PROCEEDINGS OF THE INTERNATIONAL CONFEREMCE
ON FIFTH GENERATION COMPUTER SYSTEMS 1988,
edited by [COT. © ICOT, 1988

413

PRESERVATION OF STRONGER EQUIVALENCE
IN UNFOLD/FOLD LOGIC PROGRAM TRANSFORMATION

Tadashi KAWAMURA

Tadashi KANAMORI

Mitsubishi Electric Coarporation
Central Research Laboratory
8-1-1 Tsukaguchi-Honmachi

Amapgazaki, Hyogo, JAPAN 661

ABSTRACT

This paper shows that Tamaki-Sato’s unfeld/ fald
transformation of Prolog programs preserves equiva-
lence in a stronger sense than that of the usual least
Herbrand model semantics, which Temali and Sate
originally showed. Conventionally, the semantics of
Proleg programs is defined by the least Herbrand model.
However, the least Herbrand model does not always
characterize what answer substitutions are refurned.
This paper proves that any program obtained from an
initial progeam by applying Tamaki-Sato’s transforma-
tion returns the same answer substitutions as the initial
program for any given top-level goal.

1. Imirodnection

The effectiveness of the unfold ffold rules in pro-
gram transformation was first demonstrated by Burstall
and Darlington {1977) for functional programs. Manna
and Waldinger (1979) independently proposed a pro-
gram synthesis method based on similar rules. Because
the purpose of program transformation is to mechani-
cally derive programs which perform the same task, one
of the important properties of such program transfor-
maiion rules is preservation of equivalence. An equiv-
alemce yelation between programs is defined based on
the semantics of the programs. Different semantics
can give different notions of equivalences (¢f. Maher
1986). Tamaki and Sato (Tamaki and Sato 1984,1986)
(Tamaki 1987) proposed unfold/fold rules for Prolog
pregrams which preserve equivalence in the sense of the
least Herbrand model semantics, which is the conven-
tional semantics of Prolog programs. However, Lhe least
Herbrand model semantics does not always characterize
what answer substitutions are returned. For example,
consider the following two Prolog programs P, and P,.

Becanse the Herhrand universes of F; and Ps are both
{a}, they are equivalent in the sense of the least Her-
brand model semanties. However, these two programs
respond in different manners to a guery

7- p(X).

Py relurns the empty substitntion <>, while Ps returns
substitution <X <=a> as its answer. To make a distinc-
tion between these programs, more refined equivalence
is required.

This paper shows that Tamaki-Sate’s unfold /fold
transformation of Prolog programs preserves equiva-
lence in a stronger sense than that of the msual least
Herbrand model semantics. Section 2 describes Tamalki-
Sato's transformation of Prolog programs. Then, Sec-
tion 3 introduces a set of pairs consisting of a given
top-level goal and the answer substitution as the seman-
ties of Prolog programs, and proves that Tamaki-Sato’s
trensformation also preserves equivalence in the sense
of this semantics.

In the following, familiarity with the basic termi-
nologies of first order logic such as term, atom, definite
clause, substitution, most general unifier{m.g.u.} and
s0 on is assumed. A program is a set of definite clanses.

. The syntax of DEC-10 Prolog is followed. As syntacti-

cal variables, X, ¥ are used for variables, and A, B for
atoms, possibly with primes and subscripts. In addi-
tiom, #, 1, &, T are used for subsiitutions, and A# for the
atom ebtained from atom A by applying substitution
i,

2. Unfold/Fold Transformation of
Prolog Programs

This section describes Tamaki-Sato’s unfold /fold
transformation (Tamaki 1987),

Definition Initial Program
An initial program, Fy, is a program satmf;.r;n,g
the following conditions:

(a) Fy is divided into two disjoint setz of clanses,
Py and Poa. The predicates defined by P
are called new predicates, while those by P are
called old predicates.

(b} The new predicaies never appear in F,y nor in
the bodies of the clanses in Py .

Example 2.1 Let Fy = {Cy, Gy, Ca} be an initial pro-
gram, where
ap{

M).
FLI M,[X|N]) - ap(L,M,N).

