FROCEEDINGS OF THE INTERNATIONAL CONFERENCE
ON FIFTH GEMERATION COMPUTER SYSTEMS 1988,
edited by ICOT. © ICOT, 1988

Design

of a Concurrent

7535

e for

Distributed Artificial Intelligence

Jacques FERBER

LAFORLA, Tour 45

Jean-Pierre BRIOT

LITP & Rank Xerox France

Undversité Parls VI
4, Place Jussien
75252 Paris Cedex 05
FRANCE
litp! {jf briot @ inria.inria. fr.uuep

ABSTRACT

This paper presénts the design of 8 concurrent language for knowledge
representation, MERING IV. It will be used as a support for
Distributed Astificial Intelligence (DAT) gpplications, whera problam
solving is achieved by a soclery of “intelligent” agents. Its architecre
is based on a mulii-layered approach: the lowest layer is a multi-
pracessor machine, and the highest layer is a multi-agent descripion
lunguage. The system incorporates reflective shilities, a descripion
Ianguage, deemons facilities for declarative programming. All these
features are unified into 8 genesal model of computation based on
concurrent active objects and message passing. The model s fully
distributed 1o reflect the underlying paralle]l machine on which it is
currently under development.

1 Introduction

This paper presents a Distributed Artificial Intelligence (DAI) project,
currenily under progress at University of Paris &, Owur project consisis
in & multi-layered and open-ended [Ferber 84] sctor language far
knowledge representation, called MERING IV, which will be used for
describing multi-agent systems.

In this paper we will focus on the MERING IV architecture. The firs
ianguage level is 8 very simple actor language based on the actor
model of compatation [Hewitt 761 [Agha 86]. The second level
extends this basic model with higher Tevel ming constructs
anid reflective capabilitics, The third level provides rules and dacmans
to deseribe decision making process.

“The hardware layer is a multiprocessor machine (currently a network of
worksiations is osed for prototyping, this winter we start a
multprocessor implementation on the [PSC/2 Intel hypercobe).

The MERING TV language is to be used as an experimental basis for
varipus kinds of organizmtion models to manage distributed problem
splving, such as the Contract Net [Smith 81). We aim at providing a
testbed for such experiments as dous the MACE system [Gasser eL al,
87]. In this paper we intend 1o describe the architecre of our model,
and 1o point out our design decisions.

2 Design decisions

21 Modelling a social organization for sobving problen:s

In order i model intelligent systems which could solve Tiuarnam tasks,
the Al discipline has generally considered human activity 45 & startng
point, Thus taditionsl Al systems intend to model 4 single processing
apent with knowladge, expertise and regsonning abilittes, The world
mechanism, where several, possibly conflicting, viewpoints can
coexist is one of the maost commen selution for managng larpe and
complex knowledge bases. Parallclism i5 also introduced in such
systems in order 1o speed up rEASONRING PrOCESS. Buot these systems
remain one-piece and sequential by Aymane.

A more recent approach, and currently very active feld of research,
considers intelligent activity as & cocperation of a collection of
multiple active agents. An intelligent system is modelled through a
community of experts cooperating 1o achigve a goal. The study of
humman societies gives us various models of such communities. We
belicve that it is easier to study and model the activity of a social
community than the imelligent activity of one man. This feld is
currently known as Distributed Anificial Intelligence (DAL [DAT 871D,
and many contributions have already been mado in berms of models of
architecturss (hierarchical relations between the agents, communication
pretocols,.) [Minsky 86], [Kornfeld and Hewint £0), [Hewin and
Delong 821, [Smith 81].

232 & system for social metaphors pxperiments

We started a project at University ana:'nuﬁmﬁ:sisuand implement a
gysizm for DAL This system is made of three parts:

« The language component, MERING IV, is an actor orientzd moxde] of
hoth knowledge representation and concurrent compulation.

= The multi-agent component is based on a system, called PALADIN,
which provides a support for the definition of social organizations
{e.g. the Contract Met [Smith 811), using an intentional model of
communications based on "spesch acts" theory.

« The implementation component is compasad of @ virtual machine
for distributed computation, currently simulated in LE_LISP and
whose prototype iz under development on multi-processcs hardware
{Tntel IPSCTHZ).

23 Crilerias -
Here are the main requirements for our sysiem:

» simplicity, uniformity and modularity: the system should be as
gimiple and uniform as possible in erms of concepls required.
Thercfore we rely on the object-oriented programming (OOF}
metaphor which also provides modularity. Any kind of element of
the system is called an object. The objects communicate through
exchange of messages. Objects and messages are the two
fundamental concepts of OOF.

+ conenrrency and distribution: concumency is not only a speedup
opportunity but the expression of concurrent activilies in a
comenunity of processing agents. Bvery agent in the simulated
community has a local knowledge and performs some locat
processing. The computation maodel and the implementation must
malch these requirements. Therefore we chosc the actor maodel of
compuiation as a basic model for its clean concurrency model,
Concurrency will be implemenied by real ‘parallelism on a
multiprocessor distributed maching (an hypercube caonfiguration).

» multi-agent testbed envivonment: the main goal of the project is 1o
design an environment to specify and simulate the activity of a
community of agents which are anionomous objects communicating

756

by message passing. Agents can be geen as mini problem solvers
with their own local knowledge and 2 set of facilites for interacting
“with other agents. Each agent can only communicate with a sobsat
of the whole agent family, ealled its aoquaintances on which it has
S0Mme representation (beliefi),

* reflective ability: the system shouold be able o model its structure
and cxecution. This iz achiaved throwgh reflection, i.e. by
associating a mela-ohject to every object. The meta-chject represents
both the structnral pant of the objoct and its execution mechanism,

Reflection is used for describing implementation detils, monitosing
objects activities, defining higher behavioural constmacts, ele...

