reduction count.” This kind of
enhancement is motivated by [Foster 87). We assume
that “reduction count”™ corresponds to the “computation
time" in conventional systems. “MaxRC" shows the limit
of the reduction count allowed in that “exec.” *ROC"
gshows the current reduction count.

exec{ T, TR, MaxRC,RC):-true |
R=success(RC).

exec([true | H], T,R MaxRC RC):-true |
exec(H,T,R,MaxRC,RC).

exec([false | H],T,R,MaxRG,RC):-true |
R=failure(RC).

exec([P | H],T,R.MaxRC RC):-
not_sys(P),MaxRC>=RC |
reduce(P, T NT,RC,RC1),
exec(H,NT,R,MaxRC,RC1).

exec([P | H],T,R,MaxRC,RC):-
sys(P),MaxRC>=RC |
sys.exe(P, T,NT,RC,RC1),
exec{H,NT, R MaxRC,RC1).

exec([P | H],T,R,MaxRC, RC):-
MaxRC<RC|
R=count_over(RC).

Notice that “reduce”™ or “sys_exe” increments “RC" by
one when the actual computation takes place. However,
"RC" is not incremented when suspended.

3.4 Cornparison with Hirsch's work

As mentioned before, Hirsch has proposed various
enhanced meta-interpreters, such as “trusted,” “failsafe,”
“interruptible” and “controlled” ones. Though mokiva-
‘tions are mutually different, there s some correspondence
between our approach and Hirsch's approach.

Cur initial 4-line program corresponds to Hirsch's
“rusted” meta-interpreter. Our two-drgument meta-
interpreter corresponds to his “failsafe® one. However,
there is no correspondence to the three argument or the
five argument meta-interpreters. Since “interruptible”
and “controllable” meta-interpreters have been invented
for their programming system, we are not too interested
in them and have developed our meta-interpreters to the
other direction.

We should note that our approach is consistent
with Hirsch’s one. It is possible to add Hirsch's exten-
sion to our three argurnent or the five argument meta-
interpreters. Though we do not mention these approach
in this paper and concentrate on “reflective” operations,
the examples of such approaches can be seen in [Tanaka
BEb].

Hirsch & Safra has also emphasized the use of par-
tial evaluation or source-to-source program transforma-
tion technigues to increase the execution efficiency of en-
hanced meta-interpreters [Hirsch 86, Safra 86]. These
techniques are also applicable to our extensions [Kohda
88].

4. Variable managing meta-interpreter

Varieties of meta-interpreters are deseribed in the
previous section. However, compared with Lisp, these
meta-interpreters are “incomplete” since variables can
be “shared” in our meta-interpreter and accessed from
outside. It means that the execution of a goal can be
influenced by the outside environment.

Consider the following example, which is adapted
from [Ueda 86].

- exec(X=0,R1)exec(X=1R2),X=2.

Assume that “exec” iz the two argument meta-interpret-
er, explained before. The shared variable X becomes 0, if
the first “exec” is executed first. If the second “exec” is
executed first, “X” becomes 1. In both cases, the whole
system fails when X =2 is executed. This example shows
that even the “[ailsafe” meta-interpreter may fail, in the
case it has shared variables. To realize “complete™ meta-
interpreters, meta-interpreters must have the facility to
manage its own local variable envircnment. Therefore,
we consider the meta-interpreter which explicitly handles
variables,

The toplevel description of a variable managing
meta-interpreter can be expressed as follows:

m.ghe([FGoal | In],Out):-FGoal#halt |
transfer(FGoal NGoal,1,Id, Env),
H=[NGoal [T],
exec(H,T,Id,Mem,Res),
memory([enter{Env) | Mem],[),
print_resuli{Res NGoal,Outl),
merge{Outl,Out2,0ut),
m.ghe{In,Cut2).

m.ghe([halt | In],Out):~true |
Cut=[halted).

The toplevel goal “m-ghe(In,Out)” has two argu-
ments. “In™ is the input from the user and “Out” denotes
the output to the user. Every time it accepts the goal
"FGoal” from the input, it generates four processes, i.e.,
“transfer,” “exec,” “memory” and “print_result” pro-
cesses. Among these, “transfer” process is a relatively
short-live process. The remaining three processes live

long until the execution of the given goal “FGoal” is com-
pleted. Figure 1 shows the snapshot how processes are
generated in accordance with the user’s input.

