PROCEEDINGS OF THE INTERNATIONAL CONFERENCE
ON FIFTH GENERATION COMPUTER SYSTEMS 1986,
edited by TCOT. & 1COT, 1938

745

ANDORRA PROLOG

AN INTEGRATION OF PROLOG AND COMMITTED CHOICE
LANGUAGES

Seif Haridi and Per Brand

Swedish Institute of Computer Science
Box 1263, 164 28 Kista, Sweden

ABSTRACT

The Andorra model is & paralle]l execution model of Prolog
that exploits the dependent and-parallelism and or-parallelism
inherent in Prolog programs. Andorra Prolog is a languapge
based on the Andorra model that is intended to subsume both
Prolog and the commined choice languages. The language,
in additdon to don’t know and don't care nondeterminizm,
supports control of or-parallel split, synchronisation on
variables, and selection of clauses. We present the
operational semantics of a subset of the language, and show
its applicability in the domain of committed choice
languages. We describe a method for communication
between objects by time-stamped messages, which is
suitable for expressing dismributed discrete event simulaton
applications. This method depends critically on the ability to
express don't know nondeterminism and thus cannot easily
be expressed in a commined choice language.

1 INTRODUCTION

In June 1987, during a Gigalips meeting in Stockholm,
D.H.D Warren pointed out that determinacy should be made
the basis for transparent exploitation of dependent and-
parallelism and or-parallelism in Prolog. He coined the name
Andorra for an execution model based on this idea. More
specifically, in the Andorra model of Prolog goals are
exccuted early and in and-parallel mode, as soon as they
become determinate, A goal is determinate if there is at most
one candidate clause that matches the goal, Determinate and-
parallel execution of goals continues wntil all the goals
remaining are nondeterminate, Then, as in standard Prolog,
the leftmost goal is selected for nondeterminate execution,
giving rise to a choice point. This choice point may be the
subject of or-parallel computation,

Shortly after the Gigalips meeting the authors realised that
the Andorra model can be the basis of a general
programming language integrating most of the capabilities of
Prolog as well as the committed cheice logic programming
languages (CCLs). This paper presents our perspective on
the possibilities in Andorra. The langnage that we envisage,
based on the Andorra model, is called Andorra Prolog,

We begin this paper by describing the Andorra model.
Unlike the execution model of the CCLs, the mode] does not
require any special annotation to control the parallelism, and
it does not reswict the langouage by requiring procedures o
generate only one solution. The Andorra model is similar 1o
P-Prolog (Yang 1986) in that determinacy is used as the key
to control and-paralielism. The more flexible control this
engenders gives the model many of the coroutining
characteristics of Nu-Prolog (Zobel 1987) (Maish 1988),
Prolog 11 (Colmeraver 1982), and SICS1us Prolog (Carlsson
and Widen 1988). In this respect, the pure Andorra model
can be viewed as extending Prolog.

This strategy works well for most Prolog! programs, and
for expressing many CCL applications that are described in
terms of communicating processes. However, it cannot
enforee o specific data-driven behaviour in the case of mixed
determinate and nondeterminate computations. Andorra
Prolog, as described in this paper, adds to Prolog (1) a
commit operator which is similar, but not identical, to the
cavalier commit used in certain or-parallel Prolog systems
{Lusk et. al. 1988); and (2) extra explicit control for
blocking goals which cannot be overridden by default
Andorra rules,

Andorra Prolog is expressive enough for the applications of
flat CCLs and Prolog. Moreover, it opens other novel
domaing where a combination of stream communication and
don't know nondeterminism is advantageous. A technique is
introduced, where this combination fs critical, for objects
communicating with time-stamped messages which can be
used in disributed discrete-event simulation (Misra 1988).
Orher potential relevant applications include parallel
constraint solving and communication protocel validation
{Gregory 1988).

In the rest of the paper, we go on to describe the additional
contred features needed to support the programming
language Andorra Prolog. Programming exemples typical
for CCLs are shown as well as examples that are beyond the
capabilifies of CCLs.

1We restrict ourselves in this paper to Prolog without hard side-cffests
like assert and retract and for the moment w Prolog without cut.

T46

Finally the issue of cut and other pruning operators in the
language is discussed. [t seems difficult to include cut with
Prolog semantics as part of the langoage, but weaker forms
are easier, in particular, an operator which in terms of or-
parallelism acts much like Prolog cut.

2 PURE ANDORERA MODEL

In this section we present an abstract description of the
Andorra execution model of Prolog. The following should
not be taken as an actual implementation of the model. Ler G
(with various subscripted forms) range over a list of atoms,
C over a list of clauses, S over a single clause, A and H over
single atoms and B over a list of bindings, A program is a set
of definite clanses. Each clause is of the form:
) H:- G, , Gp.

The body is a list of atoms (hat can be partitioned into a
prefix list G, - the guard, and a suffix list Gy, - the body,
where G, andfor Gy are possibly empty. Gy is a list of
special atoms, called here simple test constraints, such as

==/2 (test equality), >/2 (test greater than}, >=/2 (test greater
or equal), etc. Gy, is a lst of atoms.

Given a list of bindings B, a clause § as above, and an atom
A, 8 is a candidate clause of A wrt. B if A unifies with H
in the context B and G, is satisfiable in the context B#Byy
where B 4y is the additional bindings resulting from unifying
of A and H (x*y denotes the concatenation of the two lists %
and y). Observe that we consider a simple test like X>Y 1o

be satisfiable w.r.t. binding lists that do not contain values
forXorY.

