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Abstract

This paper describes a scheme for the abstract inter-
pretation of logic programs based on type information.
Our scheme has four components: generalization, ab-
stract unification, summarization and concretization.
Algorithms for generalization, abstract unification, and
summarization are discussed. Our scheme does not suf-
fer from the aliasing problem. Our main application of
abstract interpretation is deriving producer-consumer
relationships and classification of procedures for trans-
formation of logic programs for efficient execution under
committed-choice AND-parallelism extended to find all
solutions. However, our scheme is general enough to be
directly applied for type generation, compile time mem-
ory allocation and efficient unification.

Keywords: Abstract interpretation, abstract unifi-
eation, logic programming, mode analysis, polymorphic
types, type generation

1 Introduction

Abstract interpretation is the simulation of program be-
havior in some abstract domain. In recent years, ab-
stract interpretation has emerged as a powerful tool to
derive properties of logic programs. Mellish (1986) used
abstract interpretation for efficient compilation and uni-
fication in logic programs. Bruynooghe et. al. (1987) in-
corporated polymorphic type information in the
abstract domain for compile time memory allocation,
garbage collection, and efficient unification.

Qur motivation for working on abstract interpreta-
tion is to detect the inherent parallelism in logic pro-
grams at compile time. Mode information is automat-
ically derived which guides the transformation of pro-
grams for efficient execution under an extension of the
committed-choice AND-parallel model which finds all
solutions to goals (see Bansal and Sterling 1987 & 1988},

The abstract domain we selected for deriving this
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information is type expressions. Logic programming
languages exhibit both parameteric polymorphism (Zo-
bel 1987, Mishra and Reddy 1985, Mycroft and 0'Keefe
1984, Bruynooghe et. al. 1987, Bansal 1988) and in-
elusion polymorphism (Bansal 1988). Mode information
has been derived in terms of type expressions, Integra-
tion of mede information with type information makes
modes more expressive. :

In this paper, we introduce a scheme for abstract
interpretation. Our abstract interpretation scheme has
four components: generalization, abstract unification,
summarization and concretization. We propose a gen-
eral algorithm for abstract unification which handles
inclusion polymorphism and equivalence classes formed
by the unification of two variables. The aliasing prob-
lem (Debray 1986), present in Mellish’s scheme (Mellish
1986), is absent in ours. Our scheme takes care of nega-
tion, built-in predicates, and recursive data structures
formed top down or bottom up, by self-recursive or mu-
tually recursive predicates.

. Using abstract interpretation, we have derived mode
information for various predicates needed for producer-
consumer relationship, automatic detection of a major
class of guards for efficient pruning of the search space,
derivation of type information for effective memory al-
location and unification, and automatic classification
of procedures for compilation of logic programs (in-
cluding multiple solutions) to committed choice AND-
parallelism (Bansal 1988). This scheme has been suc-
cessfully implemented using Quintus Prolog on a Sun
3/60.

The organization of the paper is as follows. The next
chapter discusses our abstract domain based on poly-
morphic types. Section 3 discusses concepts and algo-
rithms for generalization, abstract unification, summa-
rization, concretization. Section 4 gives an overall ab-
stract interpreter, discussing recursive data structures,
negation, and built-in predicates. The last two sections
compare our work with related work and give conclu-
sions respectively,



2 Abstract Domain

Our abstract domain restricts the standard domain by
identifying sets of terms as types and reasoning with the
types. We assume familiarity with polymorphic types
specifically parametric and inclusion polymorphism. A
good reference is available in {Cardelli and Wegner 1985)
The elements of our abstract domain are type vari-

ables, basic types, and type expressions, A grammar for
type expressions is given below,

Exp 1= Busic | < functor >(Ezpy, ..., Eepwm) |

Eapy \ Ezpy | List | Tuple | nil

Basic = Z | C | p | ¢ | Tupe-var

List 2= [ Ezp | List] U nil

Tuple := ( Erp, Tuple) |) Exp

A type variable is a generic symbol, which can be
associated with any type expression. It will be denoted
by small Greek letters o, g, -, 4.