414

Ca : insert{X,M,N) =
ap(U,V, M), ap(U,[X|V],N).
and Fg = {Cy,Ca}, Pagw = {Ta}. Then ‘ap’ is an old
predicate, while ‘insert’ is a new predicate.

Definition Unfolding

" Let B be a program, © be a clavse in P, A be
an atom in the body of C, and €y, Cy,...,Ch be all
the clauses in P, whose heads are unifiable with A,
say by mgu's f,8,...,0. Let C! be the result of
applying &; after replacing 4 in © with the body of O},
Then Py = (P, —{C}) U{C{,C],...,CL}. C is called
the unfolded clauwse and &y, Cs,...,Cy are called the
uafolding clauses.

Example 2.2 Let Py be the above program. By un-
folding C5 at atom ‘ap(U,V,M)’ in the body, program
B ={C, 04,04, 5} is oblained, where

Ci : insert(X,M,N) :- &PE[] [X|M],N).

Cj : insert(X, N

‘ ap(U,V,M), ap([¥|UL[X|VLN).
By uniolding C,y and Cj further, program Fy = {Cy, Cy,
5, O} and Py = {Cy, Cq, Cs, C7} are obtained, where

Cs: msert(]{ M, [X

Cr + insert(X,[¥| M, [YIN]) -

ap{U,V,M), ap(U,[X|V],N)

Definition Folding
Let F be a program, C be a clanse in F; of the

form
dg - ALHAﬂ:l""'_IAH- {n:.:-I}}.
and [be a clause in P, of the form
Bu B Blr-H'Zl B {m} B]

Suppose that there exists a snbst.ltut.lon # satisfying the
following conditions:

(a) Bif = Aj,, Bafl = Ajy,..., B8 = Ay, where
Fado, - ooy jim aTE different natural numbers.

(b) For each variable appearing only in the body of
D, @ substitutes a distinct variable not appearing
in {Ao, A1, ..., A} — {4;,, Ajsr- .., AjL,}.

{c) D is the only clanse in FPoew whose head is unifi-
able with Bl .

(d) Either the predicate of C’s head is an old predi-
cj:nte or C' i ls unl'o]ded at least once in the sequence

I 5 TR
Lﬂt ' be a clause with head 4; and body {[By}f
U ({dy, 4z, ..., An} — {45, 455, ..., 45.}). Then
Py =(F- -[C-'}}U C'}. C is called the foided clause
and D is called the folding clause.

Example 2.3 Let Py be the above program. Then,
by folding the body of Cr by Cj, program Py =
{Cy, 5, Cg, Ca} is obtained, where

Cs : insert(X,[Y|M],[Y|N]) :- insert(X,M,N).

Definition Transformation Sequence

Let Fy be an initial program, and P4y be a
program oblained from P, by applying either unfold-
ing or folding for i > 0. The sequence of programs
E,R,..., Py lsca.]led a transformation sequence start-
ing from f.i;,

Example 2.4 The sequence Fy, P, Py, P;, Py in Exam-
ple 2.1-2.3 iz a trapsformation sequence starting from
Fpin Exa.n:lplu 2.1. Nole 1.]131.. for query

7. inzert(X,[Y],N).
these five programs return the same answer substitu-
tions

<N<=[X,Y]>,

=N«=[¥, X]|>

3. Preservation of Stronger Equivalence

This section first introduces several basic notions
of proof tree, then proves preservation of equivalence in
the stronger sense along the same line as (Tamaki 1987)
(Tamaki and Sato 1986).

3.1 Proof Tree

Because we need to consider what answer sub-
stitutions are returned for given top-level goals, more
refined notions of proof Lrees are necessary to avoid the
complications due fo the strategy in nondeterministi-
cally selecting atoms to be resolved.

Definition Labelled Tree

A labelled tree is a finite tree whose nodes are
labelled with expressions of the form “4 = B", where
A and B are unifiable atoms. The set of all the labels of
labelled tree T is called the Jabel set of T'. The number
of nodes of labelled tree T is called the size of T

Definition Most General Unifier of Labelled Tree

Let T be a labelled tree and F = {Ad; = By, Az =
By,..., Ay = Bi} be the label set of T. Then T (or
E) iz zaid to be unifiable when there exists a substi-
tution o« such that A;or and B;¢ are identical for all
i=1,2...,k A substitution T is called the most gen-
eral unifier of T (or E) when 7 is the most general
substitution among such substitutions.