‘Out

m=g hc

Res

axeac

| M em

Imﬂmnrr[|I‘.ﬂ.l-md'!.'jl'|

Figure 1 Creation of processes in m_ghe

The “transfer” generates “NGoal® from “FGoal” In
“M(3oal,” every variable has been replaced by special
identification numbers which have the format "@num-
ber.” The third argument of “transfer” specifies the ini-
tial identification number of variables. The fourth ar-
gument “Id” denotes the identification number which
should be assigned mext. For example, when “transfer”
allocated numbers from 1 to n, n+1 is assigned to “Id."
The fifth argument “Env” contains the correspondence
between the identification number and its value, i.e., the
correspondence is kept as a list of “(@number, value)”
tuples in “Env.” Example of these forms are shown be-

lowr:

(@1, undf) . the value of @1 is undefined
(@2, 100) ... the value of @2 is the integer 100
(@3, ref(@2)) ... the value of @3 is the reference

pointer to variable @2

For example, when the predieate “transfer” is given
FGoal “exam([H | T],H),” it generates NGoal “exam([@1|
@2),@1)." At that time, “Env” becomes [(@1, undf)(@2,
undf)] and is entered to “memory.”

The “exec” predicate can be described as follows:

exec|T,T,Id, Mem,Res):-true |
Res=success,Mem=[].

exec([false | H|,T,Id,Mem,Res):- true |
Res=failure Mem=[].

exec([true | H],T,1d,Mem,Res}:- true |
exec(H,T,Jd, Mem,Res).

exec([P | H],T,1d,Mem,Res):-not_sys(P) |
reduce(P,T,NT,Id,Id1,Mem Memi),
exec(H,NT,Id1,Mem1,Res).

exec([P | H],T,Id,Mem,Res):-sys(P) |
sys_exe(P,T,NT ,Mem,Mem1),
exec(H,NT,Id Mem]l,Res).

i

This “exec” is almost the same as before, except that
it has a “channel” to “memory” as its fourth argument.
When the value of a variable is needed in “reduce” or
“sys_exe,” it explicitly sends messages to “memory.” The
third argument of “exec” conbalns the identification num-
ber which should be assigned next in “reduce.” The fifth
argument contains the exeeution resulf.

The following is the definition of predicate “reduce.”

reduce(P,T,NT,Id,Jd1,Mem,NewMem):- true |
clauses{F,FClauses),
reaolve({P,FClauses, Body,Id, Id1,
Mem,Newhem),
T=[Body | NT].

resolve(P,[FClanse | Cs],Body,Id, Id1,Mem, Mem2):-
true [
transfer{ FClanse, NClause,Id, Id Temp, LeEnv),
try commit(P,NClause Body,LoEnv Res,
Mem,Mem1),
resolvel(Hes,P,Cs, Body,Id, IdTemp,1d1,
Memi Mem2),
resolve(P,|],Body,1d,Id1,Mem NewMem):- true |
Body=P,
MNewhlem=Mem,
Id1=Id.
resolvel({success,., .-, 1d Temp,Id1,
Meml,Mem2):- true |
Id1=Id Temp,
Memi=Meml.
resolvel{ Res,P,Cs,Body,Id, 1d1 Mem] , Mem2}:-
Res#suceess |
resolve(F,Cs,Body,Id, Id1,Meml, Mem2).

In the predicate “reduce,” “clauses” constructs the list
of potentially unifisble clauses “FClauses” from the
given goal “P. “resalve” selects one “F'Clause” from
“FClanses” and instantiates “Body” to the body of that
“FClause.” “Body" is appended to the tail “T" of the
queue and “NT" denotes the new tail of the quene.

The predicate “resolve™ picks np one "FClauge” from
“FClauses.” “transfer” generates “NClause” and local
environment “LoEnv® from “FClause.” "transfer” pred-
icate iz exactly the same as before except that “NClause”
is created instead of “NGoal” “trycommit’ checks
whether “NClause” can be committed for the given goal
“P? or not. “Res” is instantiated to “success,” “failure
* or “suspension,” depending on the result. We should
note that “failure” is handled as exactly same as “sus-
pension” in this meta-interpreter. Though it is certdinly
possible to distinguish “failure” from “suspension,” we
omit that beeanse of implementation simplicity.

The predicate “resolvel” sets “Id1” and “Mem2" of
“resolve,” if try_commit is succeeded. Otherwise it calls
“resolve” again. -

The predicate “try_commit” can be described as fol-
lowa:

T8

try.commit{Goal,{Head:-G | B),Body,
LoEnv,Res,Mem,NewMem):- true |
head_unification{Goal,Head, LoEnv,LaEnv1,
Resl Mem,Mem1}),
solve_guard(G,LoEnv1,LoEnv2,Res2),
and_result{Resl Res2,Hes3),
eotmmit{Resd,B,Body LoEnv2, Res,
Mem1 Newhlem).

