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Abstract

A new formalization method for strictness-related anal-
yses on first-order applicative languages is proposed.
For this purpose, the concept HOMomorphic Trans-
former (HOMT) is introduced. Intuitively speaking, &
HOMT is a special instance of abstract interpretation.
A set of HOMTSs, furthermore, is an algebraic space,

where equivalence relations (or reduction rules) are de—
fined. This paper clarifies that HOMTs can be used not

only as a formalization tool for possibly non-monetonic
strictness-related analyses, but also as a transforma-
tional mechanism between thess analyses. Thus, equiv-
alent and hierarchical relationships among these analy-
ses can be diseussed on a unified basis,

First, we show that an effective subset of strictness-
related analyses can be formalized as HOMTs. Next,
it is clasified that forward [ backward conversion op-
erations cen also be formalized as HOMTs named izo-
morphic converters, Finally, it is shown that transfor-
mational operations that induce wealer GDAs from a
GDA, can also be formalized as HOMTs named projec-
tive inducers. Thus, the equivalence of GDAs can be
proved by the equivalence of HOMT's in the proposed al-
gebra, and hierarchical relationships among GDAs can
be shown by the existence of projective inducers.

1 Introduction

Stimulated by an urgent need for efficient implementa-
tion of lazy applicative languages, many Global Data-
fAow Analyses (GDAs) have been proposed [1,11,17].
Most notable GDAs are & class of Strictness-Related
GDAs (SRAs), that collect information on the strict-
ness of functions. SRAs [13] are classified into ei-
ther Striciness Analysis (SA) [2,3,7,10,19], Relevance
Analysis (RA) or Computation Path Analysis {CPA)
[14,15,16). An SA detects a set of parameters that
should be evaluated to obtain the resulting value of a
function. Conversely, an RA detects a set of parameters
that may be evaluated. CPA is a generalization of both
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SA and RA, detecting a set of all possible computation
paths.

Abstract interprelation [1,4,9,10] has been proposed
as the basis for formalizing GDAs. In addition to con-
timmous GDAs (eg. SA), non-monotonic GDAs (eg RA
and CPA) can be uniformly formalized by extending the
framework of abstract interpretation [12]. The follow-
ing questions, however, remain o be solved:

Some analyses can be formalized 2z forward as
well as backward [5,7,8]. How can the equivalence
between GDAs having different formalizations be
shown? {Equivalence problem)

From the viewpoint of analytical power, there ex-
ist hierarchical relationships among SRAs. That is,
one analysis has more analytical power than oth-
ers, and the results of a wealer analysis can be
induced from those of a stronger one. How can
such hierarchical relationships be shown? (Hierar-
chy problem.)

These problems can not be answered by only provid-
ing & uniform formalization method. Apparently, we
require some transformational mechanisms that can in-
duce equi\ral{mt or wealker GDAs from a GDA.

This paper proposes a new formalization method for
SRAs, named HOMomorphic Transformer (HOMT). A
HOMT is a fonctional that maps a function on origi-
nal domains to a function on abstract domains. At this
point, HOMTs can be viewed as a subclass of abstract
interpretation. A set of HOMTs, however, is also an
algebraic space, that has equivalence relations (or re-
duction rules) on integers, such as 142 — 3. A HOMT

s represented by a composition of Unit HOMTs (U-

HOMTs), each of which, in turn, is specified by a newly
proposed Quadruplet Represenfation(QR). Reduction
rules on HOMTS are clarified in terms of QRs.

We solve the above problems as follows: First, we
show that an effective subset of SRAs can be formalized
as HOMTs. Next, it is clarified that forward [ backward
conversion operations can also be formalized as HOMTs
named isomorphic converters. Thirdly, it is shown that



transformational operations that induce weaker SRAs
from an SEA, can also be formalized as HOMT's named
projective inducers. Thus, the equivalence of SRAz can
be proved by the equivalence of HOMTs: in the proposed
algebra, and hierarchical relationships among SHAs can
be shown by the existence of projective inducers,

2 Intuitive Comparison among
SRAs

2.1 SRAs as HOMTs

SRAs are made up of three kinds of GDAs. That is,
ShAs, RAs, and CPAs [13]. CPA computes the Prop-
erty Dependency Parameter Set (PDPS), which is intu-
itively a set of all possible demand patterns of the fune-
fion when demands are propagated to resulting value.
RA detects relevant parameters which may need to be
evaluated when demands propagate, SA detects reg-
uisite parameters which alwayz need to be evaluated
when demands propagate.