Definition Most General Unifier of Substitutions

Substitutions oy, s,...,0, are said to be uwnifi-
able when there exists a substitution ¢ such that, for
each oy, there exists a substitution 5 satisfying ¢ =
o;7;. A substitution r is called the mest general unifier
of oy, oy, ..., 0, when 7 is the most general substitution
among such substitutions.

Drefinition Proof Tree
Let P be a program, T' be a labelled free and
T, T, ..., T be its immediate subtrees. The labelled
tree T is called a proof tree of atom A with answer
substitution o by P when there exists a clanse ' in P
of the form
B - B[,Bg,... ,.Hn
such that
{2} A and B are unifiable, say by an m.gu. §,
(b} the root node of T is labelled with “4 = B
{ﬂj TI-:ITEJ'- Iy are Pm'}f trees of Bl:rBh tad IBﬁ
with answer substitutions oy, 02,..., 00 by P re
spectively, and -

{d) o is the restriction of an m.gu. of 8,0y, 079, ..., 7y
to the variables in 4.
The clavse C is called the clause vsed at the roof of T,
and 17,15, ..., T, are called the immediate subproofs of
T, Proof trees are denoted by T' and 5, possibly with
primes and subscripts.

Example 3.1.1 Let Fy be the program of Example
2.1. Then proof tree T} of ‘insert (X [Y],N)" with answer
substitution <N <= [X,¥]> by F; is depicted below:

"hﬁtl[ﬁ,m,ﬂ]-mt[}[ﬂ,unﬂf}“
“ap(Uo, Vo, Mp) - “ap{U,[Xo|Va],Ho)
=ap([],My,M,)" =ap{{],Mz,Mz)"
Proof tree Tj of ‘insert(X,[Y],N)’ with answer substitu-
tion <N «=[Y,X]> by Fy iz depicted below:

ﬂn;erf.{x,m,m-msmixu.Mn,N{-l’“

“ap(Ug,Vo,My) “ap(U, [Xa| Vo), No)
"*P':[xlllul By [X |)" ==P'[[x!|1—I?]-M:s[K=|N=]]"
W{L thN) “ap(Lz, Mz, Nz
1=3P|:|]I:MS::M-?}H. Pl: EE]:{[]-L'!Jmﬁ:]”

Definition Proof Forest

Let P be a program, and 11, T5, ..., T, be proof
trees of atoms Ay, Asg, . .., Ay with answer substitutions
71,63, ..., 0 by P. A multiset F = {11,T2,...,Th}is
called a proof forest of atom sequence Ay, A;,..., 4,
with answer substitution v by P when 7 is an m.g.u. of
L Y - TR . Proof trees Ti.,TE, Ao ,Tn are called the
component proof trees of F. Proof foresis are denoted
by F, possibly with primes and subscripts.

Example 3.1.2 Let Py be the program of Example 2.1.
Then proof forest Fy of atom sequence ‘ap{Ug, Vo,[Y]),
ap(Ug, [X|Vo], M)’ with answer substitution <Uy <[],
Vo <=[Y], N<=[X,Y]> by Fy is depicted below:

"npl{Uu,‘:'n, } “Wtuﬂr[xﬂlvﬂ}rﬂ}
=dp(] |,My,M,)" =ap([],M3,M3)

Proof forest F; of atom sequence ‘ap{Uq,V,[Y]), 2p(Uq,
[X|Vg],N)’ with answer substitution <Ug <= [Y], Vo +=
[, W<=[Y X]> by F; is depicted below:

“ap{Up,Vo,[¥T) Yap(Ug, [Xg|Va] 1)
'EP[[KIH-'i] My, [Xa[M])" 'W{ﬁill-l!]'umi-[xﬂﬂhﬂ”
ap(Ly, My, Nll “ap(Ls,Ms,Na)
E'-Pﬂ | M, M)" =ap([|,M,Ms)"

Definition Success Set

Let P be a program. The sel of all the atom-
substifution pairs (A4, ¢) such that there exists a proof
tree of A with answer substitution o by P is called the
suceess set of P, and denoted by AM{FP).