Our basic types are integer, afomic-symbol, umi-
versal type, and null type. We denote inieger by the
calligraphic letier Z, atomic-symbol by the calligraphic
letter C, universal fype by p, and null type by ¢ We
use nil as the bottom value for all structures, Its use
iz & special case of parametric polymorphizsm known as
value sharing (Cardelli and Wegner 1985).

A type expression is defined recursively. It is a
type variable, a basic type, a compound term consisting
of a functor of arity n with n arguments as type expres-
sions, or & union of type expressions, used to incorporate
additive polymorphism (see Mishra and Reddy 1985).
Type expressions are denoted by w, &, 7. A union of
type expressions is denoted by {7,..., T}, where m =
2. For example E, C, {e, C}, Z, a) are type expres-
sions. A list of any type expression r is denoted by 7°
throughout this paper. For example, a list of integers is
denoted Z*.

Recursive type expressions, such as Z*, need to be
handled specially by abstract interpretation. A differ-
ent notation is used and explained in Section 4. One
concept that will be needed is the periodicity of a re-
cursive type expression. A common subexpression
of a recursive type expression is the biggest repeating
homogeneous subexpression. For example, the type ex-
pression for & list of an even number of integers, denoted
even £*, has common subexpression 2. The expression
odd E* denotes a list of an odd number of integers, The
perodicity of a recursive type expression is the
number of common subexpressions present in one cycle
of the recursive type expression. For example, Z* has
periodicity 1 and even Z* has periodicity 2.

Two type expressions having the same commen
subexpressions and periodicity of the form m aad k*m,
where m, k are positive integers, exhibit inclusion poly-
morphism. For example, £* includes the type expres-
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sion even Z*.

Type expressions are manipulated during abstract
interpretation. Our terminology for handling type ex-
pressions follows. An abstract substitution element
is & binding of a type variable o with a type expression
7. It will be denoted as /7. An abstract substitu-
tion, denoted ©, is a finite set of abstract substitution
elements.

An abstract instance of an abstract term 7 is ob-
tained by applying an abstract substitution © on il. It
will be denoted as 7o®. For example, if 7 = b{a, #) and
8 = {a/Z, 8/C} then the abstract instance is given by
Te® =HZ,0).

We need mode information for classification of pro-
cedures for transformation to commitied-choice AND-
parallel programs (Bansal 1988). Abstract interpreta-
tion is used for deriving mode infermation (Bansal 1988,
Bruynooghe et. al, 1987, Bruynooghe and Jenssens 1988,
Mellish 1986). We distinguish four modes, given below:

The calling mode of a goal is the abstract in-
stance, represented in terms of type expressions, of the
ahstract terms in the abstract domain of the goal before
the goal execution. It will be denoted by G¥.

The suecess mode of a goal @ is the abstract
instance, represented in terms of type expressions, of
the abstract terms in the abstract domain of the goal
after the goal execution. It will be denoted by G¥.

The initial mode of a clause A is the abstract in-
stance, represented in terms of type expressions, of the
abstract terms in the clause before the absiract inter-
pretation of A. It will be dencted by A’

The final mode of a clause A is the abstract in-
stance, represented in terms of type expressions, of the
abstract terms in A after the abstract interpretation of
A, It will be denoted by AF,

3 Basic Elements

The essence of abstract interpretation is the construc-
tion and traversal of an AND-OR tree in the abstract
domain, The abstract interpreter has four basic com-
ponents. Generalization maps the query and program
into an abstract goal and abstract set of clauses respec-
tively. Abstract unification is the abstract domain ana-
logue of unification in the standard domain and com-
putes the most general abstract instance of two terms
in the abstract domain. Summarizetion combines the
results of alternative ‘abstract computations’. Finally,
concretizalion associates the variables of the predicates
with the abstract bindings achieved using abstract in-
terpretation. This section describes each stage in detail.