On the other hand, a HOMT, Ay, is a functional
which maps confinuous functions f on computational
domains to hy(f) on (possibly finite) abstract domains
(See Section 3.1). Thus, SRAs are formalized by
HOMTs as follows. Assume ks be 3 HOMT such that
hy(f) preserves the objective property of an SRA on
the original program f. Note that hy(f) may be not
computable even if absiract domains are finite, smince
hy(f) refects the exact run-time property which is
never clarified before actual execution. Thus, the al-
gorithms of SRAs are fermalized according to the fol-
lowing two steps. First, compuie the approximation
hoy(F) of hy(f), where hog(f) is the solution of some
recursive equation on abstract domains. This result is
called the computed HOMT (See Section 3.3). Next,
execute h.y( f) for all possible instances on abstract do-
mains. As a result, the approximated property on f
is detected, instead of the exact but not computable
run-time property on f. '

With the formalizations of 3R As as above, the equiv-
alence of two SRAs which have different corresponding
HOMTS, hy 1, hj 2, is clarified by finding HOMTs, Aqa,
gy, that transform to each other as

healf) B Ry off)

heaf) B Apa(f)
for each continuous funetion f. Similarly, the hierasehi-
cal relationship between two SRAs iz clarified by find-
ing a HOMT that transforms the stronger one into the
weaker one.

Section 2.2 and 2.3 examine both the equivelence
problem and the hierarchy problem of the already pro-
posed algorithms of SRAs.

and,
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2.2 FEquivalent problems on SRAs

An SRA may be either forward or backward. An SREA
is said to be a forward analysis, if it clarifies the proper-
ties of results from the properties of parameters. Con-
versely, an SRA is said to be a backward analysis, if it
clarifies the eonditions satisfied by parameters from the
properties of results.

Forward SA (FSA) is an example of SA a5 & forward
analysis [10]. Similar algerithms are found in [1,3].

FSA inferprets a function, f, on & flat domain (such
as Integer or, Boolean ) to a {0,1}-valued function
fraq. where D means totally undefined and 1 means
possibly defined. Thus, frg, returns 1 if there possibly
exists a computable real instance of f, and returns 0 if
there never exists a computable real instance of f. For
instance, i f(x,y, 2) is interpreted to

ifpsa + (LL,1) = 1, (1,1,0) — 1,
(,0,1) - 1, {(0,1,1) — 0,
[11(}!“} —+ u1 BtC-. )

Then, requisite parameters can be detected by firstly
testing fpg, for all {0,1}-input patterns, next collect-
ing the sef of minimum input patterns that returns 1
(called 1-fromtier in1]), and finally detecting requisite
parameters that are always required to be 1 in all pat-
terns in the 1-frontier. For instance, if(x,y,z), the
1-frontier is {{1,1,0),(1,0,1)}, and then, the requisite
parameters are {z}. -

On the other hand, Boolean-algebraic SA (BSA)
[7,13] is an example of SA as a backward analysis. BSA
interprets & function, f, to a function fgg, whichis a
symbolic manipulation en the set-characteristic expres-
sions of input parameters. For example, if(z,y,2) is
interpreted to

ifpsalz’ v, 2) = AYA(ZUuyIn(z’us)

Then, requisite parameters are collected by sub-
stituting actual variable names te eorresponding set-
characteristic expressions. For instance, requisite pa-
rameters of i f{a, b, b) are calculated as

( Ay (e’ Uy} N (z' U =) )({a}, {8}, {8})
= ({a}u{Eh)n({a} U {8}) = {a,b}

In both FSA and BSA, these interpretations for user
defined functions are induced by ordinary fixpeint cal-
culus based on given interpretations on primitive fune-
tions on abstract domeains.