B oE o8

G oo om 1
Variable @1 Atow Campsund Tarm
Varfable 32 32 —ral(§l) | 88 = seam 22 = Tarw
Atom 13apEs e aucceas/failere | “fallure
Coagoued Term | suspansios failurs Becoap. b anify
1

commit(success,B,Body, LoEnv Res,
Mem,NewMem):- true |
Mem=[enter({LoEnv) | NewMem],
Body=B,
Res=success,
:ummit[Reﬂ,-H,,Rea,Mm,Nechm}f—
Resifsuccess |
NewMem=Msm,
Res=—suspension.

This “try_commit” predicate performs head unification
between the goal and the head of the candidate clause,
golves the guard of the candidate clause, and tries to
"commit® this clause if "head_unification” and “guards”
are solved successfully.

I[n “head unification” predicate, “Goal® and “Head”
expresses two terms which should be unified. “LoEnv”
is the local environment of the clause. The new local en-
vironment after head _unification is stored in “Lokavl.”
The result of head unification is put to “Res.” “Mem®
and “Meml1” are used for keeping the communication to
“nlEer-”

“solve_guard” tries to solve the given guard "G
using the local environmenl “LoEnv.” “Res2® and
“LoEnv2" stores the evaluation result and new local en-
vironment, respectively.

We should note that head_unification does not gen-
erate any global bindings in "memory.” It only refers to
the global bindings. The local environment of a candi-
date clause becomes global only after it is committed.

The definition of “head unification” is shown below:

head.unification(Goal,Head, LoEnv,NewLoEnv,
Res,Mem,NewMem):-true |
Mem=[deref{ Goal, GV) | Mem1],
deref(Head, LV, LoEny),
b unify(GV,LV LoEnv, NewLoEnv, Res,
Memi1,NewMem).

“head.unification” performs the dereferencing of
“Goal” and “Head” first. Dereferencing means to get
the contents of variables by Lracing the reference chain.
Notice that the dereferencing of the Goal is realized by
sending message to “memory.” On the other hand, the
dereferencing of “Head” is realized by calling “deref”
predicate directly. The “h_unify” predicate is executed
after the dereferencing. The following Table 1 shows how
“h_unify"” works.

Table 1 Head unification table

Here, for example, “@2 <- ref{@1)" means to “replace
the value of @2 to the reference pointer to @1."

The transformation from the head unification table
to the actual code is quite straightforward. The code
shown below is the program fragment of “h_unify.” Only
part of “h-unify” is shown here because of space limita-
tion.

h_unify(GV, LV, LoEnv,NewLoEnv, Res,
Mem, NewhMem):-
variable{G V),nonvariable(LV) |
Hes=suspend,
NewLoEnv=LoEnv,
Mewhlem=Mem.
h_unify(GV, LV LoEnv, NewLoEnv, Res,
Mem,NewMem):- '
variable(GV), variable{LV) |
assign({LV,ref(GV),LoEnv,NewLoEnv),
Res=success,
NewMem=Mem.

Next, we describe “sys.exe” predicate. This predi-
cate executes the system predicates existing in the bady
part of the clause. Here we show the description of uni-
fication and addition.

sys_exe((X=Y),T,NT,Mem,Newhem):- true |
Mem=[unify(X,Y ,Res) | NewMem],
sys_exel (Res,(X=Y),T ,NT).

sys.exe(+(Z,20Y), T.NT,Mem,NewMem):- true |
Mem=[deref(X,XV),derefl ¥,YV) | Meml),
add(Z,XV, YV, Meml,NewMem,Res),
sys_exel(Res +(Z,X,Y),T,NT).

add(Z,XV,YV,Mem NewMem,Res):-
ready_arg(XV,YV) |
Ad:=XV+YV,
Mem=[unify(Z,Ad,Res) | NewMem].
add(Z,XV, YV, Mem, Newhlem, Res):-
notready_arg(XV,YV) |
Res=suspend,
Newhem=Mem.

sys.exel(success, T NT):- true |
NT=T.
sys.exel (suspend,G,T,NT):- true |

T=[G | NTJ.