3.1 .Generalization

(eneralization is a mapping of logical terms in the stan-
dard domain to an abstract term, given as a lype ex-
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pression, in the abstract domain. It is essentially the op-
eration abstraction given by Bruynooghe and Jenssens
(1988).

The mapping replaces integers by £ and atomic
symbols by C. Variables in program clauses are replaced
by type variables, while variables in the query need user
qualification. Variables representing universal types are
replaced by p. The functor names of the standard terms,
list constructs and tuple constructs are unaltered. For
example, the term af[1, £, john) maps to a( 2=, C).

3.2 Abstract Unification

Abstract unification is an abstract domain analogue of
unification in standard domain, We refer to the latter
as standerd unification. Abstract unification takes into
account inclusion polymorphism. We introduce some
new concepts required for abstract unification and then
present the algorithm,

Two abstract lerms 7 and w are abstract equiva-
lent if

(1) 7 and w are syntactically identical; (2) r is in-
chuded in w through inclusion polymorphism; or (3) r
and w are functors having the same functor name and
their arguments are abstract equivalent. For example,
AC, gl Z)) and {2, g(C)) are abstract equivalent.

Note that abstract equivalence is not actually an
equivalence relation, due to inclusion polymorphism. If
two distinct types 7y and p are included in some type
w, then my and r; are both abstract equivalent to w, bul
are not themselves abstract equivalent. Thus abstract
equivalence is not transitive,

Two abstract terms () and R abstract unify if there
exists abstract instances 1y of ¢ and Ry of R such
that @ and B are abstract equivalent, The notion
of most general common instance of two terms in the
standard domain can be adapted to define the most
general common abstract term, {which we will denote
mpgeat) included in two abstract terms. The complica-
tion is handling inclusion polymorphism. If two terms
abstract unify then there exists an abstract substitution
© such that @o® and Ro® are abstract equivalent,

For example, the abstract terms ae, Z, €) and
a(C, C, Z) abstract unify with mgcat as (C, £, Z). The
corresponding abstract substitation is < afC > and ab-
stract instanees a{C, Z, C) and oC, £, Z) are abstract
equivalent.

Two abstract terms + and w abstract unify if
(1) 7 and w are abstract equivalent
(2) 7 and w are ordered sets of type expressions of the
form {71, ..., T} and {wy, ..., w,} and there exists a
nonempty maximal ordered set of type expressions M
= {‘I";_, very Thy Gy oesy {H‘f} (k<mandl =< n:l auch that
every 7; & M is abstract eguivalent with at least one
element w; € M; similarly, every w; € M is abstract

equivalent with at least one element 7, € M

(3) r or w (or both) are recursive type expressions, and a
finite unfolding of the recursive type expressions makes
the unfolded parts ebstract equivalent. For example, Z*
and even Z* abstrack unify with mgeat as even 27,

Thera are three differences of abstract unification
from standard unification, Firstly, the abstract terms
may be 2 set of expressions, In standard unification,
a variable always has a single value. Secondly, one ab-
stract teym may be included in the other through inclu-
sion polymorphism. In standard unification, twe ground
logical terms must be identical. Finally, abstract unifi-
cation handles recursive data structures with different
periodicity,

The abstract disagreement set, D, of two ab-
stract terms 7 and w is the pair of abstract subterms D,
and I, occuring at the same symbol position, such that
there iz at least one symbol in D which is not identical
with the corresponding symbaol in D,,. This definition i=
different from the definition of disagreement set given
by Lloyd (1984) becanse the position of the symbol is
picked up nondeterministically without any ordering.
For example, if 7 = a{w, &) and w = afZ, C) then there
are two disagreement sets namely D) = {&, £} and
Dy = {a, C}.

Singular composition computes the greatest lower
bound of the abstract substitutions of the same vari-
able . It is commutative and applied to compute the
abstract substitution element for & present in different
abstract disagreement sets during abstract unification.
It is denoted by the symbol .