2.4 Design decisions

It is now well known that ohject-oriented programming (O0P) is a
good mesns to design high level and modolsr systems, However the
use of this metaphor for parallelism is still & younger activity,
although it is a very active research field [OOCP §7], Our sysiem
relics on an COCP model, where everyihing is an active object which
can communicate with other objects throngh exchange of m:sslz}gv.-.s.
We will stay with the object erminclogy along the paper even if the
basic compatation model is the actor model, and the system iz aimed
at describing active agents,

The three aspects of an object

In MERIMNG [V each object can be seen from three different points of
view:

24.1

* & structural aspect: an object can he considered as a specific data
strecture relased o 3 general medel which is an abstract definition of
the structure itsell. We call it the structural aspect of ohjects.

* @ conceptual aspect: objects can be used for representing extemal
things and events, using frame based represenlations possessing
slots representing properties and binary relations, Slots are complate
objects and can hold slots as well. In fact all atributes of an object
are represented as slots,

* a5 an agent: objects can send and receive messages, and behave in a
social way by interacting and cooperating with ather agents.

These three aspects ans totally unified into the model.

2.4.2 Layered architecture

The system architecture is hased on a multi-layered approach,

2.43 Level 02 multiprocessor implementation

Our target machine is a moli-processor machine, either a 32 nodes
Intel [PSC hypercube machine or a network of transputers. We are
currently designing a virnal meching to support the execoton of the
level 1 assembly language. We are now using a prototype viral
machine implemented in LE_LISP on a Sun workstation,

244 Level 1: an actor assembly lanpuage

We selected the sctor model of compatation [Hewiwt 76] as the
foundation of the level 1 language. This choice was dictaied by the
necessity of a simple and ¢léan kernal model to express concurrent
cxcoution of aclive enuties,

Level 1 is the lowest language level in the system. It is directly
ranskyied into virtual maching instructions. The primitive part af level
1 consists in a set of rock bottom objects (numbers, strings,
bocleans...) and the comesponding primitive operations on these low-
level ohjects, ie. simple arithmetics {+, *...) predicates (=, =, <..)
and conditionals (if).

Level 1 supperts definition of simple objects {they are called
executors) and message passing operations amomg them. At this level
every mransmission is unidirectional, i.c. without eny reply.
Bidirectional and non rrivial compuiziions are expressed through the
use of continuations (objects to whom the reply will be sent and
which will canry on the computation) [Hewit 76]. At level 1 every
comtinuation is made explict.

Level 2: a programming language

The level 2 language augments the underlying layer with higher level
constructs such as functional application, description and abstraction
capabilities, programming environment modeles, snd reflective
abilities.

24.5

To define elaborate computation at level 1 the user shonld explicitly
describe every step of computation in terms of & chain of continuation
objects, Level 2 will give the user higher constructs which will be
compiled in terms of explicit continuation handling. For instance,
functicnal programming is made possible at thar level,

At level 2 every object belongs w0 a (concepiual) class, which is also
an abject. A description system expresses every object as the instance
of aclass. Objects defined "by hand" a1 lavel 1 can be fully described at
Tewel 2,

Reflection [Reflection 38] is introduced in the language in a distributed
(local} way by associating a meta-ghject 1o each object. A meta-object
gives a complete structural representation of the object it represents
(for instance, its mailqueue, its meszage handler...). ’

Finaily as a programming language, Programming environment
maodules (such a5 an exception mechanism) are defined at level 2. This
last part won't be discussed in this paper.

246 Level 3: a multi-agent description system

The level 3 introduces declarative constructs such as rules and
dacmons. It gives the ability 1 describe intelligent agents and their
behavioir as a set of rules which are fired either upon reception of
messages or modification of the internal state, These neles work on a
forward chaining bagis, Rules and dasemons are used for defining
knowledge based agents whose behaviour is based on an intentional
cantent (i.e. goals, plans) related 4o their local knowledge and specific
competences. Such agents are part of the PALADIN sysiem [Ferber &7]
and defined using MERING IV,

3 The first layer: the basic execution model

3l The actor model of computation

‘The model we adopted for our kernel language is based on the actor
model of computation [Hewill 76], and whaose firse representative
programming language was the PLASMA language [Smith and Hewitt
75]. Notice that cur bisic model of computation is closer 1o PLASMA,
extended towards concarrency, than the Agha's actor model [Agha B8],

311 The reaction principle

An object (called an actor in the model) represents a computational
cxpertise. The meaning of "computational” is quite general and may
cover arithmetic operations, knowledge processing, probilem solving,
ele... An object is requested 1o apply his expertise by sending him a
request communicatien, This communication may include
informations about the processing to be done,

The expertise of an object could be decampesed into 2 knowledge pan
and a behavioural part.

* The knowledpe part is a sat of other ohjects it knows sboul (they are
called its acquaintances}, i.e. with which it can communicate,

Examgpiles of acquaintances are personal data bases, representations of
outside world entities, other objects he could distribute the work tw,

» The hehavioural part, also called a script, is the description of what
the ohject will do when receiving a message. The activity of an
abject starts npon reception of a message from enother ohject
(possibly himself) and triggers some actions.