Memory part which manages the bindings of global
variables can be described as follows: '

memory([deref(Term, Value) | NMem],Db):- true |
derel{ Term, Value,Db),
memory(NMem,Db).

memoty([enter(Env) | NMem],Db):- true |
append{Env,Db,NDb},
memory(NMem,NDb).

memory{[unify(X,Y,Res) | NMem],Db):- true |
unification(X,Y ,Res,Db,NDb),
memory(NMem,NDb}.

memory([|.Db):- true | true.

You may notice that this “memory” is very intelli-
gent. Instead of accepting low level primitives, such as
read and write, it receives high level operations, such as
“Jeref” “enter” and “unify.” The access to this “mem-
ory” happens when (1) dereferencing of goal variables
are requested by head unification, (2) a clause is com-
mitted and local environment becomes global by “enter”

operation and (3) system predicates at the body part are

execubed,

The “deref” and “enter” predicates are described as
follows:

deref(Term, Value,Db):-
variable(Term) |
search_cell(Term,Cont,Db),
derefl({Term,Cont, Value, Db).
deref{ Term, Value,Db]:-
nonvariable(Term) |
Value=Term.

derefl(_,ref{C), Value, Db):-true |
deref{C, Value,Db).
derefl|_,Cont, Value Db):-
Contref(_) |
Value=Cont,

The simplest list structure is assumed here for global
database. The more complicated and the more efficient
representation of the database are of course possible.
Various optimization techniques, such as the use of Dif-
farence list and the optimizations of database update and
retrieval are also possible.

The unification is described as follows:

unifieation(X, Y, Res, Db, NewDb):- true |
deref{ X, XV,Db},
deref{Y, YV, Db},
unify{ XV, ¥V, Res,Db,NewDb).

779

The dereferencing of two arguments, X and Y, takes place
first and the “unify” predicate is called to perform uni-
fication. The following Table 2 shows how “unification”
is carried out.

Variable 71 Atom Cospeard Tors
Yariabla &2 i — refldl) | 82 = ates 82 = Tarm
Atos @l ~ atss success/ failurn Failure

Compound Tars | @l — Tara fallure Detonp. b anily

Table 2 Unification table

For example, the following is a part of code fragments
for “unify”:

unify{¥, ¥, Res, Db, NewDb):-
variable(X),
nonvariable(Y) |
assign({ X, Y Db, NewDb),
Res=success,

unify(X,Y,Res, Db, NewDb):-
variable(X),
variable(Y) |
assign{ X,ref(Y),Db,NewDb),
Rez=sueceess.

unifi{ X, Y, Res, Db NewDhb):-
atomic({2),
atomie(Y),
=Y |
Res=success,
MewDb=Db.

5. Preliminary implementation results

Preliminary Implementations have heen carried out
to evaluate the feasibility of our meta-interpreters. We
have measured the execution time of the following two
goals for various types of meta-interpreters.

exec{append([a,b,c,d,e fgh,ijklmn.op,
q,7,8,t,u,v,w,x,¥,2],[end],5))

mc{qﬁw "‘.[33 6,1,8,4,9 =5r?1!5}j

Hers, “append” is the usual append program and “gsort”
iz the quicksort program.

We have tried two kinds of implementations. The
first implementation is done on PSI-II Machine [Nakashi-
ma 87). Since the current version of PSL-II only un-
derstands ESP [Chikayama 84], we used GEC compiler
which compiles GHC programs to ESF. Our GHC com-
piler is a slightly modified version of Ueda’s Compiler
[Ueda 85b] which compiles GHC programs to Prolog.
Though ESP is an object-oriented dialect of Prolog, we
did not use object-oriented nature of ESP in an essential
MAanner.

780

The measured execution time is shown in Table 3.

fxec 1 [Boec_2 |Beee_ 3 |Bwec_3° | Exoc_d
appead 1088 55 T 346G T4
qaart B335 (- @30 20873 8315 | 20168
(enit: msoc)

Table 3 The measured execution time on PSI-II

Here, Exec_1 denotes the simplest 4-line meta-interpret-
er. We have written the “reduce” predicate in GHC.
Enxec2 denotes the two argument meta-interpreter shown
in Section 3.1. Exec.d is the three argument meta-
interpreter, shown in Section 3.2, This interpreter
includes the scheduling quene. Exec3’ is alsa the
three argument meta-interpreter. The difference is that
we have used depth-first scheduling algerithm, instead
of breadth-first scheduling algorithm used in Exec_3.
Exec 4 is 2 variable managing meta_interpreter as shown
in Section 4. Slightly different to Section 4, we have
assumed depth-first scheduling algorithm to increase ex-
ecution efficiency.