Let A be an atom and C a list of clanses, we call a pair (A,C)
a goal w.rt the bindings B if C is the list of candidate
clauses of A w.r.t. B, The goal (A,C) is deferminate if C has
at most a single clause. We define a configuration to be
(Pd,B)y where Pd is a list of goals w.r.t. B and m is the
mode of the configuration which is either AND, OR, or
Failure. In the Andorra model a state of computation is
viewed abstractly as a tree, comprising nodes and arcs, Each
nade is labelled with a configuration. The execution model is
described by defining which operations are admissible on the
nodes of the tree. Initially the root of the wee is labelled with
the configuration (Pd,[]) anp where Pdp is the [ist of goais
of the atoms in the initial query. There are two principal
operations: (1) and-reduction 1o be preformed on nodes
whose configuration mode is AND, and (2) or-extension 1o
be performed on nodes whose configuration mode is OR.

2.1 And-Reduction

Given 2 node labelied with a configuration (Pd,B) s an
and-reduction is performed as follows:

(1) If there is a goal in Pd with an empty clause list (a
special case of determinate goal), the configuration is
changed from (PdB)snp to (Pd,B)paiinre- In this case we
have arrived to a failure node- with no further admissible
operations.

{2} If there are no determinate goals in Pd, the configuration
is changed from (Pd,B)yup to (Pd,Blgg. This node will
only be subject to or-extension in future transitions,

(3) Otherwise, there is at least one determinate goal with a
single candidate clause. Let Pd be Pdj*[P]*Pdf where P iz
such a goal and P is (A,[5]) where § iz
H:- Gy .Gp.

(3.1) Unification completion: A is unified with H in the
context B to give the output bindings By, Note that
unification is also performed partially in step (3.4) where the
number of candidate clauses is reduced.

{(3.2) Publicaton of output bindings: the binding list is
changed from B to B#B 4y if B and Bay are compatible
otherwise the configuration is changed into (Pd,B)pgjjuee- I
B#B 45 is compatible the following two steps are performed.
(3.3) Goal reduction: let Pdg be the list of goals of G, .Gy,
w.r.t B, Pd is changed into Pd; where Pd) is Pdj*Pdg+Pds.
(3.4) Candidate clanses reduction: the list of candidate
clauses for each goal in Pd; iz reduced w.rt the new binding
list B*B g p. Let the resulting goal list be Pda. The new

configuration is (Pd2,B*B a51) AnD-

The guard part is used in determinacy tests, so that in
step(3.3) it is not strictly necessary to include in G, those
congtraints that have already evalvated to true. We must
hewever include all constraints which are satisfiable but have
variable arguments (e.g. X<2). Note also that in step (3.4)
both the head and the guard of candidate clauses is used in
the reduction of the number of candidate clawses.

The point to be made here is that several and-reductions may
be performed in parallel on the same node if there are many
determinate goals in a configuration. Synchronisation might,
however, be needed when new goals are added to the goal
list, and when bindings are published. When several and-
reductions are done in parallel, is it necessary in step (3.3) to
check for possible incompatible bindings (in which case the
mode of the configuration is set to Failure). Within one and-
reduction there are also opportunities for simultaneous
operations. For example, candidate clause reductions can be
performed in parallel and publication of bindings, unification
completion and candidate clause reduction may all overlap,

2.2 Or-Extension

Goals in Andorra are kept ordered as shown in the previous

subsection, When or-extension is allowed the first goal is
always chosen,

Given a node labelled with a confi guration (Pd,B)yg, let P
be the first goal in Pd, i.e. Pd is [P]*Pd;, and P is (A,),

An or-extension operates on such a node only if C is

nonempty. Let C be [$]*C; where § has the form:
H:- Gt ¥ Gb.-

(1)} The configuration sbove is changed inte (Pd\B)ag.
where Pd’ is [(A,Cy)]*Pdy, i.e. the first candidate clanse is
removed from the first goal,

{2) The atom A is unified with the head H of § in the context
of B. If the unification is successful with the additional
output bindings B sp. 2 new node labelled by (Pd",B")anp
i3 added as the last child of the current node, where B i
B*B 55 and Pd" is Pds*Pd;. Pds is a list of goals for each
atom in (Gy, Gp) w.r.t the binding list B".

As can be seen the tree representing the computation grows
where each branch represents an or-parallel computation,
And-paralle] computation occurs exclusively in the leaves of
the tree. In the following when we talk informally about a
goal {A,C) we omit the list of clanses C.,

2.3 Examples

The Andorra execution model of Prolog maintaing the degree
of or-parallelism as found in or-parallel Prolog systems
(Lusk et. al 1988). For determinate logic programs, it
exhibits both stream and independent and-paralielism as
offered by the commitied cholee langoages with no
additional annotations. For example, given the query:
?- gsort([6,1.8,7,2,5], R.[0).

and the program shown below the three goals in the second
clanse of gsory'3 will exccute in parallel. The two gsore goals
will execnie independendy, where as the spiir goal will act as
producer of data to be consumed by the two gsort goals.

e 10k~ e
qsort([LXsXs).
qsort{[X|Xs],Ys,Zs) :-

split{Xs, x,S3,La),

qsort{Ss, Ys,[X|Us]),

gsort{Ls,Us.Zs).

sphit>.0.00.

split([E}Xs],X,[E|Ss].Ls) =
E<Xsplit{Xs,X,Ss,Ls).

spiit([E[Xs],X,Ss.[ElLs]) -
E>=X,8plit(Xs,X,Ss,Ls).

Networks of determinate processes communicating through
streams in a data-driven execution mode can easily be
programmed. The following shows a data driven execution
of infinite fibonacci sequences, where out_stream/] models
an output device that is triggersd by the arrival of commands
like write/! and ni:

T47

* n

go -fibenacel(F),out_terms(F,C).out_stream(0),
fibonaceifMs) - fib(1,0,Ms).
fib{N1,M2 [NI[Ns]) -
N3 iz N14+N2 fb{N2,N3,Ns).
out_termsi{[X]Xs],[(writa(X),n)|Cs]) :-
out_terms(Xs,O=).
out_terms([1,0).