A seript consists in a collection of methods, each being associated io 2
meszage pattern, a symbol called a selector. One (and only one)
method wifl be selected among them when accepling a message.
Selection is done by pattcrn matching on the ¢t of methods indexed
by the same selecior. Each method is defined as a set of actions,
Possible actions are performing primitive operations (for instance
arithmetics or tests), sending messages o known objects, and creating
new objects in order to delegate some computations to them.

Concurrency aspects
Here are the main charsceristics of the computation medel:

+ asynchronicity: the requests of computation are sent aspnchironously
from an ohject to another one, this means that none his W wait for
baoth to be ready for communication. This model comes from the
observalion of a postal service. A mail system buffers the
communications sent betwesn objects. This includes the routing
subsysiem (using interprocessor communication in a multiprocessor
implementation) and & distributed set of mailboxes, one per object.
The mesits of asynchronism and buffering are discussed in [Agha
£6), We chose asynchronicity as the kemel communication model
between entities, although we may express synchronous calls in
terms of asynclironicity and use of continuations at level 2,

JlL2

« concurrent processing of messages: there are two kinds of objects in
the langnage. Most objects are unserialized, ie. their will never
change their knowledge past (state). Thus unserialized objects may
process several messages concorrently. Serialized ([Hewitt and
Atkingon 79]) objects may change their knowledge part, thus they
need to process one message at a time. As we will see later, cell
objects are the only serialized objects in the language.

= arrival of messages; for serislized objects, incoming messages arc
ordered inte the receiver's mailbox which behaves as a queue. This
means that only one message at a time could reach the mailbox. The
protector of this assumption is called an arbiter {between two
CONCUITENE MESSages).

concurrent execution of actions: when accepting a maessage, a
method is selected and then executed. A method could be cxecuted
saquentially as a sequence of instructions or as an unordescd set of
actions cxccuted concurrently, The latter solution, which does not
limit the use of paralielicm, has been chosen. Sequentiality may be
expressed in the model through cansality (ns seen below),

non determinism: we reject assumptions such o8 sequential
execution of & method, we also reject assumptions on ordering
arrival of messages or actions becanss we intend io keep the model
as much opened as possible. However we won'l leave an unbounded
non determinism, hese are & fow restrictions.

- We assume the garanty of delivery, ie. every Imessage sent (o an
object will be accepted by-it in a finfte time (we don't consider here
a poszible rejection of 3 message in case of unrccognized message
pattern, leaving ermar managerment out of the scope of this paper).
This means thal (he achiter must be fir .

- We assume cawsality, .. an event created by another event cannot
aceur before its cause, This will be used at level 2 1o express
sequentiality a5 a chain of continuations representing the steps of
the comptation.

313 Advantapes

« simple and clean semantics: he modsl combines the advamages_ af
funciional programming (purity} and object-oriented programming

157

= inherent concurrency: there is no construct for adding pamalleclism o a
ﬁmﬁl}r based language, Concarrency is implicit and inherent o
m

s comcurrency of message processing: most ohjects, except cells, are
unserialized, i.e. their statc and script never change. As a
consequence they may process several messages concurrently and
may be freely copied among the processors. Serialized objects may
process only one message at a time,

« fluidity: computation is fully distributed among ebjects, who in turn
distribute it emong their acquainiances. The use of reply destinations
enhances fuidity of objects because an ohject computes only a
single step of a comptation and then defines the object which will
carry on the remaining computation.

» dispomibility: because of this fluidity and the absence of waiting
states, objects keep being ready for communications. Ths prncple
is fundamenial when we will define metaohjects at level 2,

3.1.4 Execulor objects

Exzecuotor objects are the pnmitive kind of objects at level 1. They

perfomm a simple and onique kind of processing, At level 2 we will

define more complex objects that could perform several kinds of
processing requests (for instance deposit or withdraw for a bank -
account), but at level 1 execulors may process only one pattern of

MESsALE.

Hese is a frsl example of a printer object which outputs (by calling a
primitive printout function) the object (expression) it receives.
This argument is prefixed by the print selector

idetine print-exacotor
{=»> (print Fexpr)
{printout “=> " Texprc)|)
where de£ine binds an object at top-level and (=>> ...} izan
capression defining an executor object. It could be activated by sending
& mesgagme:

{print-exweoutor <= (print "helle world"))

315 Continuation objects

Continuation objects are a special kind of cxccutor objects, Their
selector is always reply. They are so much used in the system that
there is a special definition expression for them. Here is the definition
of the previcus peinter as a continuation elject:

(duflpne printer
(=2 {Taxpr]
(printout

"m» " PRxprlll

The previous =>> mTow is replaced h]rla =2 grrow, and the r-pJ_.y
selector is implicit. Here is the taditional example of a factorial
computation in the continuation style:

(define factorlal
(=»> {ecall Inl
(LE (= Fm O

[?e <= EtﬁF:l{ 131
(self <= {call {1= ®na}}
(raply-te (=3 {?wv] [Pc <= (* *n FvIIDFIDH

The computation of {factorial n) is performad when n> 0 by
computing (factorial (1= n)}) whose result is sent o A
continuation which will multiply it with ?n and send this product to
the corrent continpation. {The values of 7n and o will be closured in
the continuation chject, dus to lexical scope discipline).

lraply-ts)

{factorial <= {call 10) (reply-to printer))

will print the value of factarial(10). The reply=to selecior indicates
the continuation (expressed as a reply-destination [Yonezawa etal. ga])
in A message.