Consider two disagreement sets [ = {a, £} and
Dy = {a, C}. The singular composition [y @ Dy gives
the abstract binding «/Z, since Z is included in C. A
procedure for singular compaosition is given in Figure 1.

The procedure given in Figure 1 may not terminate
when both abstract substitution elements are recursive
type expressions which are not abstract unifiable. For
example, even Z* and odd £ are not abstract unifiable
resulting in the non-termination of the singular compo-
sition procedure, A meme function is used to turn the
procedure into an algorithm, by detecting infinite loops
while finding out the abstract unifiability of recursive
type expressions,

Monsingular composition is similar to compesi-
tion as defined by Llayd {1984) for standard unification,
The difference between is due to the presence of sets of
bindings, recursive data structures and inclugion poly-
morphism in abstract domain. The nonsingular compo-
sition of the abstract substitutions
E"'I.I'r":": ﬂ'lf'ﬁ.r--: Cm [T > and 61;“: ﬂl,ﬁﬁ'l: sarg ﬁmfmﬂ =

is obtained from the ordered set

< G]JT‘L o a],u.-, ﬂ'mf'?'n Q e‘h IEIJFWI.I any .a!ﬂfwm =

by deleting bindings in 7; 0 €5 which are of the form



or; with the exception of recursive type expressions and
removing bindings & /w; such that & € {e, ..., am}.
Mote that r; o ©; may be a set of expressions. Nonsin-
g‘ula.r composition is denoted by .

For example, if 8, = < afoy, §/2 > and By =
< ayf{ME), C}, B/C =, The nonsingular composition,
8,08y, is < af{h(Z), C}, B/ E>.

Procedure Singular Composition;
Input: Two abetract substitution elements of the form o7
and afu;
Output: Abstract substitution element o/o;
begin
ifr{or w) = g then ¢ := w (or 7)
elseif w or v is ¢ then o = ¢
elseif 7 (or w) is a basic type and = {or w) includes
w (or ) then ¢ = w (or 7)
elseif 7, w are recursive type expressions with

common subexpression §, and pericdicities m, n then
& = a recursive type expression with common subexpres.

sion & with periodicity equal to lem{m, n)
elseif v and o are abstract unifiable, and one is nonrecur-
give while the other is a recursive type expression, then
o = mygeal of v and w
elseif v is an ordered set {7, ..., 7in} and or is an ordered
set 2 '[If-u"j_. - h-"n} then
in
bflﬂl‘.iaﬁsa Stod,
for each pair (7, w;) € 7 % w do
=5 {nd )k
Let 5 be of the form {t1, .., ta i
for each olement ¢; € 5 do
if ¢; is included in ¢; € 5 (i # j) through inclusion
pﬂlrsj-'nmphim then §:= §- {t;};
=

end

Figure 1: Procedure for singnlar composition

To abstract unify two abstract terms r and w, com-
pute the abstract disagreement set D= (D,, D). f D
has no unbound type variables and both D, and D, are
not abstract equivalent then abstract unification fails,
otherwise I, and D, are replaced by the mgeat of D,
and I),. If either D, or I}, has an unhound type vari-
able o then all the disagreement sets are found for a.
The singular compesition of these disagreement sets is
found to determine the abstract binding § for e, Sin-
gular composition of all the disagreament sets is neces-
sary to determine the greatest lower bound. After the
abstract binding is found, the previous abstract substi-
tution ¥ is updated by forming the nonsingular com-
position @ < af§ >, This new abstract substitution
is applied on the two abstract terms to form new ab-
stract terms T o 20 < a/f > and w0 0 < a/f >.