From an application view point, the analytical pow-
ers of FSA and BSA are equivalent except that FSA
can detect diverged funetions when its 1-frontier is an
empty sef, whereas BSA cannot.
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2.3 Hierarchy problems on SRAs

The hierarchy of SHAs arises from 2 reasons :
Objective property of program is the same for
SRA, and 5H Az, but abstraction is more accurate
on SRA; than SRA,. (Approximation hierarchy}
Objective property of program itself is more infor-
mative an SRA; than SRA,. {Property hierarchy)

The approximation hierarchy arises from the fact that
an SRA is a compile-time technique whereas the objec-
tive properly is a run-time property. Thus, approxi-
mation accuracy is traded off with computational com-
plexity (including termination). Therefore, even for the
same objective property, there are many selections for
approximation levels. These levels can be measured by
domain abstractions.

The nctable examples are SAs on non-flat do-
mains (eg. lazy list structures, streams). [1,3,10,8,8].
The notable feature of non-flat domains is non-
strictmess,  That is, lagy functions such as cons-
stream(z, y), head(z), tail(z) (as in Scheme) admit par-
tially evaluated data {or both inputs and outputs.

A trivial extension TSA1 (resp. TSA2) of FSA in-
terprets functions to {0,1}-valued functions where the
data structure is approximated as 1 if completely eval-
uated (resp. possibly evaluated), and as O if not com-
pletely evaluated (resp. never evaluated).

Conversely, SA on streams [1,6,8,19] called NSA in-
terprets functions as {0,1,2,3}-valued functions. In the
abstract domain {0,1,2,3}, O means never evaluated,
1 means values that are evaluated at least outermost
eong, 2 means values that are evaluated until the length
of list is clarified, and 3 mesans completely evaluated
values.

Thus, for instance, a parameter z in [ength(z) is ana-
lyzed as not requisite by TSAL and as possibly requisite
by TSA2, whereas it is analyzed as requisite at level 2
by NSA.

The property hierarchy is found in the relation among
CPA, SA, and RA. [13]. For example,

f{m1y:zlprQJ =
if p>0then (if p=1
then (if 2 =0then z else y)
else f(z,2,0,p - 1,z))
else f(0,0,2,1,y)

is analyzed as

{ PDPS {{z, =2}, {v, 2.2}, {=. P}, {P}}
refevant parameters {z,9,2,p}
requisite parameters {r}

Roughly spealking, the union of all elements in PDPS
ig & set of relevant parameters, and the intersection is

a set of requisite parameters. Therefors, 54 and RA
are the projections of CPA. This fact arises from PDFP3
itself being more informative than requisite parameters
and relevant parameters.

3 Algebraic Structure on

HOMTSs

3.1 Construction of U-HOMTs and
their Quadruplet Representations

A HOMT, hy, is defined to be a funciional which
maps continuous functions on computational domains
to those on abstract domains. A HOMT is constructed
as a composition of U-HOMTs. A U-HOMT, hy, is &
functional from continuous functions on power domains
1 PD[D] to those on power domains FD[Abs], where Ay
is induced from the domain abstraction abs: D — Abs
as below.

[Definition : domain abstraction]
A continuous, onto map abs
be a domain abstraction i

Yz € abs~'(a,), Jy € abs~(az)
Wy € abs™Yay), 3z € abs™(a)

D — Abs is said to

st.zCpvy
st.zCpvy

for Yay, a0 € Abs st a; Cap s, is satisfied. The
domain Abs i said to be an abstract domain. If Abs is
a finite domain, abs : I — Abs is said to be & finite
domain abstraction.

Since, U-HOMTs are functionals on functions on
PD[D] to those on PD[Abs|, at first a lifting inter-
pretation is required. This interprets functions on D
to functions on PD[D]. This interpretation iz natu-
rally induced from the commutative diagram shown in
Fig.1. We will use the ifting interpretation as a default.
Thus, we do not denote it explicitly.

£ lifting interpretation
De D

incl m linc cx = {x}
P[D?] — 12— PD] fu(X)=
pij repl U{xeX | fix)}
PD[D"]—& — ~pPDID]
Fig.1 Lifting interpretation.

VA powsr domain PO[D] iz & pewer set PID] = [X C D|X #
#} with definedness ordering S on it [18] .