Note that the success set characterizes Prolog pro-
grams more precizely than the least Herbrand model. In

415

the following discussion, we consider preservation of the
success sel in place of the least Herbrand model.

Lemma 3.1.1 If T is a proof tree of atom A4 with
answer substitution o, then ¢ is the restriction of an
m.g.u. of the label set of T to the variables in 4.

Proof By induction on the strmeture of proof trees.
Let “4 = B" be the label of the rool node of T, § be
an mgu. of A and B, and I}, T%,..., Ty be T"s imme-
diate subproofs of By, By,..., B, with answer substi-
tutions ey, o9,. .., 7. By the induction hypothesis, o;
is the restriction of an m.g.u. of the label set of T} to
the variables in B; for i = 1,2,...,n. From the defi-
nition of proof tree, & is the restriction of an mpg.u. of
#, o1, 9,..., 7, to the variables in A, and the variables
in A never appear in the label sets of T3, T3,..., Th.
Thus ¢ is the restriction of an m.g.u. of ihe label sot of
T to the variables in A,

Lemma 3.1.2 Let E be the label set of & proof tree
T, *A = B" be an element of E, and ¢ be an m.pg.u.
of A and B. Then, substitution #+ is an m.gu. of F if
and only if 7 is an m.g.u. of (F — {4 = B})A.

PIGUI'. ﬂb\ri:}u.ﬁ.
3.2 Partial Correctness

Let Py and F; be Prelog programs such that F
is obtained from Fp by applying the transformation
rules. A transformation of Prolog program is said to
be partially correct when AM{Fy) 2 MUF;) holds, This
subsection proves partial correciness.

Lemma 3.2.1 Let I be a program and € be a clause
in F;. Let €' be a clause obtained from C' by permuting
the atoms in the bady of C, and F] be (F;—{CHUL{C"]}.
Then M({F) = M(F/).

FProof Let T be a proof tree by P, and T° be a proof
tree obiained from T by permuting the subproofs of the
atoms in the body of €' according to the permutation
from ' to ' when clause €' is used at the node. Then,
this correspondence gives a one-to-one correspondence
between A F;) and M(F]).

This lemma implies that we can arbitrarily rear
range the atoms in the bodies of the clanses in program
F; before applying the next transformation rule while
keeping the success set of F;.

Lemma 3.2.2 Let F; be a program in a transformation
sequence, and T be a proof tree of atom Af by program
F;. Let T' be the labelled tree obtained from T by
replacing A# in the left-hand side of the root label with
A. Then T is a proof tree of atom 4 by program B,

Proof. Obvious.

Lemma 3.2.3 Let F} be & program in a transformation
sequence, T be a proof tree of atom A with answer

416

substitution ¢ by program F;, and # be a substitution
for the variables in 4 such that # and ¢ are unifiable.
Let T" be the labelled tree obtained from T by replacing
A in the left-hand side of the root label with. Af. Then
T" iz a proof tree of atom A9 by program F;.

Proof. Obviows,

Lemma 3.2.4 Let Py, Py, ..., Py be a transformation
sequence., I M{F) = M(Fy), then M{F) 2 M{Fip1)
fere=0,1,..., N ~1.

Proof, Let (A,¢) be an atom-substitution pair in
M(Fqq), and T be a proof tree of 4 with answer sub-
stitution ¢ by Py, By induction on the structure of
T, we will construet a proof tree TV of 4 with answer
substitution & by F;. Let C be the clanse used at the
root of T

Case 1: Cisin F.
Let & be of the form
Ag 1= A, Ag, ., s {ﬁ' = D]
and Ty, ,Ta,,...,Ta, be Ts immediate subproofs of
Ay, As,. .., 4y, By the induction hypothesis, there ex-
ist proof trees T3, 17 ..., T4 ofdy, dp,... Ax by F;

with the same answer substitutions as Tay Tagy ooy Ty

Let T' be a proof tree obtained by putting the root node
labelled with "A = A" over T, T} ,..., T . Then,
from the definition of answer 5uTastitution, o 15 an an-
swer substitntion of T¥. Hence T¥ is a proof tree of 4
with answer substitution & by F;. (See Figure 3.2.1.)