758

3.1.6 Primitive objects and operations

The level 1 languape incledes low level objects sech as numbers and
primifive classes. Level 1 also defines primitive operations on low
level objects, and conditionals (=, <, », if, cond ...).They
will be directly implemented in the virtual machine for efficlency
Teasqns,

ALT Cells for side effects

With executors and continuatione, the model is side effect free and may
take advantage of parallelism. However it should be able to model
changeable states, Call objects are introduced for this pupose, Cells
are the only objeces where side effect may ke place. A cell object is
serialized becauss ils state may change during ume. A cell object
recognizes two message pallerns, set and get:

[a=cel]l <= |aest 10)]
[a-zall <= (get) (ceply-to printar))

To ensure the sequentiality of these two reguests an the cell {we want
o consult the contents of the cell AFTER its updating), we will use
continmeEtions:

fa—cell <= (et 10}

(Eaply=Ca
{=> {2dunmy]
fa-oell <= [gat] {reply-to printec}l})}

Mote that the ?dummy parameter indicates that the value received is
not significant (and is not used)., A higher level mechanism for
concurrent ransactions with a cell is proposed at leval 2, Celle will be
used a8 the foundation for slots introduced also at level 2,

3L1LA From level 1 to lovel 2

Level 1 is not 3 language intended for end users beeguse of its low
kevel descriptive and programming constructs, but its main purpose is
fo serve as a target for the compiler from level 2 downto level 1. The
architecture of levels 1 and 2 is, in that respect, analog to usual actor
architectures, for inswance the Acore / Pract duality [Manning 871,

4 The second layer: the programming
language

Level 2 gives 1o programmer a higher level programming language.
Level 2 is somehow analog to the ABCL{ language [Yonczawa et al.
86) [OOCP 871 in terms of level constructs.

4.1 Implicit continsations and functional constructs

At level 1 every continuation nesds to be explicitaly given, Level 2
introduces implicit continuations, The <<= message passing form
mdicates an implicit contimuation, For instance:

{printer <= (reply {+ (a-cell <<= (getl}] 21})
is equivalent e
(a-call <= [gat)

{Eeply-to
I== {?wal) {printer <= (reply (+ Tval 213131}

There iz a cempilation of those constructs into level 1, with a
mechanism analog to the Seripter compiler [Lisberman 831 or Acore
compiler [Manning §7].

We may now defing the factorial function in the following way (hy
using descriptions which will be introduced lates):

{define fact
(naw Functilon

mathods
[=>> [call a)
(1f (= %n 0]

ireply |* Pn {fact {1- Zm)db}bIID)

We consider that {fact 10) isequivalent o (fact <= (call
10)). Remark that a function ohject, may aceept other combinations
than just reply requests,

4.2 Transactions with cells

Cell objects are dedicated at isolating and encapsulating side effecs.
Actsally, the serialization mechanism is not sufficient for
encapsulating ransactions with cells. Suppose that we define the
incrementation frot cutside the cell (typically in an object owning a
cell as ane of its acquaintances);

(a-gall <= {gee)
(ceply-to
l=> {?vall {a=cell <= (set (L+ Fwvallljil)

Buttwo iner requests sent to the same cell may overlap and yield an
mvalid value, Thus, we need 1o lock a=cell unil the transaction
{computation requests) i finished, to avoid any inerference with
another trameaction. This is done by sending & claim message o the
cell.

The idea is that a locked cell will still accept any messages except
anolher claim request. In such a case, the second cla im request has (o
wait {the message is kept in a quene belonging 1o the cell and will be
processed afler unlocking). Here is an example of such incrementation:

fa=cell <= {(clalm)
iraply-to
{=> [*dummy)
ja=call <= [gwt)
[reply-to
{=> {Fwal)
ta=cell <= (set [1+ Pval))
i{raply-to
{=> [Pdammy)
la=cell <= {release-claim)liil)idy)

The level 2 provides for a primitive constract called let-claim
ingpired from the elaim echnigues used in concurrent sccesses of data
bases [Deen 771, which generates the above chain of continuation,
Then the previous code can be written &t the level 2 as:

{let=claim [a-gell)
la=call <= (set {1+ Ra-calllhl)

where Ba-call isequivalent 1o {a-cell <<= (get)). Hereis
the definition with descriptions (zee below for the definition of
descriptions) of 3 counter 1o illustrate this new construct (the character
*~*i5 used for constraining the type of variables):

|define counter
lnew class
{super Object)
lwith
|contenta - Humbarh)
[methoda
{=2> {incc)
{ist-claim ([contents)
lcontente <= (et {+ @contents 11311))
(=>> (resec)
[let=-clalm {contments)
{contents <= (&t 0])))
{=2> {consult) {reply-to ?a}
(Pe «= (reply Gcontentallldl)

In case of embedded transactions on cells, there could be redundant
claim requests resulting in deadlocks. To alleviaie this we propose (o
pass knewledge about already claimed colls to all messages sent inside
the scope of this claim/release-claim ransaction.

43 Classes and descriptions
431 Classes and Instances

The MERING IV model is based on a classfinsiance distinction, with
subtle bul major differences, Whereas in standard OOF a class is the
structural model of an instance, a class in MERING IV is an
intensional absiraction of a set of objecis, Le, the conceplual madel of
an alyject,

Classes are also objects and are instances of higher order classes, called
hyperclasses, We have not chosen the word “metaclasses” for soch
entities, becanse the metaclass construct in OOF is more concerned
with the strectural definition of classes, where hyperclasses are used
for representing general propertics of classes, A hyperclass is no mone
thai an intensional definition of a set of classes, i.e. a class of classes.
These classes are conceptual instances of hyperclasses. The cless and
instance terminclogy is enly used within the concepiual aspect of
objects, which is in contrast with the usual abstract dala type
CONCEpLan.