Table 1. Typical selections of parameters of QRs:

ion ir
base domain abstraction covariant
) 1 (ffx=1)
a&sﬁ.m—t{u (fx # 1) . (+)
(where 0 T 1.) contravariant

identical abstraction

abs;:z = z (VzeD) (=)
where,
preavder {
Xty if XL VAXLGY
. RC(X)
Xo Y iff RC(X)2 RC(Y) Min(X)
. LE(X)
Xo, ¥ it LO(X)CLCY) o
XC.Y iff X 23Y for C as above
PDD"} —i -~ PDID]
proj T ]( rep
P[D"] —¥—\- P[D]
abs |,Tabs'1 l abs
PlAbs"] PlAbs]
proj T Lrep
oy hflf)
PD[Abs"] ————PD[Abs]

Fig.2 Censtruction of
a covariant U-HOMT Ay

A U-HOMT h; is then naturally induced from do-
main abstraction abs as in the commmutative diagrams
shown in Fig.2 and Fig.3.

Note that there ave two types of U-HOMTS, covariant
[-HOMTs and contravariant U-HOMTs, correspond-
ing to forward analyses and backward analyses. There
are two differences between them,

For covasiant U-HOMTs, h(f) is induced from a
function, f, itself. Conversely, for contravariant U-
HOMTs, hy(f) is induced from a function inverse
F

Therefore, contravariant U-HOMTs require an ap-
pendiculate power domain PD[D]* % PD[D] U
{$}, whereas covariant U-HOMTS require an ordi-
nery power domain PD[D] (= {X|X € D, X # ¢}
with preorder C) ( The function inverse may require
¢ a8 a result value,)
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power domain construction

B ] closure  invariant
rep. TEp.
. c #d id
Crar Clonw Conu
Co RC Min
Cy LC Mazx

closure Tep. (€ —maximal rep.)
invariant rep. (€ —minimal rep.)

Conu(X) ¥ LO(X)N RC(X)
Y {reD|FyeXstyCa)
Y (zeX|-FyeX st yCsl

{reD|3ycX st zCy}
{reX|-3yeX st zCy}

g g

PD[D"]

proj H rep
P[Dn)
abs

PDID]
[
fu PD]
abS'lTl abs
P[Abs") |« £ P[Abs]
proj T lrep
PDIAbs?] <2 pryabg)

Fig.3 Construction of
a contravariant U-HOMT Ay

=

The parameters which specify these constructions aze
direction (that is, whether covariant or contravariant},
domain abstraction, and power domain construction,
Power domain construction is composed of the selec-
tion of preorder C on power set and its representative
function rep.

[Definition : Quadruplet representation.]

A U-HOMT, hy, is specified by a quadruplet ¢ =
(abs,dir, C,rep) which is a pair of domain abstrac-
tion abs: D —+ Abs, direction dir (whether covariant
{+) or contravariant (—)), preorder T, and representa-
tive function rep. A quadruplet ¢ = (abs,dir,C,rep)
is called the gquadruplet representation (QR) of a U-
HOMT, hy.

Table 1 presents typical selections for these param-
eters (QRs), although not all selections induce useful
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SRAs.

Remark Appendiculate power domains PD¥[D] =
PD[D)U {4} are constructed from the extension of ar-
derings X Co ¢, ¢ Ty X, ¢ C X, VX € PD[D]. At-
tention should be paid on that there is no well-defined
extension of Cpay on POV (D).
|[Examples: FSA, Strictness Information Analysis
(SiA)]
FSA asa HOMT has  QRpsq = (absy, 4,54, Maz).
Strictness Information Analyses (5IA) [13], which
is the wvariation of backward SA, as a HOMT has
QRsza = (absy, — C_g, Min). (Detailed discussion en
these formalization will be found in Section.4.1.)

3.2 HOMTs as a composition of U-
HOMTs

On the compesition b} o ky of U-HOMTs hy and A,
the problem is the difference of power domain construe-
tion between range(h;) and domain(k}), although they
have same base domain., That is, definedness (pre)order
may differ within the same power set. Therefore, some
special techniques, such as torsional compesition, is re-
quired. This method first embeds the power domain
range(hy) to the power set, and then projects the power
set to the power domain domain(hf).