Our observations are as follows:

(1) Exec 2 iz approximately three or five times slower
than Exec_l.

(2} In the case of “append,” Exec_3 is as fast as Exec ?.
However, Exec 3 is much slower than Exec? in
the case of “gqsori.” This seems to come from the
breadth-first scheduling algerithm we adopt. H we
use depth-first scheduling algorithm, the three argu-
ment meta-interpreter becomes as fast as Exec_2, as
shewn in Exec 3.

(3) Exec.4 is a little bit slower than Exec 3'. However,
it seems that variable management is not too much
overhead for the meta-interpreter comparing with its
merits.

In this implementation, GHC programs must be com-
piled to ESP programs before execution. Since the ex-
ecution speed depends on how GHC programs are com-
piled, we have felt that it is very diffieult to make the
fair comparison of these interpreters. For example, the
execution speed of Exec 1 highly depends on whether the
"reduce” predicate is written in GHC or in ESP,

- Therefore, the second implementation has been tried
on Sequent 5-81 (Symmetry) using PDSS [ICOT s8],
which is the GHC systemn written in C. Because PDSS is
directly written in C without using ESP or Prolog, we can
make the fair comparisons of varicus meta-interpreters.

The measured execution time on Sequent 5-81 is
shown in Takle 4,

Brec__1 | Boeo_2 |Emec_3 | Ewae_3° | Exec_d
ppand i =l 890 E50 T020
116 2740 145 nm [mEn
L LI
qeort L3 W1 T100 850§ 17T
190 BAT0 | 21598 B9 | sTem ! '""]
reductioss

Table 4 The measured execution time on 8-81

In this table, upper rows show the execution time mea-
sured in “msec” and lower rows show the measured
“number of reductions,” though the former is approxi-
mately proportional to the latter.

If we compare Table 4 with Table 3, we notice that
Execl is much faster in 5-81. The relative speed of
Exec 4, compared with Exec.3 or Exec.3’, is a little
slower in 5-81. However, it does not seem to be the big
difference between two. In summary, though our impie-
mentation method is very primitive and many optimiza-
tions are possible on our interpreters from now on, these
measurements seem to show the feasibility of variable

- managing meta-interpreters.

6. Reflective operations in GHC

Implementing various reflective operations, such as
seen in [Weyhrauch 80, Smith 84, Maes 86, Tanaka 83a,
Watanabe 88], is not too difficult, once we get the en-
hanced meta-interpreter. We use the following seven ar-
gument “exec” in this section,

exec(H,T,Id, Mem,Res, MaxRC,RC)

Here, the first two arguments show the scheduling queue,
the third is the initial identification number, the fourth
is the communieation channel to “memory,” the fifth is
the variable which receives the computation result, the
sixth keeps the maximum reduction count allowed to this
“exec” and the seventh is the current reduction count.
Though we omit the program for this seven argument
“exec,” it can easily be constructed by combining various
meta-interprefers, explained before.

There is no notion of job pricrity in this “exec.” We
sometimes need to executt goals urgently. Therefore, we
also introduce the “express queue” to execute “express
goals” which have the form, “G@exp.” This can be re-
alized by adding two more arguments, “EH” and “BET*,
which correspond to the express queue, to the seven ar-
gument “exec”. The follewing two definitions deseribe
the transition between the seven argument “exec” and
nine argument “axec

exec([G@exp | H],T,1d,Mem, Res,MaxRC,RC)

= true | .

exec([G | ET],ET,H, T,Id, Mem, Res,MaxRC,RC).
exec(ET,ET,H,T,Id, Mem Res, MaxRC,RC)

- true |
exec(H,T,Id,Mem,Res, MaxRC,RC).

If we come across the express goal, we simply call the
nine argument “exec.” The nine argument “exec” exe-
cutes express goals first, and the reduced goals are also
entered to the express queue. If the express queue be-
comes empty, we simply return to the normal speed, ie.,
seven argument “exec.”

The next thing is to realize the reflective opera-
tions. Here, we consider six kinds of reflective operations,
ie., "get.q,” “putq,” “getre,” “putre,” “get_env® and
“put_env.” “get_q” gets the current scheduling queue of
“axec.” “put_q” resets the current scheduling queue to
the given argument. Similacly, “get rc" and “put_rc” op-
erate on “MaxRC” and “RC," “get_env” and “put.env”
to the variable binding environrnent.