"_:l — Aun
P
A Tagse iy T,
induction [1
A= A"
B /

\
Tags Tagre 1 Th,
Figure 3.2.1 Construction of Proof Tree for Case 1

Case 2 : € is the result of unfolding a elause C7 in P

Let &' be the unfolded clanse of the form

Aﬂ. el AI,AE,...jA“ {ﬂ. - D}
and I be the unfolding clause of Lhe form

By := By, Bq,..., By, (m >0,
From Lemma 3.2.1, without loss of generality, we can
assume that 4; and By are unifiable, say by an m.g.u.
#, and C is of the form

Agfl 1= Bif,. .., Bl Asf, ..., A8,

F!i.l"a“-f.] let TB]EI wra lTﬂmﬂl TA:H‘! v !TA,J be I"s
immediate subproofs of By 8,..., Bnf, A8, ... A8
By the induction hypothesiz, there exist proof trees
T‘IHJ_FI "'!I‘E & I‘;_,E:- --:T;_,‘E of B'.Lﬁ:' . ':EmErAE'El
0ac ,Anﬂ bjl' ?.i with the same answer substitutions as
Thay o118, 8, Tagey-. T 9. Let B be the union
of the label sets of T 4,..., Tg_g Tayer---+ Ty, 0 and
{A= Apf}. From Lemma 3.1.1, & is the restriction of
an m.g.u. of Ey to the variables in A,

Next, from Lemma 3.2.2, there exist proof frees
TL.H '-hTr,rﬂ'_ln,l"' |T:r1“ of Bll"':Bml A?l"":rA'ﬂ-
by F; such that they are-identical to T_‘élf,...,ﬂmﬂ,
Th,00 -+ T4, o except for the left-hand sides of the root
labels. Let T be a proof iree cbiained by putting a
root node labelled with “4, = By" over T ,..., Ty .
Let T be a proof tree oblained by putling & root node
labelled with “4 = Ag” ever T} T% ..., Ty , and E'
be the label set of T, 1.2, the union of the label sets of
Tays--sTh s Thys---1 Ty, and {4 = dg, 4; = Bol.
Then Ey is identical to (E' — {4; = Bp})f. From
Lermma 3.1.2, & is the restriction of an mge. of E'
to the variables in 4, since # does not substitute any
term for the variables in A. Hence, T¥ is a proof tree of
A with answer substitution & by F;. (See Figure 5.2.2.)

Figr:
A= Apf

Togurs-- s T Tt i Tan

induction J}

P'._ “A=A.u"

T TaonThgpaTay Ay = Bg” \
=/ A

Lemm 3'23 Tuﬂg" e F?‘EIL‘, PT;;!" v T:l"
Figure 3.2.2 Construction of Proof Tree for Case 2

Case 3 : C is the result of folding a clause C¥ in F,.

Let C' be the folded clause of the form

Ag = Ay, As,. . AL (n2>0)
and D be the folding clanse of the form

By = By, By,..., By {m>10).
From Lemma 3.2.1, without loss of generality, we can
assume thal dy,..., 4, are instances of By,..., By,
say by an instantiation 4, and C is of the form

Au_ = Bﬂp,ﬂm.‘.],. . .-,Aﬂ,.

First, let Toye, Tapygs - -1 Ta, be T's immediate
subproofs of Boll, Ams1, ..., An. By the induction hy-
pothesis, there exist proof trees T 5, 1% ,..., T} of
Bol, Amaty - ooy An by P with the same answer subsii-
tutions as Tmye, Th,yr- - T, - Let By be the union
of the label sels of Tq 5, 15 ..., Ty and {4 = 4q}.
From Lemma 3.1.1, & is the restriction of an m gu. of
Fy to the variables in A.

Second, by the hypothesis AM{F;) = M([F), there
exists a prool tree Sg s of Byl by Fp with the same
answer substitution as T ,. Because the predicate of
Byf is a new predicate, the clause used at the root of
Spye 18 in Fuep. Farther, by folding condition (c), this
clanse should be D). Hence, the root label of Spyp is
“Hyf = Bp," and Sg,¢'s immediate subproofs are proof
treess .S'B” e ,Sﬂm ofBT_, v .Bm- Let Ey be the union
of the label sets of Sgoe, Ty _,,--., T, and {4 = Ag}.
Then, from Lemma 3.1.1, & is the restriction of an
o g of Es to the variables in A.