[Definition: Composition of U-HOMTs|
The composition h} o ky of U-HOMTs h; and A} is
defined to be

hy o hy: f = hy(proj' orepo hy(f) o proj o rep')

for ¥f : continuous function on D, (Fig.4.)

The composition of U-HOMTs is said to be a covari-
ant HOMT if the product of all directions is +, and a
contravariant HOMT if the product is —.

[Example: CPA|
CPA as a HOMT has

QRopg = (absy, +,C,id) o (id,—,C_q, Min) [12].

To clarify the hierarchy of analytical power among
SRAs, analyfical order shown below iz introduced,
This anslytical order naturally induces extensional
equality among SHAs. This equality is called algebraic
structure on SRAs,

[Definition: Analytical order on HOMTs]

HOMT, < HOMT,
= FHOMT st HOMT) = HOMT o HOMT,

PlAbs"] —— P[Abs]
rep proj

- ————

PDTAbs"] —= PDTAbs]

o
PD*[Ahgn] — > PD'[ADbs] E

F1g.4 (Torsional) Compﬂmtlnn
of U-HOMTs.

[Definition: Analytical equivalence on HOMTS, alge-
braic structure on HOMTs)

HOMTy = HOMT,
= HOMT, < HOMT, A HOMT, < HOMT}

=~ on HOMTSs are said to be algebraic structure on
HOMTs.

In most cases, analytical equivalence between SRAs
iz easgily found from the following reduction theorem an
(Bs of SRAs.

[Reduction Theorem]|

Let hy and Ry be U-HOMTs, and g = {abs,dir,C
,rep) and ¢ = (abs', dir',C',rep’) be their QRs, re-
spectively. Then, the composition h} ohy is analytically
equivalent to a U-HOMT, that is, the composition ¢'og
can be reduced to

{abs’, dir',C", rep’) o (abs, dir, C, rep)
= (abs' o abs, dir' o dir, C', reg'}

if one of following conditions are sakisfied.
[1] For dir = +,
(a) T'<C or,

(b) C'=C.
where C'€C if X CY = X C' ¥V (Fig.5).

[2] For dir' = —,
- C, E‘} = {I;:I:ﬂsgtl} Mrep = Min

(a) (&
(b) (C,C')=(Cu1,Cuq) A rep= Maz

(e} (EE)=(59)
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Fig.5 Relations among preorders.

3.3 Continuous HOMTSs

There is 2 useful subclass called continuous HOMT,
The validity of this class ia confirmed to include SAs.

[Definition: continuous HOMT.]

Let h = (he,hy) be & HOMT. k is said to be con-
tinuous iff h; is continous, that is, Ay(lub{f™}) =
fub{h; (™)} for arbitrary an ascending chain of con-
tinuous functions f9 C f0C A, ..

The following theorem is the sufficient condition for
continuity of HOMTs,

[Continuity Theorem)
A HOMT, hy, is continuous if its QR (abs,dir,C
,rep) satisfies one of the following conditions.

d‘l-.l" = + a.1:|.d E € {;ﬂl ;‘.I.l ;EH]"
of, dir=—and C & {_E__GTE_i]'.

Remark 1 Continuity theorem gives the condition for
continuity on U-HOMTs. Conversely, all our known
HOMTs are non-monctonic if their QRs are irreducible,
such as CPA and RA.

In gemeral, hy(f) that reflects a run-time property
of f is not computable, even if the abstract domain
Abs is finite. Therefore, instead of hy(f), we introduce
h.;(f) which approximates hs{f), and is computable if
the abstract domain is finite,

(Definition: Computed HOMT)
A computed HOMT h.; is defined to be

het(F) ¥ fiz(ho(r))

435

for ¥ f = fiz(r), ¥r : recursion equation, where A.(r})
is defined to be a syntactically indentical (resp. in-
verse) equation, but replaces each primitive function
priv with hy(priv), if hy is a covariant (resp. contravari-
ant) HOMT.