?If necessary, consider sifigle element as a ast
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This process is continued until the disagreement set is
empty. :
Consider the absiract unification of two abstract
terms afe, o) and afZ, C). There are two disagresment
set Dy = {a, C} and I3 = {&, Z}. The abstract sub-
stitution < afC > obtained from D;, when applied to
first term gives the abstract instance as a{C, C) which
ahstract unifies with the second term a2, C) to give
the mygeat al Z, C) which is wrong, The correct mgeat is
a(Z, Z) which is achieved by taking the singular com-
position of the binding < afC > | obtained from [
and < afZ > obtained from [J,.

Singular composition is not present in standard uni-
fication because of the absence of inclusion polymer-
phism, recursive type expressions, and sets of type ex-
pressions. In standard unification, there is only one com-
patible binding.

The algorithm for abstract unification is given in
Figure 2.

Algorithm Abstract Unification;
Input: Two abstract terms 7 and w;
Output: mgeat § and the corresponding abstract
substitution I;
begin
tialize £ to ¢ (the identity abstract substitution);
while 7 is not identical 1o w do
hegin
Compute an abstract disagresment set D = {D,, 0.}

if ) does not have any unbound type varizble then
if D, and D, are abetract equivalent then
begin
nd the mgeat I of D, and Dy
Replace 0, and D, by Fin v and w respectively

end

else fail and return B = @ and § ;= ¢
elseif [ contains an anbound type variable o then

hgﬁu

d all the abstract disagreement sets from 7 and w
having varizable o;
Let the abstract substitution elements {or o in all the

abstract disagreement sets be afr, ..., ofry (m > 0)
if & does not oceur in 7; {1 < i < m) with the exception
of recursive type expressions then

begin
3:‘ =afn @ .. Dol Ei=E8 <afr>;
i=recafr>wiswe <afr >

ead
en
elge o occurs in ;. Fail and return £ i=Q and 6 := &

end { while };
=71 = w, Return E and §
end.

Figure 2: Algorithm for Abstract Unification

If the abstract unification of two abstract terms
and w gives the mgeat as § and the corresponding ab-
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stract substitution I, then 70X, wok, and 4 are abstract
equivalent, but not necessarily syntactically identical,
The abstract unification of abstract equivalent abstract
terms gives the abstract substitution e, the identity ab-
stract substitution. For example, the abstract term
a(a, {Z, f{C)}) abstract unifies with o(Z, {C, §(£)})
to give & = < o/ Z > and mygeat o Z, 2).

3.3 Summarization

Summarization is the computation of the leasf upper
bownd for the type expressions associated with the type
variables in the calling mode of the abstract goal after
the abstract interpretation of the abstract goal. Sum-
marization is used to compute the abstract bindings for
the sueccess mode of the calling absiract goal, Summa-
rization iz also commutative,

For example, the summarization of € and Z gives C.
The summarization of {f{£), £}, {g{E), C} gives
{2}, g(2), C}. The summarization of the indetermi-
nate lype g and any type Expmﬂ:i:m T g;wca. . The
summarization of the aull type ¢ and any type expres-
sion T gives ¢.

The algorithm for summarization is given in Fig-
ure 3,

Algorithm summarization ;
[nput: Abstract substitution elements a7, afus
Output: Abstract substitution element afe;
begin
if 7 {or w) = p or ¢ then o 1= w (or 7)
elseif T {or w) includes w (or 7) then o = r {or w)
elseif T {or w) is non recursive and w (or ) is a recursive
type expression and both are abstract uniftable then
& = (or 7)
elseif 7 {or w) and w {or 7) are recursive type expressions
with same common subexpression § and periodicities m
and k*m respectively then
T {or w) includes w (or 7). & == 7 {or w)
elseif r and w are not set of type expressions and they do
not match then o 1= {r, w}
elseifl v is an ordered set {my, ..., T} 20d w e {un, ooy n}
then
hegin
Initialize S to §
for each pair (r, o) (1 i< m,1 £ a)do
§ = summarization of r; and w;. §:= S {6}
Remove all ¢; € §included in 4; € 5,1 # J;

ead™’

end.