The following contrived example shows how Andorra
computation coroutines between and-paraliel mode and or-
parallel mode.

xample (3 pmbdned and-or-paraiial axegui
Query: 7- lucky(N),gser([6,1,8.N,2,5],R.[D.
lucky(7}). lucky(3).

gsort/3 az defined in Example {1).

The Andorra computation for the above query is shown in
the following figure where the goals shown in bold are
determinate goals. (CNO) to (CNS) represent different
transitory configurations of the same node A in the execution
tree. At (CN4), we arrive at a configuration with no
reducible goals and switch lo or-mode in (CN5). (B:CNO)
shows the initial configuration of the first child node
resulting from an or-extension on A.

Figure (1) Andora comoutation
step configuration

ACND I_IUGW{N}JHH{EE-"rﬂuﬂszuﬂsﬁsﬂﬂm

AGNT [lucky(N),split([1,8,N,2,5],6,51,L1),
4s(S1.R.[6]U1]). as(L1.UL,[]) JanD

ACN2 [lucky(N),spllt([8,N,2,5],6,52,L1),
qs{[1152],R,[6]U1]), qs(L1,U1.[) lanp

ACN3 [lucky(N),split{[N,2,5),6.82,L2),
split{SEJ.SB,LELQS%EH.H,H 2],
qs(L2,Uz,[6]U1]).qs([8]L2],U1,0)]anp

ACN4 [lucky(N) sphit([M,2,5],6,52,L2),
8piitis2,1,53,L3), gs(S3,R.[1|U2]),
gs(L3.U2,[6|U1]),split{L2,8,54,L4),
qs(54,U1,[B|U<]),as{L4,U4,[} JaND

ACNS [lucky(N),split{N,2,5],6,82,L2),
split(S2,1,83,L3), qs{S3,R,[1]U2]),
gs{L3,UZ,[6|U1]),split(L2,B,54,L4),
gs(54,U1,[8JusD.as(L4,U4.]) lor

after or-extension

B:ICNO [split{[7,2,5),6,52,L2), split(S2,1,53,L3),

9s(S3,R,[1|U2]),.qs(L3,U2,[6]U1]),split{L2,8,54,L4),
qs{S4,U1,[B|U4]).qs(L4,U4.T) IAN';F-J }

T48

2.4 Fairness

We define an Andorra computation to be fair if an and-
reductionfor-extension is eventually performed on each lefi-
most goal in nodes not in failure-mode. The semantics as
defined above is unfair, A lefi-most nondeterminate goal
may be delayed indefinitely because other determinate goals
are performing nonterminating computation. This leads 1o
programs that terminate with failure under the noremal
execution model of Prolog but will loop if run by the
Andorra model as shown by the following example.

Query : - p(X),g(X).

p{X) - compute1(X). I compute1(X) eventually
binds Xtoa*/
p(X) - computa?{X). * compute2(X) eventually
binds Xtob ™/
q(c) - loop.
leop - loop.

It is equally easy to give examples of programs that would
loop under the normal execution model of Prolog, or for that
matter or-parallel Prolog, but will fail when executed by the
Andorra model. Nevertheless, we would like the Andorra
model to be fair,

The abswact execution model described in the previous
subsections can be extended to provide faimess by extending
a configuration to a triple (n,Pd,B) where n is initially a
given positive integer N. And-reduction on a non-left-most
goal decreases n. If n reaches zero the mode of the
configuratdon is changed o OR. And-reduction or or-
extension on the left-most goal will restore n 1o the given
value N. In the rest of the paper we assume that the Andorra
model is fair. The value N is definite but unknown,

3 ANDORRA PROLOG

We now identify a number of features lacking in the pure
Andorra model that we consider essential in a language and
which will provide for user-directed control, Qur intention is
to design a language that integrates smoothly and without
redundancy the capabilities of Prolog and a CCL like FCP,
FGHC or Flat Parlog. The proposed language in this section
is called Andorma Prolog.

3.1 Don't Care Nondeterminism

Consider the well-known binary merge definition written in
FGHC as shown below:

binary_merge([X|Xs],¥s,2s) -

true | Zs=[X|Zs1], binary_merge(Xs,Ys, Z51).
binary_merge(Xs,[¥|Ys],Zs) -

true | Zs=[¥]Zs1], binary_merge(Xs,¥s,Zs1).
binary_merge([].¥s.2s) - frue | Ys=Zs.

binary_merge(Xs,[].Zs} :- true | Xs=Zs.

Let us ignore the suspension mechanism of FGHC for the
time being, The goal

?- binary_merge([1(Xs],[21Y5],Zs).
is genuinely nondeterminate in that it may match the heads of
both the first and second clauss. Nevertheless only one of
the two clavses is selected for goal reduction. In the context
of the Andorra model, this cxample illustrates that in some
cases we need something more than just determinacy as the
basis of goal reduction. For this purpose we introduce a
form of symmetric cut in the language. This operator is
called commi. A clanse may have the form:

H:- Gt oy Gb'
where 'I' represents a commit operator occurring directly
after the test atoms G;. Commit 15 considered to be part of
the guard, but always ends the guard, so that any simple test
consiraints occorring after the commmit would be part of the
body. Commir curs the solutions occurring on all the
branches both to the left and right within the range of the
commit. Commit in the body is also allowed, but acts rather
differently and is not considered here (but see section).

Commitment will take effect only if the goals in G; can be
solved uniquely, i.e. there are no delayed goals in the lexical

scope of 'I'. Thus, glven the following schematic clauses
where G5 (i =1,2) are arbitrary list of atoms:

Example (8)
p¥.a)-X>=0,],Gq.
plb) - X =<0,|, Gp.

and, the query ?- ...,p(X.Y), where X is unbound, the
goals X>0 and X=<0 cannot be solved uniquely, and thus
the decision whether p(X,Y) can be and-reduced will be
made as if the commit operator were absent in the above
clauses, Now if X becomes bound, say to 0, we arrive at a
situation where without the commit we would have two
candidate clauses. The commit operator will force a choice,
and the goal p(0,Y) will be reduced using, arbitrarily, one of
the two candidate clauses.