Remark 2 h.y obviously satisfies the homomorphic
condition hey(f o g) = hey(f) o hey(g). This is why it is
called a HOMomorphic Transformer,

The relation which justifies that a computed HOMT
hey properly approximates a HOMT hy is called safe-
ness.

[Definition: Safeness]
A HOMT, hy, is said to be safe iff hy(f) C h.;(F) for
all continuous functions f.

Remark 3.  Safeness hy C hyy, is easily proved if hy
is continuous, hy(Q) = ', and he(priv] o privi} C
hy(privy) o hy(privg) for an arbitrary composition of
primitive functions privy, priv]. Thus, HOMTs which
are enumerated in contimiity theorem satisfy safeness.

Remark 4.  Though CPA is a non-monotonic SRA,
CPA has been proved to be safe, independently from
the framewark of HOMTs [14].

3.4 Non-monotonic HOMTs

The reason why a HOMT is composed as the composi-
tion of U-HOMTs instead of a U-HOMT itself, is non-
continuity of some SRAs, such as CPA and RA.
The non-continnity of SHAs arises from two reasons,
¢ An approximating chain hy(f) (i=10,1,2,--+) is
non-monotonic.
- A HOMT & and U (lub-operater) are not commu-
tative. (i.e. hy(f) = he(UFE) # Uk (F1))
For instance, the following two examples for CPA cor-
respond to the conditions above, The first example is

fooy(z, 5’} = FW‘SE:": H fm,{undg[ﬂd{x],ﬂm{y]},
T fooi(pandy(z,y), pandz(z, v)))

where pors, andy, and pand; are parallel-or, strict-and,
and parallel-and, respectively. _

Then, an approximating chain h({ fool") (that is, real
PDPS of fool” for i =0,1,2,- ) is non-monotonic as

he(§) hy(fool)  hy(fooly  hy(fool)
¢ {{zHe)} {{=HwyH=z.v}} {{=H}}

whereas an approximating chain h,;{fuaii]] {that is,
computed PDPS of _faaE‘} for 1 = 0,1,2,---) is mone-

tonic as
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heg(R) heg(fool’)  hep(fool)  hoy(fool”)
¢ {{=Myv}} {{=HyM=.v}} {{=Hv}H=zv}}

The second example is

fooa(z,y) = pors(g(z,y), gatetrue, z + y))
glz,¥) = if £ =0then true else g{z — 1,¢)

Then,

Rip( fool?) = {{z)}(when z < i), {z,y}(otherwise)}

and consequently, U{hs(fool")} = {{z},{z.¥}},
whereas hy(L{foo}")}) = {{z}} (real PDPS).
Conversely, hes(fool’) = {{z},{z,y}} and con-

sequently, U{hes(fool")} = {{z},{z,¥}} (computed
PLDFS).

4 Isomorphic Conversion
and Projective Induction
among SRAs '

4.1 SRAs as HOMTs, revisited

This section induces two special kind of HOMTs as
transformation methods ameng SRAs in order to solve
both the equivalence problem and the hierarehy prob-
lermn. They are called the lsomerphic converter and the
projective inducer. An isomorphic converter transforms
a forward (resp. backward) SRA into an analytically
equivalent backward (resp. forward) SEA. On the other
hand, & projective inducer transforms a forwerd (resp.
backward) SRA to a weaker forward (resp. backward)
SRA. '

Thus, the equivalence problem is clarified as the exis-
tence of an Jsomorphic converter. Similarly, the hierar-
chy problem is clarified as the existence of a projective
indueer.

For this purpose, SHAs are redefined in terms of
HOMTs.

[Definition: base domain abstraction.)
The base domain abstraction absyg: D — Abs is ax-
tended inductively according to structure of domain D,

constructor{absa(y), absg(z))
{ = = eonstructor(y, z) }-
absy{z)
[ otherwise }

absgrz —

Intuitively speaking, base domain abstraction con-
cerns whether the value.is defined or not, but ignores
the value itself.

[Definition: SRA]|

Let ky be a HOMT, and abs: D — Abs be a domain
abstraction. Then1 'hf iﬂ', said to be an SRA ff there
exists absg 5.1, abs = absg o absp. (abss is said to be
structural domain abstraction.)