Third, from Lemma 3.2.3, there exist proof trees
Sayy oS4, of 4y, ., Ay by Fy such that they are

identical to Sg,,...,Sg,, exeept for the left-hand sides
of the root labels, since 8,8 = 4;,..., Bl = 4. from
folding condition (a). TIet Fa be the union of the label
setz of S.-iu 2 ,;?Am,ﬂm_“l, . ..‘T_'rAn and -[_.4 = An}.
Then Fj is identical to (E3 — {Bgf = By})d. From
Lemma 3.1.2, & is the restriction of an m.g.u. of Ej te
the variables in 4, since ¥ does not substitute any term
for the variables in 4.

Last, again by the hypothesis M{F;) = M(F,),
there exisi proof trees T ,..., T, of 4y,..., 4m by
F; with the same answer substitutions as Sy,,..., Sa_,.
Let T be a proof tree of 4 by F; obtained by putting
a rool node labelled with “4 = A" over Tfa, aus ,Tf,m,
ﬂm“, very Ty, and E' be the label set of T", i.e, the
union of the label sets of T , L e R e i
and {4 = Ap}. From Lemma 3.1.1, « is the restriction
of an m.g.u. of . Hence, T is & proof tree of A with
answer substitution o by B, (See Figure 3.2.3)

NA.:A{’H‘

Piyy: ~

Tﬂ.l-Thnfls---rT.&..

induction {}

DJ4.=A{;.
i IE‘QI"T-;m+||"""T:in
I;L?""ﬁm'nmn"“’ﬂn
hypothesis || 1t hypothesis
“Bufl = By"

Fy: .-""’ll \, = SAJ.I"'!IS-I“

Sgyy-0,Fp, Lemma 3.2.5

Figure 3.2.3 Construction of Proof Tree for Case 3

3.3 Total Correctness

Let Py and P; be Prolog programs such that P; is
obtained from F; by applying the transformation rules.
A transformation of Prolog program is said to be totally
correct when M[Fy) = M(F;) holds. This subsection
proves fotal correctness. First, several definitions are
prepared,

Definition Weight of Proof Tree

Let Fy be the initial program in a transformation
sequence, T be a proof tree of atom A by Fp, and s be
the size of T Then the weight of T, denoted by w(T),
s defined &= follows:

s =1, il the predicate of 4 is
a new predicate ;

8, if the predicate of 4 is
an old predicate,

w(T) =

Example 3.3.1 Lel Fy be the initial program in Example
2.1, and 17,75 be proof trees in Example 3.1.1. Then
w{Ti) =2 and w(T:) = 4.

417

Definition Weight of Atom

Lat Py be the initial program in a transformation
sequence, A be an atom, and ¢ be a substitution. The
weight of A with answer substitution &, denoted by
wd, o), iz the minirum of the weight of the proof trees
of A with answer substitution «.

Example 3.3.2 Let Fy be the program in Example 2.1,

and T} and T; be proof trees in Example 3.1.1. Then
w(insert{},[Y].Z), <Z = [XY]>) =2,

because 17 is the minimum proof tree of ‘insert (X, [Y],Z)'

with answer substitution <Z«=[X,Y]> by 5. Similarly,
w(insert{X,[Y],2), <Z«=[Y X]=) =4

Definition Weight of Proof Forest

Let Fy be the initial program in a transformation
sequence, F be a proof forest by Py, and 13, 75,..., 15
be the component proof trees of F. Then the weight of
F is defined as the sum of the 17, T, ..., T, weights,
Le, wlFYy = w(Ty) + w(Ty) +--- +w(T,).

Example 3.3.3 Let Py be the initial program in Example
2.1, and F; and Py be proof forests in Example 3.1.2.
Then w(F,) = 2 and w(F;) = 4.