Ohbjects representation capabilities consist in a collection of slots that
deseribe the chareterdstics of real entities, There are two different kinds
af slots, Following the KEE terminalogy, we will call them own slots
and member stots, Own shots represent individual attributes, whercas
member slots represent general properties of individuals. For instance
the mge of Foin can be described by an own slot which is specific to
the John object. But the fact that all persons {and more genesally any
concrete thing) can have sn age, can be represented by a member slots
associated to the class Perscon {of more generally the class
concreteThing). But classes are objecis by themselves, and can
have own shots as well, For instance the fact dht the cat species is a
nomerous species is a property of the Cat class, not of its individuals,

Thus, member slots are described ab the class leved, and instantiated as
own slots at the instance level. Tn order 1o remain homogensous, in
MERING TV slots are complete objects: member slols are considered as
snbelasses of the S1ot class, and own slots are instances of member
slots,

For practical reasons, member slois and own slots are located in
differant zones of an object; member slots are sitated in a zone called
member part and own slots in a zone called own part. In a given class
., all elements of the member part are classes, and are instantiated a5
instances in the own part of C instances. For instance, the age
attribute of person is represented as a member slot Person. age (Le.
a subelass of S1ot) in the class Person, and the age attriboe of
John is represented a3 an instance John . age of Personage and
situated in the own part of the JOHM instance. The following disgram
shows the relationship between member shots and own slots:

a class: Parsan

4.3.2 Descriptions

Diescriptions are expressions which are used for the definition and
retrieval of objects in the system. Thos descriptions denote objects.
Syntactically, descriptions are expressions of the form:

(W T

ikey; Eq3 .. Exg) --s (ke¥n Eni -- Enil]

where ¢ is an expression which reduces to a class, key] . . keyy ame
keywords (e.g. with, methods, def, e}, and B4 j amc general
expressions, For instance:

{defire John
[naw Parson
Hi'i'l:‘l‘l 23

aga =

{jeb = {a Job

Iwikh

{earnings = 20000
[with {Onit = Dollarhdiiddilbd

759

iz a description of somebody whose age is 23 and eams 20000 dollars.
By evalusting this description, it is possible to create an chject
comrasponding to this description:

inew pAarsan {with

vss 1) = §<a parson : obj-234>

Classes cen be defined by descriptions. For instance, the definition of
the class Ferson can be defined this way:

ldeling Parson
(i Class

{gupar Objact)

|wich-membar—slots
lage (new NumaricalSlok))
{fole (new Slot

[with .
(range = Jobl]i}i1]

A description is a level 2 construct, which is transtated into level 1
message passing. For ingtance, the description of the sbove class
Peraon i tansiormed into the level 1 expression:

{0bject <= ([subclass)
ireply-to
{=> [Fall
iGlobalWarld <= {HasCwn ‘*Person PToll)
{HumericalSlot <= |subclass)
{reply-to
[=3 (Za1})
{70l <= {(HasMemberSloz ‘aga 7eli})M)
i5lot <= subclass
{reply=to
[=> (7=2)
[20k <= (HasMembarSlot 'job 2sd))
[7a2 <= (SetValus ‘range Jablki1)11k)

Nete that the construction of the age and joi slots are concurrently
hanidled,

4.4 Refection

Reflection is the ability for 2 system w model itself in terms of static
description (by accessing 1o a representation of itself) and dynamic
execution {by controlling the context of its execution). The goal of
reflection, as defined by [Smith 827, is to define inteliipent programs
capable of reasoning about and act upon themselves, Reflection is not
restricted to statfe (siroctural} description as in some description
sysiems but extended to dynamic control by allowing meta-entities to
moniter the activity of entities. Thiz simple mechanism is inlensively
uged at the second and thind level of the language s 4 basic mechanism
for dynamically redefine object strociure and system organization,
planning object activitics, etc...

Az in 3-KRS [Maes 87], every object has a meta-object which is its
representation at the mets-level, Ag meta-objects are objects, they can
themselves be represented at the meta-meta-level by meta-meia
abjects. This leads o a virually infinite tower of meta-objects. In
arder 1o remain finite, meta-objects are crented in a liey way, ie. by
creating them only when needed. Meta-objects and objects are causally
rzlated in such a way that all operations made al the meta-level have an
impact to the structure and the behaviour of the basic-level objects,

The basic concept of object reflection developped in 3-KRS has been
extended in two directions:

»in the direction of the classfinstance model of object oriented
languages (note: 3-KRS doss not distinguish between classes and
instances, Thus there 35 just a denvation ink which 15 used for bath
inheriance and instanciation), This extension has yielded a new
niotion of metacissses, which iz different from the standard notion of
metaclasses developped in Smallialk-like object orientad languages.

+ in the direction of concarrent programming in order to cope with the
definition of paralle]l message interpretation at the meta-level.

We will use the Smith's notation [Smith §2]: for any object O, TO
gives the mea-object of O, and 1O yields its referent. When O s a
meta-ochject, then 10 gives the basic level object O ropresents.