Since we already have got these as an internal state
of the enhanced meta-interpreter, the implementations
of these operations are fairly easy.

exec([get.q(NH,NT) | EHL,ETH,T,
Id,Mem,Res,MaxRC RC):- true |

RC1 := RC+1,
NH=H,
NT =T,

exec(EE,ET,H,T,1d,Mem,Res,MaxRC,RC1).
exec([put_q(NH,NT) | EHL,ET,H,T,

1d,Mem,Res, MaxRC, RC) - true |

RCL ;= RC+1,

exec[EH,ET,NH,NT,Id,Mam,R&s,Ma.xRC.RCl}.

“get.r¢” and “put_rc” can be implemenied similarly. In
the case of “gat_env” and “put.env,” they send the ex-
press message to “memory” and they are processed in
“memory.”

6.1 Reflective programming example 1:
reduction count control

We show an example which uses these reflective op-
erations. This example shows the program which checks
the current reduction count of “exec” and changes if,
if the remaining reduction count is fewer than 100 re-
ductions. The expected effect is gained by running
“check_rc@®exp® goal together with user goals in "exec.”

check.re - true |
get_xe(MaxRC,RC),
RestRC := MaxRC-RC,

check({MaxRC, RestRC).
check({MaxRC,RestRC) :- 100>RestRC |

input{ AddRC),

NRC := MaxRC+AddRC,

putrc(NRC),

getq(H rT:':

T=[check_rc@exp | NT],

781

put.q{H,NT).
check{MaxRC,RestRC) :- 100=<RestRC |
get-q(H,T),
T=[check _re@exp | NT),
put.q(HNT).

When “check re@exp” goal is executed, the system goes
into the "expresa” state. In “express” state, we can as-
sume that the normal execution of goals are “frozen.”
In *express" state, “check rc” tries to get “MaxRC™ and
current “RC.” Then it computes the remaining reduction
count “HestRC.” In the case “RestRC" is less than 100,
it gets “AddRC® from the user, computes “NRC," stores
this number as the new “MaxRC" of the system, and
returns to the normal state after adding “checkrc@exp”
goal to the tail of the current scheduling quene.

6.2 Reflective programming example 2:
garbage collection

Next example of reflective programming is the pro-
gram which use “get_env® and “put.env.”

As described in Section 4, environment has been im-
plemented as a list of (@number, value) tuples. When
new clauses are committed or system predicates are exe-
cuted, new variable bindings are entered to “memory.” It
means that environment increases mdnotonously, as the
computation advances. Therefore, we sometimes want to
“garbage collect” this environment.

The following program shows the “garbage collec-
tion" program. By inserting “ge@exp” goal to the ap-
propriate place of the user program, garbage collection
takes place when that goal is executed.

- ge - true |
" getg(H,T),
get_env{Env),
do.pge(H,T Env, NH,NT , NEnv),
put_g{NH,NT),
put_env(MNEnv).

do_ge([G | H],T,Env,NH,NT,NEnv):-true |
deref all{G,NG,Env,Envl),
NHE=[NG | NH1],
do_ge(H,T,Env,NHL,NT,Env),
do_merze{Envl,Env2,NEnv).

do_ge(T,T,Env,NH,NT NEnv) :-true |
NH=NT,
NEnv=[].

In this program, “deref.all” performs the dereferencing
of all variables in the given goal “G” using “Env.” It
creates the new goal “NG" and its new local environment
“Pay]” by cutting off the unnecessary tuples from “Env.”
These new local environments are merged by “do_merge”
to create “NEnv.”

8.3 Reflective programming example 3:

782

load balancing

Thus far “exec™ has been used to express “user pro-
cess.” However, it can be considered as a kind of “virtual
processor” since it has a scheduling quene and a channel
to “memory.” This view of “exec” opens the new world.
By connecting “exec” and “memory” to the architecture
we would like to constract, we can make 2 “virtual dis-
tributed computer” [Tanaka 86b).

Most processor usually has I/0. Therefore, it is con-
venient if "exec” has “input” and “output” in order to
see “exec” as a “virtual processor.” We use following
“exec” in this section.

exec(H,T,Id, Mem,In,Out MaxRC,RC)

Here, “In" denotes the input to this “exec” and “Cut™
denotes the oufput. We assume thab user goals can be
entered from “Input” and the goals which have postfix
“fout” are sent out flom "Output.”