To be more precise, given a list of bindings B, a clause S
that has a commit as above, and an atom A, & 15 a commir-
enabled candidate clause of A w.or.i. B, if A unifies with H
in the context B and G, is solvable in the context B*B 4
without any additional bindings. Now a goal (A,C) where C
ig the list of candidate clavses of A w.art some binding list
B, is commit-enabled if there is at least one commit-enabled
clause in C. A goal is reducible if it is either determinate or
commit-cnabled. In an and-reduction operation any reducible
goal can be chosen for goal reduction. If the goal is commit-
enzbled a single arbilrary commit-enabled clause is chosen
for reduction,

With this definition the following Andorra program and
FGHC program above will behave similarly when given the
query 7- q(X), X=b.

Andorrg FGHC
qla) - 1. qeX) - trua | X=a.
qlby-|. Q) - trua | X=b.

Mow consider the query

- peL Y)Y
where pf2 is defined as in Example (6) and let 1/2 be
nondeterminate if Y is unbound. In this case, the query can
only be or-extended. Two successive or-exlensions
performed on the inital node p will give us two nodes
labelled with the following configurations.

cl: {¥==0,jn, Gi.r(¥.a), and
c2: [¥=<0,[ln, G2,r{¥.b).

where the curly brackets identify the local scope of the
commit and the argument n identifies the root of the cut
gection of the computation tree. And-reduction of a comimit
operator will be performed only when the list of goals within
the scope of the commit is empty.

3.2 Selection of Alternative Clauses

Consider again the FGHC binary-merge defined in example
(5) and the goal:
1 bﬂ-ﬂm'}'_mﬁgﬂxxrz}' Y=[lr2-.[! aen

Initdally the goal binary_merge(,Y,Z) is suspended, due to
the suspension rules of GHC, When Y is instantiated by the
second goal, binary_merge(X,Y,Z) will be reduced to the
second clause of binary_mergef3. The ability to select
berween various candidate clanses is an important feature of
any committed choice., What about Andorra Prolog? Given
the simple equality test constraint = and the semantics of
commit as described in the previous secton we easily
achieve the same effect. The test equality serves a similar
purpose as an ask constraint (Saraswat [988). Now we give
the definition of binary merge in Andormra Prolog:

n
binary_merge(¥s,Ys [X|2s]) -
¥a==[X|¥51] .|, binary _margepcsi ¥s.Z8).
binary_merge(Xs,¥s,[Y|Zs]) -
Ye==[Y] ¥51] .|, binary_merge(Xs,Ys1,25).
binary_merge({Xs,Ys,¥s} :- Xs==[], |.
binary_merge(Xs,Ys,Xs) :- Ye==[], |.

We now explain why this program works as desired.
Initially the goal binary_merge(X,Y,Z) will have all the four
clanses as candidates, none of the clavses being commit-
enabled as the equality-test constraint cannot be solved
without producing output bindings. Therefore, the goal is
not reducible. When the goal Y=[1,2] is executed, we geta
different situation. We have three remaining candidare
clauses for binary_merge(X,[1,2],Z}, the first, second and
third clapse, but the second clause is now commit-enabled
and the goal is reducible using this clanse.

Nevertheless, the binary merge defined in Andorra is
different from that in a CCL. In Andomra the defined

149

computation cannot deadlock, which it could in a CCL.,
Consider our merge example and the goal:
- binary_merge(X,Y.Z).

which in FGHC will deadlock, while in Andorra it will be
subject o or-parallel extension. This behaviour is sometimes
desirable and sometimes not. We defer examples where this
is desirable to a later section and we now turn our atlention
on how to limir it

3.3 Control of Or-extension

Consider Example (2) again, where we generate Fibonacci
sequences. Mow assumne instead that out_stream/1 interacts
with a user and prodoces incrementally a list of variables as
long as the user wants to compute more fibonacci numbers
and ultimately ends the list when satisfied. We would like
the generation of fibonacci numbers to be demand-driven
instead of data-driven. The first approximation is to augment
the definition of fiby3 with the elanse fib{_,_.[]) to get the
following program:

g::r -ﬂbunaccl{F} uu’q_fﬂrrns{F D} ﬂut_straam{Dj
tibonacei(Ms) :- fib{1,0,Ns).

fib{N1,N2,[M3|Ns]) =
N3 is N1+N2,fib(N2,N3,Ng).
fi_,_0).

out_terms([XPs],[(write(),n]Os]) -
out_terms(¥s,0s),
out_termis([L0).

The key idea here, is that our_terms(F,0) is determinate in
two different ways, either when the first argument is bound
or when the second argument is bound (or both). However
this is not enough; if the goal cur stream is suspended
waiting for user requests, we arrive at a situation where and-
reduction 15 not possible and or-extension will take place,
splitting the first goal in the configuration fib(X1 X2 X3).
What we want in this case is to enforce a specific behaviour,
namely to delay a goal until it is determinate.

More generally we want to delay a goal until it is reducible,
i.e. determinate or commit-enabled. Given the following
control declaration:

-delay pin.
where p is a functor with arity n, and an atom A of the form
plrl,...,m), we call & goal {A,C) ina configuration CN o be
blacked if the goal is not reducible in CN. If all goals in CN
are blocked we say that the configuration CN is blocked.
The effect of the delay declaration in the Andorra model is as
follows: (1) the new configuration mode Blocked is
introduced; (2) when all goals are blocked in an AND-
configurations the mode of the configuration is changed to
Blocked: (3) in or-extension the lefi-most goal that is not
blocked is selected for extension.