760

Objects and meta-ohjects are selated in such a way that for any object
O and (¥, and any transformation T from @ o © {where O is the sat
of all objects), the following formulas hold:

1) 0 =0
i To=0 = 0=l0
3 TCN@) = (TTHTC)

The 1) and 2) formulas show that reffication (the process of going
from objects to meta-chjscts) and denotation (the process of going
fram the represeniation to the refenens) are inverss operations; the 3)
formula shows that all operations done at the metz-level are caosally
cennected 1o pperations done at the baste level. Furthermore, it shows
that reification is & morphism between basic level elements (o meta-
level clements,

Static refTection

In MERING IV, a8 in 3-KRS, all objects have a related meta-object.
For instance, the ohject John:

tdefine John
(e Person
iwith
fage = 23}
{iob = Ecimntistii)}

4.4.1

has & corresponding meta-object, which is an instance of the class
Meta-Instance which is the ctass that describes the basic sirucore
of all the normal instances ([] indicates a lise):

TJﬂ'rln -
(new Metalnastance
iwith

[nama = “Jokna)

[iza = Person}

[meta = Zall)

[zt = ¥lJehn) j; the referent of John

{eontest = GlobalMetaWorld)

[own5lots = [(new Person.age

{with
{source = Jahn)
[Carget = 23}
(localname = "aga))
{new Person. job
[with

{asurce = Jahn)
(targer = Sclencist)
|Lacalnafe = "Jobli) 13

II'IS;-‘JEEWIB'UEI'!II = [.aa] } i} massages

0oc

Slots of the meta-object TJohn are descriptions of the internal
struciure of the object John. For instance, the ref and mata slots of
John describes the referent and meta link of John, not of TFohn,

In order 1o i:nplmmi the reflection principle into a class/instance
medel, the basic model of instancefelass/metactass analysad in [Briot
and Cointe B7] had 10 be modified in the following way;

= instances meta-ohjects are instances of the class Meta-Enstance.
* ¢clazses meta-objects are instances of the class Meta=Clags,

For instance, if John is an instance of the class Paraon, TJohn is
an instance of the class Meta-Instance, and TPerson isan

instance of the class Meta-Class, The following diagram ustrates
the situation:

One can see that CLASS is the class of all classes, whereas Mata—~
Class is the class that describes all the metz-objects that reprasent
classes, In order 1o give a brief account of the underlying strocture, the
following figure shows the relations between the root objects:
Object,Class, Meta=0bject, Mata-Instance and Meta—
Clzse, Most meta-instances are only virally present, i.e. they ars
not created by the system, but the general behaviour takes them into
accoamnt, and they can be created atany time if the system needs them,

Eind-al InatanoE-o

[supar)

4.4.1 Dynamic reflection

Dynamic reflection iz the sbility for a process 1o représent iis own
behaviour at the mets-level. In MERING IV, ransmissions can be
represented at the meta-lovel as the sending of 2 speciltc message
(handleMessage) o the receivers meta-object, whent the argument
of the message i an instance of the class Communicat Lon:

Tih = (£ a1 .. an} &) =
(A <= Umﬂd'.ﬁl!ta:;gq
{oew Communication
{with
(messageSelector = f)
{conponents = [al..an}}
(sender = Sglf)
(esntinuation = Tr_']};]]

The overall mechanism can therefore be represented in the language
ilsc:l.t‘_m the meta-level, For instance, the class Meta-Instanoe
contains the methods handleMessage and interpretMessage

which is the definition, in the language itself, of the real
computational methods that are used for managing communications:

[defing Matalnstance
[aew Class
{supar Metalbject)

[methods
{=3> (handlemessage %o~{a Communicatlern])
(mezeageBuffer <= [Add Te}})
{=r> (interpretMessage
Pe~{a comnunication
{with
(maszsagedelector = 7aml)
(mozsageComponentas = T1)
{g&ndar = Taxp
{eentinvatlion = Zconcjll)
{let {{mach (self <<= (lockup Zselj]})
{if meth

[meth <= (apply 7?1 7e))
{errorlandler <w
{InvalidMathod Tael Zeljiiiln

Obviously, these meta communications are anly created when nesded,
for instance when the user wants control over the activity process of

an object {or 2 set of ohjects),

5. The third layer: rules as daemons

"The third level consists in a mult-agent description language, adding
reasoning capabilities to the hasic actor model of computation. This
level is not actually separated from the second level: it merely adds
new classes and entities o the system, in order 1o accomodate for
declarative reasoning nsing special kind of daemons. Their use in
problem solving with aciors has been shown for "open systems”
[Komfeld and Hewitt 80). Dacmons madelize the acwual effect of &
rule, by declaring the conditens for which a deemon has o be
triggared and its effect on the object it looks upon,

51 Definition of daemons
A daemon iz & tuple,
<InftialSiate, MexiState, Cont=

where fnifalStare and NexiSiate are deseriptions of two different states
of he contexieal entity, §e. the entity where an instance of a daemon
has been defined (i.e. the states of the Sel£ entity), and Cont isa
continuation. One can see a deemon as a kind of stale transition
describing an entity transformation. Whenever the contextual entity E
reaches the initial state 1S, the dsemaon is fired. It modifies the entity E
inte another state M3, the next state, and replies (o the continuation,
with the instance of the daemon itself as a value, The external syntax
of a dacmon is:

{Swhen
(nama <nama>)
{in <eatitys)
{with <zbate-description>)
[and <expressions:}
{then <state-description>)
[da <esntinuation—body>])

where <state-description> isa list of wiple:
[<attribute-name> = <value>]

where <walue> cgn either be a variable or an expression which
retums a value, and <expressions> is a list of expressions which
retums a boolean vatoe, The <name> of the deemon is not used by the

system, and serves only for explanations and debugging purposes. All
proparties are optional. Here s an example of a daemon with no
contimuation:

[Suhen

[name adultp)
fin Person)
(with

fage = TR}
{and

(== 2x 18]
[ER

en
fadult = ¥%))}

which says that all persons having mose than 18 years old are adull
Its semantics can be fnformally described by the following sentence: Jff
I am a person and my age i greater or equal to 18, then [am wruly an
aachigly,

£ Insiallation of a daemon

A daerion is installed into an entity by setiing special links, called
probe links, into its slots, in order to propagate the valees into it.
Whenever 2 new valne is assigned 10 one of the slots, the dagmon is
fired, If the initial state condition i sedsfied, the new state Iz
propagated along the nextstate line, and the continuation is activaled,
2z showm in the following fgure:

Endidy Pratg - (]

Anisutes | lnks

K
-

Thus the two important messages & dasmon can respond (0 are £ire,
that fires the daemon, and install that sats up a daemon, Here is the
(simplified) version of the Daemon class:

Contineaiien

161

{define Dasmon
jnew Class
{super Object)
(with=-member-slots
(insideDf ~ Object)
{infcfalState -~ Statebescriptlon)
jconditions ~ Expression)
{nextState - Statebescriptlon)
{eent -~ Coptlpuation)
{slotslm ~ (& List (of Sloks)))
{slotstut =~ (a Llst {of Slots})}
{varlebles ~ {a List {of LocalVarlables}))]
methods
{mer [(lire)
{let {{eav [(BEinltlalState <<= (Checklh)}
{when (and env [@conditions <<= (Check)))
{BnextState <= ([(Perform env))
{fcustomer <= (reply salfllb)}
{=>» {ilnstall Zant]
[Broadcast Tx BEalotsIn
Ix <= (propagatele
(=» (7wl (self <= (Firellidl))
« 1K

Daemons can be installed at any tme, in order (o deseribe dynamic
aetivities, For instance, if an entity E receives a mestage from an
entity A asking to perform a specific wsk (for instance if A asks E
“recall me something™) when the entity E has seme specific status:

" (methods
(=%> (renind 7me Tsemethling ?statuos)
e 00
{with
{status = Pstatus))
[£-1-3
(?me <= [recall Tsomathing)))})

Thus when the object E receives the message {remind A E
aftatus), the deemon is installed on the slot st atua, checking for
equality with the value of $status. If the condition is satisfied, then
the message (recall 5) where S5 is the something 10 be recalled, 1s
senl 1o B,

6 Implementation issues

The architecture of our system i fully distributed to support this
medel. We will use a hypercube as a physical realization of thiz
distribution. We are eurrently designing a prototype of the system on 2
workstation, A prototype virtual machineg writen in LE_LISP defines
the support for Tevel 1 which is completed. We have guined experience
of a protatype implemeniation of ABCL/1 as a model for level 2. A
previons sequential model of level 3 has alse already been
implemented. This is now the time to unify all pieces of the puzzle in
a uniform manner (analog o Act2 as a first step towards a Prelude
system incorporating Actl, Ether and Omega), AN examples presented
in this paper have been tested on a prototype implementation,

The debugging issus is a very important isspe which has not been
touched yet in this paper, There is d growing activity in the domsain of
debugging concurrent object programs [Manning 87]. We except our
layered approach to improve the debugging scheme (a program should
be debugged at the definition level, not at the underlying execution
level) and the use of reflection to help fighting this huge task,

7 Related Work

We chose the actor metaphor for open systems initiated by C. Hewilt
[Hewitt and DeJong 82] as & major source of influence and inspiration,
and specially the design of actor systems along the Apiary architecture
[Hewitt B0] with Act] [Licherman 1983] [OOCP §7], Act2 [Theriault
£3] and Ael3 [Agha 86) [Manning 87].

The ABCL project [Yonezawa et al. 86] [OOCP 87] gave us a major
source of experience and ideas for the level 2 language.

762

Major works on reflection by B, $mith [Smith £2] and P. Maes [Pizes
&7] gave us the foundations to incorporate reflaction in level 2. Works
by [Brict and Cainte 87, [Ferber 87] [Ferber 88) gave us a good
expericnce on structural, procedural and concepiual reflection and its
application to knowledge programming. Following the work of P,
Maes on refllection in sequential object-oriented computation, these is
oW a growing activity in the feld of concurent execution, Mandala
[Furnkawa et al. 84] was one of the first concament langoages to
incorporale melaprogramming facilities. [Tanaka 877 and [Watanshe
and Yonezawa 88] are some represeniatives of the current activity, The
latter paper develops a model very close w ours, We thank A,
Yonezawa for communicating ws the latest regults of his project,

The Ontega language [Auardi and Simi 811 was & reference for our
deseription system. The idea of sprites proposed by W, Komnfeld
[Komfeld and Hewitt £0] has inspired ws the notion of dagmons in
objects at lovel 3,

The MACE systér is our main reference as 2 DAT system, we thank
Les Gasser for some discussions about evolotion of DAT systems.

The OrientB4/K system [Ishikawa and Tokoro 86) proposes a modsl
for concurrent knowledge programming. Although not direcily a
source of nspiration, it has shown us the feasibility of & concurrent
language dedicated to knowledpe repressnation.