We define the following ring-connected distributed
computer as an example.

m_ghe(In):-true |

exec(H1,T1,1,Mem1,C1,C2,.,0),
exec(H2,T2,2 Mem2,C2,C3,.,0),
exec(H3,T3,3,Mem3,C3,C4,.,0),
exec(H4,T4,4 Memd, C4,C5,.,0),
merge(In,C5,C1),

merged([Meml,Mem2 Mem3, Memd], Mem),
memory(Mem,[]).

memary

Figure 2 Hing-connected distributed computer

Az shown in Figure 2, four processors are connected
to the uni-directed ring. The output of one processor
is connected to the input of the other processor. The
memory channels are all merged and connected to one
"memory” process. {Figure 2 Is a little bit simplified in
this point.)

It is possible to consider the “load balancing” prob-
lem on the top of these virtual computers using reflec-
tive operations, Load balancing can be programmed as
shown below, If we enter “load.balance@exp™ goal from
the “Input" of “m ghe," this geal aufomatically cireu-
lates among processors and performs load balancing.

load balance:-true |
get.q(H,T),
length({H, TN},
balance(N,H,T).

balance(N,H,T):-
N=100 |
H:=N-100,
throw_out(X,H,T,NH,NT),
load balance@exp@out,
put_g(NE,NT},
balance(N.H,T):-
=<100]
load balance@exp@out.

When “load_balanceflexp” is executed, the current
scheduling queue of the processor are taken ocut and the
length of the queue is computed. If it is longer than 100,
“throw_ out(X H, T NH,NT)" picks up X excessive goals
from the scheduling queve (H,T), throws these goals out
and enters remaining goals to “NH” and “NT" in Differ-
ence list form. “load_balance@exp” goal is also thrown
out to inveke load balancing to other processors.

If it is shorter than 100, it simply forwards the
“load_balance@exp” goal to output.

7. Conclusion

Starting from the simple 4-line self-description of
GHC, we have made the stepwise enhancement to this
meta-interpreter. A meta-interpreter which has variable
management facility is also described. Though the at-
tempts to manage variable bindings in meta-interpreters
have already been tried by [Hirata 87) and [Koshimura
87], we believe that this is the ficst attempt which tries
to show the relations of meta-interpreters and reflective
operations in parallel logic languages.

We used parallel logic language GHC in this paper.
Hewever, we imagine that the same kinds of arguments
are also possible in Prolog. We feel that the use of the
parallel logic programming language makes the program-
ming easier. In our langnage, we can create processes
dypamically and the communication between processes
can be expressed as streams. These language features
helped to express the communication between the execu-
tion block and the memory block in an elegant manner.

Various reflective operations in GHC are also de-
scribed. Implementations of these operations are shown
using the enhanced meta-interpreters. Application ex-
amples of these reflective operations are also shown.
Since our primary objective was to show the feasibility
of reflective operations, we kept our meta-interpreters as
simple as possible. Therefore, we cut off unessential im-
plementation techniques. For example, we omitted the
detection of deadlock and used busywaiting strategy for
suspended goals. We do not think that techniques used
in this paper directly scale to a distributed environment,
although these are the research topic we currently work-
ing for [Tanaka 88b)].

We also admit that, in a sense, reflective operations
are very dangerous because we can easily access and
change the internal state of the system. However, we can
say that privileged users must have these capabilities for
advanced system control. Our interest currently exists
in examining the possibilities of the reflective operations
in GHC.

These reflective operations are defined as an ad hoc
manner. However, the more sophisticated handling of
reflective operations and security considerations shouid
be the topic which should be considered later, along with
the problem of reflective tower.

8. Acknowledgments

This research has been carried out as a part of the
Fifth Generation Computer Project of Japan. I would
like to express my thanks to Fumnio Matono and Yukiko
Ohta for their useful comments and discussions. Funio
Matona also worked for the actual implementation and
the performance evaluation. Thanks also go to Youji
Kohda and Hiroyasu Sugano for their usuful discussions,
Also thanks to Tashio Kitagawa, Hajime Enomoto and
Keichi Furukawa for their encouragements and giving me
the opportunity to pursue this research.

a2, References

[Bowen 82] K. Bowen and R. Kowalski, Amalgamating
Language and Metalangnage in Logic Programming,
Logic Programming, pp.153-172, Academic Press,
London, 1982

[Bowen 83] D.L. Bowen et al, DECsystem-10 Prolog
User's Manual, University of Edinburgh, 1983

[Chikayama 84] T. Chikayama, Uniqus Features of ESP,
in Proc. of the International Conference on Fifth
Generation Computer Systems 1984, pp.202-208,
ICOT, 1984