750

In Example (8), of demand-driven Fibonacci sequences to
get the desired behaviour we add the two control
declarations:

- delay fio3.

i- delay out_terms/2,

As is easily seen computations in Andorra Prolog with delay
declarations may deadiock. In the above example this was
just what we wanted, leaving it up to the user to break the
deadlock. If we want a binary merge to behave exactly as in
4 committed choice language with respect to deadlocking
behaviour we add the declaration:

- delay binary_merge/3.

4 PROGRAMMING IN ANDORRA

Andorra Prolog can execute most programs that are executed
by flat committed languages as well as other programs, The
only extra control introduced are delay declararions. Ohject
oriented programming applications can be expressed in the
same style as in CCLs. Sophisticated parallel ohject-oriented
languages can be built on the top of Andorra Prolog in the
same way as in (Elshiswy 1988). We tim our attention to
programming discrete event simulation applications.

4.1 Time Stamped Messages

Discrete event simulations are among the most expensive of
all established computational tasks. Therefore it is important
for a parallel language, intended to tun on parallel machines,
1o be able 1o handle well this domain of applications. There
are three main methods for Discrete Event Simulation
ordered below by increasing degree of parallelism.

The first method is based on coroutining and/or continuation
techniques as in Sirula, Smalltalk and Scheme. This methed
utilises a centralised event-list (scheduler), and is inherently
sequential. Any sequential Prolog system with freeze can be
used to implement this method {see Brand and Haridi 1988).

In the second method usually called discrere process
inreraction simulation, a system is decomposed into a
number of logical processes each of which represents a
physical process to be modelled. The logical processes
communicate via messages. There is a central clock process
that accepts requests for wake-up alarms to be sent in future
virtual (simulated) dme, The parallelism here depends on the
amount of activity that can be performed at each relevant
virtual time instance. The computation proceeds in phases.
Each phase 15 associated with a single virtual dme instance.
After executing all events that occur at the current phase, the
system suspends and an external metaprocess intervenes and
advances the clock to the next virtual time at which a wake-
up alarm is to be sent, thereby starting the next phase. The
method is sill sequential between different phases and can
be viewed as an alternative implementation of the previous
method. Discrete process interaction has been demonstrated
in SICStus Prolog (Brand and Haridi 1988), and in Parlog

{Broda and Gregory 1984) given a metacall used to detect
deadlock, :

In the third method called distributed simulation a system,
similar to discrete process interaction simuolation, is
decomposed into a number of logical processes each of
which represents a physical process to be modelled. The
logical processes communicate via messages. The difference
is that there is no central ¢lock process. Instead each process
maintains its notion of current virtual time. Messages sent
are time-stamped, and the processes proceed
asynchroncously. The basic challenge here is 10 maintain a
consistent view of virtual time, so that each process will
teceive messages with increasing time stamps,

Let us consider how this method may be programmed in
Andorra Prolog. Assume that we have a process LP that can
receive messages from two different streams and that the
messages in cach stream are time-stamped in ascending
order. For LP to receive messages in ascending order, we
need to define a bt-merge/3 (binary time merge) that has two
input streams and one output stream which preserves the
ascending time-order property of messages appearing on the
output stream. In the following definition a time-stamped
message is represented as Message@ Time:

Example (10 binary lime-merge
bi_merge(Mx@Tx|Xs],[My@Ty|Ya]IMx@Tx|Zs]) :-
Tu=<Ty,|,
bi_merge(My@Ty|¥s].Xs.Zs).
bt_merge([Mx@Tx|Xs).[My@Ty|Ys][My@Ty|Zs]) :-
Te=Ty.] °
bt_merge(Ys, [Mx@Tx|Xs),Zs).
bt_merge(Xs,Ys,Y¥s) - Xs==]], |.
bt_marge(Xs,Ys,.Xs) - Ys==[], |.

The definition bt_merge/3 merges two streams ordered on
increasing time stamps into a third ordered stream. To
understand the behaviour of this definition in Andorra
Prolog, consider the goal:

7- bt_merge(X,Y,2)X=[e1@ 2[X1),¥=[e1@ 2|X1],
bi_merge(X,Y,Z) is reducible when X andfor Y are emipty
lists, or X and Y are both nonempty lists, each having at
least one message with a known time stamp. Thus, initially
bt_merpe(X,Y,Z) will be delayed, and can only be reduced
after the second and the third goals have been exccuted.

In all other cases, i.e. especially on the absence of messages
on both the first and second streams, but also when only one
of the input streams is lacking a message,.the goal is
nonreducible. Now, if we have a number of processes
connected by a network of binary tme merges such that each
process maintains its local view of virtual rirme and stamps
transmitted messages accordingly, then the computation will
progress as long as messages arrive on both ports of the
relevant time-binary merges.

There is, however, a possibility that the system will run ot
of and-reducible goals, as for instance when we have a
cyclic network as shown below. In Andoma Prolog this is
resolved by performing an or-extension. Only if we were to
augment the definition of bt_meres’3 with the declaration:
- delay bt_merge/3

will the system deadlock, as would be the case in a CCL.
Therefore such a delay declaration is highly uvndesirable. To
illustrate the idea, consider the following example (2 goal of
the form X is ¥+Z will be delayed until deterrninare):

Examptle {11) Cyclic network

Query ?- bt-merge(X.[e1@1]Y).2),
transducer(Z,X,1),
transducer(X,Y.4).

- delay transducer/2.
transducer([E1@T1|51],[E2@T2|S52].N) -
T2 1s T1+N,
transform({E1,E2),
transducer(S1,52,M).
transducar([],0._).

T
Joe T

e @
In the query above the intial node n0 will have the
configuration:
node nd
cnl: bt_merga(,[e1@1|Y].2),
transducer(Z X, 1),
transducer(X,Y 4).