4.2 TIsomorphic conversion between

forward /backward SRAs

[Definition: Isomorphic converter. ]

Let hy 4, by y be HOMTs. Contravariant HOMTS h;
and f; are said to be isomorphic converter iff by ; &
-ﬁ:: o hy i and hs js ﬁ}ﬂ' hy J are satisfied.

Let us consider an example of isomorphic conversion
between FSA (forward SA) and SIA (backward SA)
which is & natural extension of BSA. First, a QR of FSA
is presented. Next, a QR of SIA is presented. Finally,
1sormorphic conversion 15 given from reduction theorem.

A QR of FSA is grga = (absy, +, 5, Maz). This is
shown from the eorrespondence among interpretations
5343 p.rimitiv: functions and definedness n.rdcr]ng on ab-
stract domains.

I.«Et: h.p_gA Fi h-E “ HDI‘I‘IT w}m QR. iS qFsa- Equi‘.l'—
alence ameong interpretations on primitive functions is
checked by testing all possible values on abstract do-
mains. For example, by FSA, i f(z,y, 2) are interpreted
to

i.f.‘F'SA: {111:1} =+ 11 (11-1rﬂ} —% 1:-
(1,0,1) — 1, (0,1,1) — 0,

(1,0,0) — 0, efc,

and I:IJ." hpgﬂ,

hrsa f(if) 2 Maz({(1,1,1)}) — Mas({1}),
Maz({(1,1,0)}) — Maz({1}),
Maz({(1,0,1)}) — Maz({1}),
Maz({(0,1,1)}) — Maz({0}),
Maz({(1,0,0)})) — Maz({0}),

ate,

Thus, equivalence among i fpe, and hpsa ¢(if) is cas-
ily shown from an embedding : = € {0,1} — {z} €
PD({0,1}). And, equivalence of definedness order is
obvicus from =z Cy = {z} C; {y}.

STA, the extension of BSA, is a HOMT hgyq ; whose
qR s q5ia = {ﬂb‘!h—,g_q:.ﬂ.{iﬂ}. The main differ-
ence between BSA and SIA is that SIA can detect
diverged funetions whereas BSA cannot. This is be-
canse a totally undefined function Q(zy,...,%,) is in-
terpreted to Az .. 2] UNDEF by SIA with a special
value UNDEF, whereas {}{my,...,,) iz simply infer-
prefed to Azl . . xp il Uz (strict function) by BSA.
Except {}{xq,...,2,), other functions are interpreted to
the same abstract functions on both BSA and SIA. For



example, primitive functions (2, y, z) and +(=x, y) are

interpreted to
hasa (if) = A'y'2.(«'Uy') N (2" U ')
hsta (if) :{1} — Min{{(1,1,1),(1,1,0),(1,0,1)})

Thus, equivalence except f}(z;,...,z.} is easily
shown under one-to-one mapping such as

FUuy)n(@uz) o {(1,1,0),(1,0,1)}
2’ Uy’ ~ {{1,1)}
UNDEF - $

Correspondence among definedness orderings is also
easily checked from the fact ¥ C¥V = X, V.

Remark, FSA and SIA are continuous SRAs from con-
tinuity theorem (See Section 3.3).

[Example: Equivalence of FSA and SIA]
The equivalence of FSA and 514 is proved from re-
duction theorem {See Section 3.2). That is,

!;dlhlg—ﬂzMiﬂj o ({Ibﬂ,, + ;l:MM:l

= (absp, — g, Min)

E{d'r_lgls M'ﬂz! o {-ﬂﬁ.ﬁ,,—, E—DiMiﬂ}

= {1&\351 +, E]: Mazx
(

Thus, equivalence between FSA and SIA is clarified
as the existence of underlined Qs which are isomorphic
CONVEriers.

4.3 Projective induction among SR As

[Definition : Projective inducer. |

Let Iy p,he ; be HOMTs, Covariant HOMTs Ay is
said to be a projective inducer from hy § to by 4 iff
hgfﬁih!ﬂhljﬂﬂ.ﬂh} fﬁﬁhgp

There are two cases that cause hierarchy of analyti-
cal power among SRAs : approdmation hierarchy and
property hierarchy, as mentioned in Section 2.3, These
are clarified by the existence of projective inducers.