Definition Weight of Atom Sequence

Let Fy be the initial progeam in a transformation
sequence, 41, Az, ..., 4, bean atom sequence, and o be
a subsiitution. The weight of 4,, 44, ..., A, with an-
swer substitution , denoted by w((d;, Ag,...,4,), 7),
is the minimum of the weight of the proof forests of
A, Az, ..., An with answer substitution 7.

Example 3.3.4 Let Fy be the program in Example 2.1,
and Fy and Fy be proof forests in Example 3.1.2. Then
w((ap(U,V,[Y]),ap(U,[X[V],N)),
<U<=[], V=[¥], N=[XY]>) =2
becanze F is the minimum proof forest of *ap{U,V [Y]),
ap{ U [X|V],N)" with answer substitution <U <[], V<=
[Y]: N« [x:-‘-lr]} by Po. Similarly,
w((ap(U,V]!“‘ U,[X|V],N)),
<T &= =[], Ne=[Y X]>) =4

The following noticns, which are generalizations
of those in (Tamali 1987), play an important role in
the following proof.

Definition Descent Clause

Let F; be a program in a transformation sequence
starting from initial program Fy, 4 be an atom, e be a
substitution for the variables in A, and © be a clanse
in B of the form

Aﬂ i J4‘1414'33" ':r"'iﬂ
whose head Ag is unifiable with A, say by an m.gu. 5.
Then clause ' is called a descent clavse of atom A with
answer subsiitution o in F; when there exisis a proof
forest of 4y, Ag,..., Aq with answer substitution v by
Fy such that
{a) the resiriction of an mpgu. of 7 and 7 to the
variables in 4 is o,

(b) w{4, o) 2 w((A1,4z,...,An),7), and

418

() wid, o) > w4y, Az, ..., 4s), 7) when C satisfies
folding condition (d).

Definition Weight Completeness

Let P be & program in a transformation sequence
starting from initial program By, Then F; is said
to be weight complete if and only if, for any alom-
substitution pair (A, &) in M(Fy), there exists a descent
clanse of 4 with answer substitution ¢ in .

The npext three lemmas correspond to Lemma
3.2.1, 3.2.2 and 3.2.3.

Lemma 3.3.1 Let F; be a program and < be a clanse
in Fi. Let ' be a clause obtained from C by permuting
the atoms in the body of &, and P! be (F;={C}Huic'}.
Then F; is weight complete if and only if P/ is weight

cnmp]ete.

Proof. When i =0, it is proved in the same way as the
proof of Lemma 3.2.1. When i > 0, it is obvious.

This lemma implies that we can arbitrarily rear-
range the atoms in the bodies of the clanses in program
F; before applying the next transformation rule while
keeping weight completeness of F,

Lemma 3.3.2 Let Fy be the initial program of a
transformation sequence, and T' be a proof tree of atom
Al with answer substitution o by program Fp. Let T'
be the labelled Lree obtained from T by replacing Af in
the left-hand side of the root label with 4, Then T is a
proof tree of atom A by program Fy, and w(T') = w(T").

Proof. Obwvious.

Lemma 3.3.3 Let Fy be the initial program of a
transformation sequence, T' be a proof tree of atom A4
with answer substitution ¢ by program Fp, and @ be
a substitution such that # and ¢ are unifiable. Let T
be the labelled tree obtained from T by replacing A
m the left-hand side of the root label with 48. Then
T is & proof tree of atom Af by program Fp, and

w(T) = w(T).
FProof, Obvious.

After proving one more lemma, we will start the
proof of total correctness,

Lemma 3.3.4 Let F; be a program in a transformation
sequence starting from initial program Py, and £ be a
clanse in P If C deesn’t satisfy folding condition {d),
all the predicates of atoms in the body of C are old
predicates,

Proof. By the hypothesis, either © remains as it is
during the transformation sequence from Py to B, or C
is introduced by folding. In the former case, the lemma
obviously holds. In the latter case, there existz a clanse
C" in some B (j < 1), and € is the result of folding
C'. Then C" satisfied folding condition {d). But, as the

condition is not affected by folding, © also satisfies the
condition, which contradicts the hypothesis.

Lemma 3.3.5 Let P bea program in a transformation
sequence starting from initial program Fy. o P is
weight complete, then AM(F) 23 M F).