[Clark 84] K. Clark and 5. Gregory, Notes on Systems
Programming in Parlog, in Proc. of the Interna-
tional Conference on Fifth Generation Computer
Systems 1834, pp.299-306, ICOT, 1984

[Clark 85) K. Clark and S. Gregory, PARLOG, Parallel
Programming in Logic, Research Report DOC 84/4,
Dept. of Computing, Imperial College of Science
and Technelogy, Revised 1985

[Foster 87] 1. Foster, Logic Operating Systems, Design
Issues, in Proc. of the Fourth International Confer-
ence on Logic Programming, Vol.2, pp.910-926, MIT
Press, May L9587

[Hirata 87] M. Hirata, Parallel List Processing Language
Oc and its Self-description, Computer Software,
Vol.4, No.3, pp.41-84, 1987 (in Japanese)

[Hirsch 86] M. Hirsch, W. Silverman and E. Shapiro,
Layers of Protection and Control in the Logix Sys-
tem, Weizmann Institute of Science Technical Re-
port C588-19, 1986

[ICOT 88] ICOT, PDSS User’s manual, Version 1.5,
ICOT, 1988 (in Japaness)

783

[[Kohda 88] Y. Kohda and J. Tanaka, Deriving & Compi-
lation Method for Parallel Logic Languages, Logic
Programming .'87, LNCS 315, Springer-Verlag, pp.
80-04, 1988

[Koshimura 87] M. Koshimura, Description of Full GHC
by Flat GHC, ICOT internal memorandum, PSH-I-
A-KL1-598, 1987 (in Japanese)

[Kurusawe 86] P. Kurusawe, How to Invent a Prolog
Mackine, in Proc. of Third International Confer-
ence on Logic Programming, LNCS-225, pp.138-148,
Springer-Verlag, 19536

[Maes 86] P. Maes, Reflection in an Objeci-Oriented
Language, in Preprints of the Workshop on Met-
alevel Architectures and Reflection, Alghero-Sardin-
ia, October 1986

[Makashima 87] H. Nakashima and K. Nakajima, Hard-
ware Architecture of the Sequential Inference Ma-
chine: PSI-IL in Proc. of 1987 Symposium on Logic
Programming, San Francisco, pp.104=113, 1887

[Safra 86] 5. Safra and E. Shapiro, Meta Interpreters for
Real, in Proc. of IFIP 88, pp.271-278, 1988

[Shapiro 83] E. Shapiro, A Subset of Concurrent Prolog
and Its Interpreter, ICOT, Technical Report TH-
003, January 1983

[Smith &4] B.C. Smith, Reflection and Semantics in Lisp,
in Proc. of 11th POPL, ACM, Salt Lake City, Utah,
pp.23-356, 1984

[Tanaka 86a] J. Tandla et al., Guarded Horn Clauses and
Experiences with Parallel Logic Programming, in
Proc. of FICC '86, ACM, Dallas, Texas, pp.848-
854, November 1986

[Tanaka 88b] J. Tanaka et al., Distributed Implementa-
tion of FGHC -Toward the Realization of Multi-FST
System-, [COT, Technical Report TR-159, March
1986

[Tanaka 8§8a] J. Tanaka, Metaprogramming and Reflec-
tion, In bit, Vol.20, No.5, pp.41-50, May 1988 (in
Japanese)

[Tanaka 88b] J. Tanaka, A Simple Programming System
Written in GHC and Its Reflective Operations, in
Proc. of The Logic Programming Conference 88,
ICOT, Tokyo, pp.143-1449, April 1988

[Ueda 85a] K. Ueda, Guarded Horn Clauses, ICOT Tech-
nical Report, TR-103, 1985

[Ueda 85b] K. Ueda and T. Chikayama, Concurrent Pro-
log Compiler on Top of Prolog, in Proc. of 1985
Symposivm on Logic Programming, Boston, pp.119-
126, 1985

[Ueda 86] K. Ueda, Guarded Horn Clauses, Doctor
of Engineering Thesis, Information Engineering
Course, University of Tokyo, 1986

{Watanabe 88] T. Watanabe and A. Yonezawa, Reflec-
tion in an Object-Oriented Concurrent Language,
in Proc. of ACM Conf. on OQOPSLA, San Diego,
September 1988)

[Weyhrauch 80] R. Weyhrauch R, Prolegomena to a The-
ory of Mechanized Formal Heasoning. In Artificial
Intelligence 13, pp.133-170, 1880