The first example is the relation among SAs on non-
flat domains (e.g. streams), such as NSA, T5A1 and
TSAZ.

Let abspygy @ D=+ {0,1,2, 3}, abspgy 1 D — {0,1},
and absrsas : D — {0,1}, be as shown in Section 2.3.

Then, their QRs as HOMTSs are

[ﬂ[ﬁNS.-i; +:l El: Ma:c},
{absrsa, +,C1, Maz),
{absrsas, +,Cq, Maz).

OWsA
arsa =
and gros =

Let abstraction maps be
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2 =0 (forze {D,1,2})
z—+1 (forz e {3})
z =0 (for z € {0})
r—1 (for z €{1,2,3})

absyga_Tsa
absyga_rsas :

From reduction theorem,

gTr5A1
(ﬂbsfﬁﬂl vt ElmMﬂ'm]

(absngarsar, +,C1, Maz)
o (absysa, +:Cq, Mar)

Jrsaz

(absrsas, +, 51, Maz)
(absngareas, +,C1, Maz)
a {ﬂbﬁﬂs.-h +1 ;1: MIII:I

Thus, approximation hierarchy among NSA, TSA1,
and TSA2 is clarified as the existence of undeslined QRs
which are projective inducers.

The second example is the relation among SR As such
as CPA, 5IA, and RA on flat domains.

A QR of CPA is (absy, +, Cow, id) o (id, —, C_g, Min).
From reduction theorem, SIA is induced from CPA as

(id, +,Cy, Min) o CPA
!iﬂ,"",;n,Mtlﬂ! Q
( (absy,+,Cpzyid) o
{- (td-r +r E[.'h M"n} @
o (id,—,B_g, Min)

{absy, +, Co, Min) o
= (absy, —, Eg, Min)
= S5I4

Et-dr":;—ﬂ'r Min) ]
[u'b"’h +1 E“h Ed] }

(id, —, Cq, Min)

Similarly, a pseudo-safe BA (which iz safe on non-
recursive funections, but not on recursive functions)
called PRA has a QR (absy, 4,55, Maz) o (id, —,C_4
y Min) [12]. PRA is induced from CPA as

{d,+,C., Maz)
= (id,+,C;, Maz)
( (absy, +, Cou, id)
{. {i’ds +: ElrMﬂI}
o (id, —, Gy, Min)
= (absy,+,Cy, Maz) o
= FRA

These property hierarchies are clarified as the exis-
tence of (QRs which are projective inducers.

CPA

o
o

o (id,—,Co, Min) )
Q (ub'ﬁh'l':guhid:'}

Il

(id, ~, Co, Min)

5 Conclusion

A new formalization method for SRAs on first-order ap-
plicative languages was proposed. For this purpose, the
concept called HOMomorphic Transformer (HOMT)
was introduced. Intuitively speaking, a HOMT is a
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special instance of abstract interpretation. A set of
HOMTs is an algebraic space, where equivalence re-
lations (or reduction rules) are defined. This paper has
clarified that HOMTs can be used not only for a for-
mealization of possibly non-monotonic SRAs, but also as
a transformational mechanism between these amalyses.
Thus, equivalent and hierarchical relationships among
these analyses can be discussed on a unified basis.
There are two directions for further works :

- Relation between algebraic formalization and ab-
stract inferpretation.
- Bafeness of non-meonotonic SRA,

Algebraic formalization was, also, used to investigate
the relationship among SRAs [13]. However, the rela-
tionship between algebraic formalization and our frame-
work is still epen.

As shown in Section 4.3, HOMTs are not enough to
formalize some safe non-monotonic SRAs, such as HA.
For instance, PRA is not totally safe, although it is
safe on non-recursive functions. In fact, hpga of(82) C
hpaa ;(€2) holds, and it causes an interruption on safe-
ness, Therefore, some other transformational method
is required in additien to HOMTs under the restriction
of safeness. Such a method must extract a totally un-
defined funetion Q(zy, ..., ,) to a strict funetion (such
as for BSA), or a constant function (such as for R4 ),
without seriously affecting the other functions.
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