L J

In this situation, no and-reduction is possible, and the only
unblocked goal is br_merge(X,[el@ 11Y],Z). Or-extension
will be performed possibly extending the tree with two
nodes, nl and n2, where and-reduction is possible:

node ni

UnT A m:-{ld }no.
bt_merge(fe1@1[Y].X1,21),
transducar([Mx@Tx|Z1),[Mx@Tx[X1],1),
transducar([Mx@Tx[X1],Y,4).

ngde n2

en2Tu=1] Ino.
bt_merge(Y.[Ma@Tx|X1]1.21),
transducer(fe1@1|Z1].[M=@Tx|X1],1),
transducer([M«@Tx]X1],Y.4).

Let us ignore and-reduction on configuration cnl for a
while. If we continue, instead, with and-reduction on
configuration cn2 we arrive at a configuration where the

751

cofnmit operator can be applied to prune all the other
subirees under the node n():

node N2

end2=1,[lnn.
bt_merge(Y,[IMx@2[X1},21),
transformiet, M),
ransducer(Z1,X1,1},
transducer([M=@2]x11,Y.4).

5 DELAY DECLARATION

Consider again the use of binary tme merge and assume thar
we have the cyclic network as shown below,

Example (12) Cyclic natwork®
Query -
transducer(Z,X,1),
transducer(X,¥1,4),
transducer{X,Y2,6),
bt_merge{¥1,¥2,Y),
bt-merge (X, [e1@1]Y].Z).

t1@1

This network is subject to or-extension only. There are two
possible candidates, but according to the mle for or
extension the first bt merge goal will be chosen. This choice
is not optimal, as it will lead to a lot of speculative work as
compared to chosing the other binary merge. What is needed
here is a more general blocking condition than just blocking
a goal until it is reducible. Ouor delay declaration discussed so
far can be thought of as a special case of a general delay. A
delay declaration based on variable instantiations would be
more flexible. In Example (12) we need to block a goal
bt_merge(X,Y.Z) until at least one message with known
timme stamp arrives on X or Y, expressed as:

- delay bt_merge([Tx@Mx|_[[Ty@My|_1,_)
on var(Tx) and var(Ty).

In the part of the expression afier on we allow only
conjunctions andfor disjonetions of var condirions.
Therefore we omit the var as default and write:

- defay bt_merge([Tx@Mx|_],[Ty@My|_]._)
on Tx and Ty.

This delay declaration has the general form:

- delay H on Can.
where H is an atom, where each nonvoid variable in H
occurs only once, and Con is a disjunction/ conjunction of
variables occurming in H.

752

Let Con be the expression we get by substituting var(X) for
each variable X in Con and consider the goal (A,C) in a
configuration with the binding list B. The goal is blocked if
there i% a delay declaration of the form shown above such
that A is unifiable with H in the context of B and Con
evaluates to true in the context of B. Blocked goals will
eventually become nonblocked when the proper bindings are
published and will be subject to and-reduction andjor or-
extension as deseribed in section (2),

5.1 Synchronisation on Variables
The general delay declaration gives us not only the ability to

block goals when nondeterminate or irreducible but can even
block determinate goals, as in CCLs:

Andorra EGHC
- delay p(A) on A. pla) = true | trus.
pla). :

To give a meaningful example let us consider Example (11}
again:

Example {11) Cyclic network

CQuery ?- btmerge(X,[e1@1]Y],2),
transducer(Z X,1),
transducer(X,,4).

When the query is executed, and or-extension is performed
the two nodes nl and n2 are created. We have shown that
when and-reduction was performed on n2 the computation
proceeded as expected. But, what happens if our scheduler
is unfair and node nd is only extended to nl as is usual in
sequential Prolog:

node ni

onl: {Txeat,|}ng,
bt_merge(fe1@1]¥1.X1,21),
ransducenMx@Tx|Z1],[Mx@Tx]X1],1),
transducer([Mx@Tx|X11,Y.4).

We are now transmitting a vacuous message Mu@Tx 1o the
first transdocer which is reducible leading to the
configuration:

pogde ol

cn2: [Tu=«1,[}ng.
bt_mernge{fe1@1]Y],X1.21),
T Is Tx+1,
transform(M:,Mx), transducer(Z1,%1,1)
transducer{[M«@TxX 11, .4).

The goal Tx is Tx+1 indicates that something wrong is going
on. And if this goal is just simply suspended, this branch of
computation will probably loop. We have two solutions at
our disposal. The first is to couple goals like T2 {5 TI+N
with a constraint solver that understands that the goal Tx is
Tx+1 is unsolvable, in which case the configuration will fail.
Another, less elegant but rather inmitive, solution is to block
vacuous messages from passing through the binary time

merge. This leads to another definition of bi_merge/3:
Example (13) bingry time-merge ravisied
bt_merge(Xs,Ys.Z5) -
Ha==[Mx@Tx[Xs1],Ye==[My@Ty[Ys1],
Te=<Ty,),
bt_merge (Tx, M, ¥s, Xs1,Z5).
bt_merge(Xs,Ys,Zs) -
Ha==[Mx@Tx[¥s1],Yo=<[My@Ty|¥s1],
T =Ty, |,
bt_mergel Ty, My, Xs,Y¥s1,Z2).
bt_merge({Xs,¥s,Ys) - Xs==[], |.
bl_mergs{Xs,¥s.Xs) - Ya=={), |

= delay bt_merget({Tx,Mx,_,_._} on Tx or Mx.
bt_merged (TxMx, s, Xs1, [Me@Tx|Zs1]) -
bt_mearge({¥s Xs1,Z51).

The delay declaration blocks the goal be_mergel(X1X2,
X3 ,X4,X5) until the first and the second arguments are
instantiated. Observe that the definition of bt_merge/5 is
determinate and would otherwise be subject to and-
reduction. With this definition only nonvacuous messages
will be allowed to pass through binary ime merges.