Figare 3: Summarizing the abstract substitutions elements

3.4 Concretization

Concretization is the process of associating t.h? program
variable in the standard domain to the binding of the
corresponding type variable in the abstract domain to

derive the type information associated with every vari-
able in Lthe program.

Abstract interpretation of the non recursive clause
append([ |, X, X) of the procedure append/3, given in
Section 4.2, gives initial mode append{nil, =, Z*) and
the final mode append(nil, =, Z*). After concretiza-
tion the abstract binding associated with the program
variable X is Z°.

4 Putting the Pieces Together

4.1 DBasic Interpreter

Given & query (} and a program P, () and P are gen-
eralized to give @F, the calling mode of @ and F', the
generalized program. At each resolution step, GY, the
calling mode of the abstract goal G abstract unifies with
the head of an ahstract clanse 4 = H:- H,, ..., B, with
ahstract substitution @, GF is reduced to a conjune-
tion of abstract subgoals By, ..., B,. © forms the initial
binding environment Ep of A. At any peint, the abstract
instance of the abstract subgoal Biyy o E; forms BE,,
the calling mode of the abstract goal Fjy;. The abstract
subgoal Biy, is abstract interpreted using BE,,. The re-
sult is BS,,, the success mode of the abstract subgoal
B;y;. The abstract substitution @, formed during
abstract unification of B, and BY, is used to update
the binding environment E; to gel Fiy.

The new binding environment Fyy, is formed by first
creating E! from E; by copying the abstract bindings for
all the variables in E; and then performing the following
three operations: (1) The abstract unification of the
abstract bindings of the common type variables both in
E{and ©F,_ . (2) The inclusion of the abstract bindings
for those type variables which oceur in E} but not in
©3,,, (8) The inclusion of the binding for those type
variables which occur in 8§, , but not in Ej.

After the abstract interpretation of the last abstract
subgoal B,, the final binding environment Ey, is used to
find Af o E,, the final mode of the clause, and is rep-
resented as AF. The final mode AF is absteact unified
with BS, to give G', the individual success mode due
to the abstract interpretation of A. Finally, all these
individual suceess modes from all the clauses with the
same relation name and arity are summarizedto give the
success mode G¥ for the abstract goal G. After the ab-
stract interpretation is over, the program is concretized.
A tormal algorithm is given in (Bansal 1988).

4.2 Recursive Data Structures

Recursive data siructures in logic programs are con-
structed top down or bottom up. In top down construc-
tion, the goals in the body incrementally instantiate the
subparts of the structure created in the clause head.



For structures built bottom up, the cutput variable is
bound to a recursive type expression (accumulators are
a specific case) at the terminafing condition. These two
cases, which can be distinguished syntactically, need to
be treated separately by abstract interpretation.

Before giving an example of each, we discuss our
representation of type expressions that are built during
ahstract interpretation. We associate a directed graph
with each type expression. The graph contains three
basic node types: functor nodes, union nodes, and leaf
nodes. The leaf nodes can either be a basic type or a
type variable.

Recursive type expressions are handled by including
a fourth node type, recursion nodes. Recursion nodes
are leaf nodes representing recursion point in a data
struclure, A list of integers, 2, is represented by the
type graph given in Figure 4. The recursion node L3 is
marked az rec{a). The expression af{nil [£ | reela)]}
is the textual equivalent of the type graph.

An algorithm for computing the type graph for re-
cursive data structures is given in (Bansal 1988), It de-
pends on the knowledge of recursive procedures. Re-
cursive procedures are determined with a variation of
the standard algorithm for computing the strongly con-
nected components of a directed graph, with clause head:
ag nodes and subgoals as edges, which takes time linear
in the total number of clauses and goals. We summarize
some salient details here. Recursion nodes are marked
in order to distingnish them from veid variables and for
termination of the abstract unification algorithm when
two recursive type expressions are not abstract unifi-
able. The position of recursion nodes is determined by
indexing the leaf nodes with type variables. The indicea
for branches of all the funclor nodes are marked in left
to right and ascending order. Union nodes do not affect
the indices as they represent alternatives. For example,
in the type graph in Figure 4, the recursion node L3
rec{e) has index [2] and the node L1 has index [ ].