8 ‘Conclusion

We presented the model of a system gimed at experimenting
Distributed Artificial Intelligence (DAT). Our model is based on a
notion of active objecis communicating throogh exchanges of
messeges, We focused on the impartant design decisions we made for
our model: actor style parallelism, importance of slots, reflection in
classfinstance systems and in concurrent object orfented systems, ¢,
A layered archilecture was presented in & bottom-pp manner and the
status of the comently ongoing implementation was reporied.

References

[Apha 86] G. Agha, "Actors - A Model of Coneurrent Computation
for Distributed Systems," MIT Press, 1986,

[Attardi and Simi 81) G. Attardi and M. Simi, "Scmantics of
Inheritance and Attribution in the Description Sysiem Omega," AL
Lab Memo N*542, MIT, Cambridge MA, USA, 1981

[Briot and Cointe B7] J-P. Briot and P, Cointe, "A Uniform Model for
Object-Oriented Using the Class Abstraction,” ITCAT'ET,
Milano, Italy, August 1987,

{DAT 87] "Distributed Artificizl Intelligence,” edited by M. M. Hubms,
Pitman - Morgan Kaafman, 1987,

[Deen 77] 5.0, Deen, "Fundamentals of Data Base Systems,” M
Millian Press, London, England, 1977,

[Ferber 84] I. Ferber, "Mering: An Open-Ended object oriented
I:;}Euse for knowledge representation” ECAI'S84, haly, September

[Ferber 87] J.Ferber, "Des Objets aux Agents: une Architecture
Sﬁﬂfy&e." Actes do 6tme colloque RFTA, Antibas, France, Movember
1987,

[Fesher £§] I. Ferber, "Conceptual Reflection and Actor Language,” in
[Reflection 8]

[Furukawa et al, 84] K, Funukawa et al., "Mandala: A Logic Based
Enowledge Programming System,” FGCS'84, ICOT, Tokyo, Japan,
1984,

[Gasser et al. 871 L., Gasser, C. Braganza and M. Herman, "MACE: A
Flexible Testbed for Distributed AI Research," Chaper 5 of [DAI 7],

[Hewitt 76] C. Hewitt, "Viewing Control Stroctures az Patterns of
Message Passing," Al Lab Memo N°410, MIT, Cambridge MA,
USA, December 1976,

[Hewitt and Atkinson 79] C. Hewilt and R, Atkinsen, "Specification
and Proof Techniques for Serializers,” TEEE Transactions on Software
Engineering, Vol. SE-5 N° 1, 1979,

[Hewite §0] C. Hewitt, "The Apiary Network Architecture for
Enowledgeable Sysiems,” Lisp Conference’80 , Stanford U, Palo
Al CA, USA, Angust 1980,

[Hewitt and Delong 82] C. Hewitt and P. Delang, *Open Systems,”
Al Lab Mema, MIT, Cambridge MA, USA, 1982,

[shikawa and Tokoso 86) Y. Ishikawa and M. Tokoro, "A Concursent
Object-Oriented Knowledge Represenmiion Language Orient34/K: Its
Features and Implementation,” COPSLA'SS, Sigplan Notices, Vol. 21
N*11, Movember 1986,)

[Komfeld and Hewiu 301 W, Karnfeld and C. Hewitt, “The Scientific
Community Metphor," AT Lab Memo N°641, MIT, Cambridge MA,
USA, 1980, .

[Licherman 83] H. Licherman, "An Object-Oriented Simulator for the
Apiary,” AATS3, Washington DC, USA, Awgust 1983,

[Mazes 871 P, Maes, "Concepis and Experiments in Computational
Reflection,” OOPSLA'S7, Sigplan Motices, Vol. 22 N°12, December
1987.

[Manning 87] C. Manning, "Acore: The Design of a Core Actor
Langoage and its Compiler,” Master Thesis, AT Lab, MIT, Cambridge
MaA, USA, T987. .

[Minsky 86] M. Minsky, The Society of Mind,* Basic Books, 1986,

[QOCE B7] "Object-Crriented Concorent Programming,” edited by
onezawa and M. Tokoro, MIT Press, 1987, .

[Reflection 83) "Meta-Level Architectures and Reflecton,” edited by
F. Maes and D Nardi, Nonth Holland, 1988,

[Smith 1] R, G. Smith, "A Framework for Distribited Problem
Solving,” UMI Rearch Press, Ann Arbor MI, USA, 1981.

[Smith and Hewiu 75) B. C. Smith and C. Hewitt, "A Plasma
Primer," draft, Al Lab, MIT, Campbridge MA, USA, September 1975.

[Smith 82] B.C. Smith, "Reflection and Seémantics in 8 Procedural
Language,” TR 272, CS Lab, MIT, Cambridge MA, USA, 1082,

[Tanaka 87] J. Tanaka, "Meta-Interpreters and Reflective Operations in
GHC," FGCS'E8, same volume,

[Walanabe and Yonczawa 88] T, Watanabe and A, Yonezawa,
“Reflection in an Object-Oriented Concurrent Language,” OOFPSLAEE
drafi, TTT, Tokyo, Japan, April 1985,

[Yonezawa 85] A. Yonezawa, "Al Parallelism and Programming,”
IFIF86, Dublin, Ireland, 1986,

[Yonczawa et al. B6) “Object-Crricnted Concurrent Programming in
ABCLf," A. Yonezawa, I-P. Briot and E. Shibayama, GOPSLA'SS,
Sigplan Notices, Val. 21 N°11, November 1985,