An object-oriented programmering methodology can be
developed for objects communicating via time-stamped

" messages suitable for simulaton applicatons.

6 COMMIT AND CUT IN ANDORRA

Cut is problematic in parallel languages. The semantics of
cut depends heavily on left-to-right, depth-first execution,
and will necessarily severely limit the amount of parallelism,
We would like to be able 1o provide for cut but as we will
show this is difficult without unacceptably limiting the
amount of parallelism, We begin by considering commit as
usid in the body, and go on to show some of the essential
differences between commit and cat.

6.1 Commit in the body

Commit in the body acts in much the same manner as
commit in the guard, the difference being that it is not vsed
in reducibility tests. Consider the configuration
[(Bueibyp(X.Y.Z), g1..-m8p)lgR Where p/3 is defined as
below:

PO Y.Z)- r1 (X)L (Y, 2).
PO Y Z)- r2(X)] 02(Y,Z).

Note that the body begins with the used-defined goals 1 and
r2 and that the guard is empty. If the goal p(X,Y,Z) is
chosen for or-parallel extension in the configuration
(B9 eeei by p(X. Y2, El!'“*gn]DR the node tree will be
extended with two and-nodes. with the following
configurations:

104D {1} A1 Y, 2) G]
[09.--b {2001}, G2(Y.Z2) 1 -]

The goals by 1o by, are blocked and not chosen for or-
extension. The goals g 10 8, are not necessarily non-
reducible, fairness may dermand or-extension on the lefimost
non-blocked goal. The curly brackets show the scope of the
commit. The subseript { is a reference to the or-paralle]l node
that gave rise to the and-nodes, and is the root of the cut tree
that will be used when a conmmit is executed.

The actual execution of the commit is delayed uwniil the
commit goal is alone within its scope, just as would be the
case had rl and r2 been simple test constaints and the
commit part of the guard. Once again the commits cannot be
executed until all goals in its scope have been solved. Even
though the predicates rl and r2 may in mrn be subject to
both and-reduction and or-extension the execution of commit
depends directly only on a limited number of goals within
the configuration, namely rl, 12 and their descendanis.

As a final example, and this time showing nested commits,
consider and-reduction of rl and or-extension of its
descendants as defined by:

r1{(X)- s(Y)HZ)u(Y.ZX). 8(Y)=s1{¥)-

s{)-s2(Y).).
piving rwo new configurations the first of which is
[0y {81 (V) A2, Z X0 A1 (Y.2) 0 - G

6.2 The Problem with Cut_

The semantics of cut depends on lefi-to-right order. Given
the definition

pi2)-L
p{1).

and the goal 7- p(X),X=1 we see that we cannot execute the
two goals in parallel. In Prolog the conjunctive goal will £ail,
while in parallel computation it may succeed. The only sure
way of preserving Prolog cut semantics would be to delay
the execution of all goals to the right of any potential cut until
the cut itself can be exccuted. But this is not practical as
given a goal it is not generally possible to predict if and-
reduction will eventually give rise toa goal containing cat,

In Andorra a goal p may share variables with goals both to
the left and right in any given configuration. Let us call
bindings made to these variables in goals to the left forward-
bindings and goals to the right back-bindings. When p is to
execute variables may be unbound that would have been
bound by goals to the left in Prolog, let us call these
bindings late forward-bindings. Variables that have been
bound by goals to the right we call carly back-bindings. In
Andorra the problem with cut is exclusively with carly back-
bindings. Consider the goal 7- one(X),p(X} where one
eventually binds X to one, and p/l is defined as above. The
goal p(X) is non-reducible, since cut does not effect
reducibility, and thus will not be execured until leftrmost

753

There are three potentdal ways of dealing with this probiem
without sacrificing all and-parallclism

{1) Limit oneself to independent and-parallelism which is not
what we are giming for in Andorra Prolog,

(2} Perform 4 global analysis to determine which predicates
may give rise 1o a cot: which seems generally difficult, not to
mention that the analysis would probably have to be done on
a worst case basis which might severely limit the amount of
parallelism for the average case.

{3) Make back-bindings conditional in the sense that cut
wonld work as if they had not been made. Whether or not
this is possible is an open question but in any ¢ase this
would seem to be very inefficient,

In the example above and-parallel execution generated an
extra solution, but examples of the opposite behaviour can
also be conirived. A simple example is the goal

7- var(X}X=1
which might fail in and-parallel execution, Disallowing the
metalogical predicate var will not work either, as it implicitly
exists in languages with cut as shown below.,

var(})- Wi {X=1) , Wi {X=2).

In order to achieve the maximum amount of and-paralielism
we need to relax the lef-to-right semantics of Prolog. Prolog
operators like cut, that have left-to-right semantics do net,
therefore, fit very well within the Andeera framework.

6.3 A Limited Form of Cut

In addition to the problematic lefi-to-right semantics cut also
has depth-first semantics. Consider the Prolog predicate
powhere 51 and 52 are user-defined test predicates, The first
two tests are not necessarily exclusive, so that the proper
function of the predicate very much depends on the depth-
first execution order. The second clanse should only be used
if the test in the first clause fails, and similarly the last clause
should only be used if both the 57 and 52 test fails.

plin,In2,0ut):- s1{In1},.gen1{in2,0u).
piad,In2,0utk:- 52(In1}, L gen2(In2,Out).
p{In1,In2,0ut):=gend(iz, Out).

The commit of Andorra Prolog as previously described
cannoi be used in place of cut, the second clanse could cut
the first. We would need to rewrite p as follows (a commit
may be placed before genl, gen? and gen3 for effeciency):

plin,n2,out):-
si{In1)\i(s2(In2)}gant{In2,0ut).
plint,In2,0ut):-
W{s1{In1)),52(In1),gen2(In2,Out).
plint,In2,0ut):-
(g1 {In1}),\+(s2{In1)),gen3({In2,Out).