o
Union
L1
nil sl2
[} ‘/ \
L2 L3
integer rec(o)

[11 2]

Figure 4: Graph Representation of Z*
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During abstract interpretation, each time an abstract
goal G abstract unifies with an abstract clause head of
a recursive clause, and the abstract clause is a member
of the set of its ancestors, then a recursion cycle is com-
plete. The intermediate success mode G¥ is set to be
(7Y, After the abstract interpretation of all the clauses
defining (7, summarization is done. At this point, recur-
sion nodes are identified and recursive type expressions
are formed. (7 is abstrach interpreted until the last two
success modes match.

We note that our procedure does not distinguish be-
tween self-recursive procedures and mutually recursive
sets of procedures, All that is necessary is the structure
of recursion cycles in the program, -

The success and calling modes of the abstract sub-
gﬂa‘lﬂ, and the initial and final modes of the clauses in-
voleed after the invocation of the first recursive clause,
are updated only after the calling and success mode in-
formation is available for the top level goal invoking the
first recursive clause,

We now give an example of abstract interpretation
for both a top down and bettom up construction of a
recursive data structure. The first involves the proto-
typical top down program, append.

append(| |, s, 8s).
append([ar | as], fala | ya]) -
append(as, Bs, ys).

Let the calling mode of the abstract gozl append/§ be
append|ces, 35, Z*).

The type variables as and Ss are unbound. The ini-
tial mode of the nonrecursive clause after the abstract
unification is eppend(nil, Z*, Z*). The final mode of
the neorecursive clause is same as the initial mode,
Similarly, the initial mode of the recursive clause is

append([Z | as, fs,[2 | 2°]) with the initial binding
environment Fy as < 78/ Z* >, The index for the type
variable aes is [2] and for s is [ ]. Alter the detection of
the recursion eyele, summarization of the abstract bind-
ings for the top level goal append/§ gives the abstract
binding for as as { nil, [£ | @y5] } and Fs of the form
B8, The index [2] of oz is & proper prefix of the index
[2, 2] of the variables oys. Therefore as iz a recursion
nede and it is marked. However, index [ ] for 8,5 is same
as Js, Therefore, Bs is a void variable not invelved in
the formation of the recursive data structure. The final
mode of the recursive clause becomes append([Z | 2%],
£+, E*). After summarization of the bindings returned
by both the clauses the success mode of the top level
goal append/T becomes append([Z | Z°], Z*, 2°).

We now give an example of bottom up building of
recursive data structures. The type variable 3 associ-
ated with recursive data structure (such as accumnu-
lator) is initially bound to a base element and keeps
building. The output variables are instantiated by uni-
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fication with § at the termination of recursion. For ex-
ample, take the recursive abstract predicate reverse/§
as described below

reverse( as, Gs) - reverse( as, nd, §s).
r\:mme[m', ¥y 'ﬂ.
reverse(a | as], 4, 8s) =

reverse( as, [a] 4], Bs).

the type graph for the accumulator 4 is built bottom
up from nil. For the calling mode reverse(Z*, vs), the
calling mode of the abstract subgoal reverse/¥ia
reverse{ 2%, nsl, ys), After abstract unification with non-
recursive abstract clanse reverse/9, the initial mode for
the abstract clause is reverse(nil, nil, nil) which also be-
comes the final mode. The initial mode for the recursive
abstract clause of the predicate reverse/3is

reverse([Z | 2], nil, 75). The second invocation of the
predicate reverse/3 gives initial mode of the nonrecur-
sive clause reverse(ndl, [Z], [Z]). The type expression
[Z] is transformed to represent recursive type expres-
sion Z%. The final mode of the nonrecursive clause is
reversel nil, Z*, Z*). The initial mode of the recursive
clause is reverse{as, [£], 4s). The type expression [£]
is transformed to give the recursive type expression Z°.
The intermediate initial mode is also the intermediate
final mode for the recursive clause. Summarization gives
the success mode of the abstract subgoal reverse/? as
reverse( Z°, mil, E*).