Aside from being cumbersome this is inefficient. The test £f
may be performed up to three times. But there is no reason
why a limited form of cut could not be included in Andorra

754

Prolog, obviating the need for such rewriting. In terms of
or-parallelism it would behave much like cut, while in terms
of and-parallelism much like commit, so ler us call it or-cur,

The main difference between the or-cur and commit is that
the execution of or-cut may be delayed beyond that of

commit. Both must delay until they are alone in their and-.

scope as described previously but in addiion or-cut must
also be delayed if within the range of a smaller cut. All the
considerations involved in cut in or-parallel systems
[Hausman et.al 88] apply here as well, so we will not
describe this further.

To summarize, we have three potential pruning operators,
the last two of which fit into the Andorra framework:

(1) Cur: obeys Prolog cut semantics in both and-parallel
and or-paralle] execution

(2) Commit: relaxes Prolog cut semantics in both and-
parallel and or-paralle]l execution

(3) Or-cur : obeys Prolog cut semantics in or-parallel
execution but relaxes them in and-paralle] execution.

The relaxation of cut semantics in or-parallel execution
behaves as if the ordering of clauses is randomized, while
the relaxation of cut semantics in and-parallel execution
behaves as if the ordering of goals in conjunctions is
randomized {except as in so far as commit and or-cut cannot
be executed untial all the predicates in their scope have been
executed),

In so far as pruning is concemed Andorra Prolog with or-cut
integrates Prolog and CCLs by providing a pruning operator
which acts much like commit in CCLs in and-parallel
execution and much like cut in Prolog in or-parallel
exXecution

7 CONCLUSION

We have presented a new parallel logic programming
language that exploits or-parallelism and dependent-and
parallelism. The langeage supports dea’t know non-
determinism, don't care nondeterminism, control over or-
extension, synchronization on variables and selection of
alternative clauses. We have shown that the language
supporis Prolog with a weaker form of cut. A full
incorporation of cut is not possible without Jargely inhibiting
and-parallelism. Programs written in Flat CCLs like Flat
Parlog FGHC, and FCP (Shapire 87) can be expressed in a
stralght forward manner in Andorra Prolog, The difference
between FCP with atomic publication of bindings on one
hand and Flat Parlog and FGHC with eventual publication

on the other hand (Saraswat 1988) corresponds in Andorra -

Prolog to whether the decision of a goal being commit-
enabled and the subsequent unification completion can be
considered an atomic action or not. We leave this question
open,

We have shown a method for communication between
objects that depends on the ability to express don't Anow
nondeterminism. This method can be used in distributed
sirnulation applications, an’ application domain where
parallelism abounds. A question that narurally arises is
whether the language can be implemented effeciently. We
think that the techniques developed in the Aurora or-parallel
Prolog system (Lusk et. al. 1988), can be extended for an
implementation of Andorra Prolog.

ACENOWLEDGEMENTS

We are deeply indebted to David Warren both for the original
concept of Andorra as well as many rewanding discussions.
We would also like to thank all the members of the Gigalips
project at Manchester, SICS and Argonne, especially Ron
Yang who is implementing the first prototype of the Andorra
model, Discussions with Vijay Saraswat, Ken Kahn, Steve
Gregory, Ross Overbeek, Andrzej Clepielewski, Mabiel
Elshwiewy, Thomas Sjisland, Dan Sahlin and Lee MNaish
have been extremely froitful,

REFERENCES

[Brand P. and Haridi §. 88] Prolog for Discrete
Simulation. 1988. Research ort, S1CS,

[Broda K. and Gregory §, 84] Parfog for Discrete
Event Simulation. 1984, Proceeding of the Second
International Conference on Logie Programming, Uppsala,
[Carlsson M. and Widén J. 88] SICSwus Prolog user
manual. 1988, Rescarch R SICS.

[Clark C.,.Gr 5. 87] Parlog Parallel Programming
in Logic. 1987. nr%uncu_m:nt Prolog Collected Papers, ed.
Shapiro E. MIT Press,

[Colmerauer A. 82] Prolog IT: Manuel de reference et de
modele theorigue. 1982, G.I.A., University of Aix-
Marseill

L

[Elshiewy N. 88] Modular and Communicating Objects
in SICStus Prolog, Conference on Fifth Ceneration
Computer Systems 1988, ICOT
[Gregory 5.88] Personal Communication
[Hausman, B et.al 88] Cut and Side-Effects in Or-
Parallel Prolog. Conference on Fifth Generation Computer
Systems 1988, 1ICOT
[Lusk E. et. al. 88] The Aurora OR-Parallel Prolog
System. In International Conference on Fifth Generation
Computer Systems 1988, ICOT.
[Misra J. 86] Distibuted Discrete-Event Simularion,
1986. Computing Surveys, Vol 18 Nr.1, ACM.
[MNaish L. 88] Pw:ﬁilizing NU-Prolog. In Logic
Programming, Preceeding of the International Conference
and Symposium, 1988 ed, R. Kowalski and K. Bowen,
MIT Press.
[Saraswat V. 88] A somewhat logical formulation of CLP
synchronisation primitives, In Logic Programming,
Proceeding of the Joint International Conference and
Eg'cl‘;lpusium. 1988 ed, R. Kowalski and K. Bowen, MIT

5

[Shapiro E. 88]. Concurrent Prolog Collected Papers
1988, MIT Press.

{Zobel T, 88].NU-Prolog Reference Manual 1987 Vers.
1.1 Technical Report,University of Melbourne,

[Yang R. 86]. A Parallel Logic Programming Language
and its Implementation. 1986. PhD thesis, Keio University,