4.3 Buili-in Predicates and Negation

The calling mode information for the built-in determin-
istic predicates >, <, <, =, add/9, and diff/?is prede-
fined, If the calling mode of the abstract goal matches
with built-in initial mode of the predicates then corre-
sponding final mode is returned, For the built-in pred-
icates, such as functor/ there can be more than one
mode; arguments may be polymorphic type expressions,
For example, the mode check for the initial mode of
Junclor/3 ia

Junctor_mode{a, B, 7) -
equally, Z), unbound(g),
bound{ o), functor{a,.,.).

The corresponding final mode is functor{a, C, Z).

The negated goal not & does not provide any new
abstract binding, and the binding environment of the
abstract clanse remains unaltered after the abstract in-
terpretation. However, the abstract interpretation of &
is done normally as if negation were absent.

5 Related Work

A history of the use of abstract interpretation in logic
programming is given by Sondergaard (1987). The re-

cent interest in abstract interpretation was sparked by
the work of Mellish (1986). le does not take into ac-
count the equivalence class of variables formed by uni-
fication causing aliasing problem as demonstrated by
Diebray (1986), The aliasing problem is not an issue for
our abstract interpreter because of the more detailed

abstract domain.

Since last year, Bruynooghe et. al, {1987 and 1988)
have published papers proposing the use of type expres-
siens in abstract interpretation. Recently, Hruynooghe
and Jenssens (1988) have proposed an integration of
mede and type information, similar to our scheme. How-
aver, their scheme does not take into account (1) In-
clusion polymorphism and recursive type expressions
fully (2)Information of the equivalence class formed by
unification of Lthe two unbound type variables, In their
scheme, aliasing problem is remeoved by repeating the
goal ontil instantiation state does nof alter any more:
This scherne is computationally inefficient and less for-
mal.

Zobel has suggested a scheme to denive polymor-
phie type information (Zobel 1987). His analysis is bot-
tom up. Although his type unification scheme takes into
account unification of unbound type variables, it does
not handle inclusion polymorphism and recursive type
expressions [ully. It is not clear how his type unifica-
tion algorithm will terminate while unifying two recur-
sive type expressions such as even Z° and odd Z=, His
scheme does not find a fixpoint in the case of mutually
recursive predicates and may lead to incomplete type
infarmation,

COur scheme is top down in contrast to (Zobel 1987),
We derive mode information (in terms of polymorphic
type expressions), Our abstract unification scheme also
takes into account inclusion polymeorphism and equiva-
lence class formed by abstract enification of the type
variables and solving the aliasing problem naturally.
Mode analysis is done at the same time as abstract in-
terpretation. Our scheme has been applied to detect the
producer-consumer relationship. Producers are uninstan
tiated in the calling mode and instantiated in the suc-
cess mode. Similarly, consumers are instantiated in the
calling mode. The type expression in modes preserves
the instantiation information. We use this mode infor-
mation for a new classification of procedures incorpo-
rating integration of classification based en number of
solutions and deferminacy (Bansal 1988). Our abstract
interpretation scheme can also be used for type gener-
ation in & logic program,

6 Conclusions

We have given a scheme for the abstract interpretation
of logic programs which integrates type expressions with
mode information. We have developed a formal scheme



for abstract unification which incorporates both para-
metric polymorphism, inclusion polymorphism, and
equivalence class of the unbound type variables, The
problem of aliaging is not present,

This abstract interpretation can be used efficiently
for type generation, producer comsumer relationship,
and classification of procedure for efficient compilation
of logic programs to committed-choice AND-parallelism,
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