Proof. The proof is by induction on atom-substitution
pairs ordered by the following well-founded ordering =
t (A, o) = (B,7) if and only if
(a) wid,s) > w(B,7), or
(b) wiA, o) = w(B,r) and the predicate of 4 is a
new predicate and the predicate of B is an old
predicate,
Let (4,0} be an atom-substitution pair in M([F).
Then there exists a dezcent clause O of A with answer
substitution o in F;, where C is & clause in F; of the
form
Ag 1= A, .., A,
and 5 is an m.gu. of 4 and Ay. From the definition of
descent clause,
wt"d'l ﬂ'} = u'{{"qla e 'TAH:I}T}
holds, where the resiriction of an m.gu. of 5 and
to the variables in A is o. Let F be the minimum
proof forest of Ay,..., 4, with answer substitution

by Fp and T7,...,7, be iis component proof irees of
Aq, .o A, with answer substitutions oy, ..., &5, Then
wid o)z wi(dy, ds, ..., 4.0, 7)
= w(F)
2 w(Ty)
= w(4;, ;)
holds. If
w{d, o) > w({d,... 4.),7)
holds, (A, e) = (A;, o;) holds. Tf
W{A, l’} = w{[Alr e :Ah]:'r}

holds, by condition (c) of descent clause, C doesn’t sat-
isfy folding condition (d), hence, from Lemma 3.3.4,
no new predicate appears in A4,,..., A,. This implies
that (4,0) = (4;,0;) holds. Hence, whichever holds,
(4,0) = [A_{,tr,-') holds. Then by induction om =,
{Aj,,ﬂj) i= in Ad P;L and thers exisis a pruo[forest
of 41,..., 4, with answer substitution = by F;. Thus
(A, e) is in M(F).

Lemma 3.3.6 The initial program Fy of a transfor-
mation sequence is weight complete.

FProof. Let {A,o) be an stom-substitution pair in
M(F), T be the minimum proof tree of A with an-
swer substitution & by By, and € be the clapse used at
the root of T of the form
Ag == A, Aa,. .. A,

Then, obviously & satisfies conditions {a),(b) of descent
clause. In addition, C' satisfies folding condition (d) if
and only if the predicate of C's head is an old predicate.
In that case, obviously condition (¢) of descent clause is
satisfied. Thus € is a descent clause of A with answer
substitution o

Lemma 3.3.7 Let F; be a program in a transformation
sequence starting from initial program Py. I F is

weight complete, then the next program Fi;y in the
sequence 15 also weight complete.

Proof. Let (4,0) be an atom-substitution pair in
M(Py). Becanse F; is weight complete, there exists
& descent clause © of A with answer substitution « in
P, where C 15 a clanse of the form
Ap = A‘[,A:,...,ﬂh {'I'i- = [I]

and A and Ag are unifiable, say by an m.gu. 5. 'We will
show that there also exists a descent clause of A with
answer substitution & in Ppyq.

Casel: Cizm Fiy.
' 13 & descent clanse of A with answer substitu-
tion ¢ in Fipq.

Case 2: iz unfolded.

From Lemma 3.3.1, without loss of generality, we
can assame that 4; is unfolded. Since ' is a descent
clavnse, there exists a proof forest of 4;, 4,,..., A, with
answer substitution = by Fp such that the restriction of
an m.g.. of 7 and 7 to the variables in 4 is o, Let F be
the minimum proof forest among such proof forests, and
L4540, .-, 54, be F's component trees with answer
snbstitutions ey, 7g,..., 05 by Fp. Further, since F; is
weight complete, there exists a descent clause D of 4,
with answer substitution oy in B, where D 15 a clause
of the form

Bu i= B],...,Bm {m 2“}
and 4; and By are unifiable, say by an m.gu. #. Let
" be the result of unfolding ' using 0. Then € is of
the form

Apgf = Bif,..., Bl Aaff,. .. Anf.

First, since I' is a descent claise, there exists a
proof forest of By,..., By with answer substitulion
by Fy such that the resiriction of an m.g.u. of # and =
to the variables in 4; is ¢, Let F be the minimum
proof forest among such proofl forests, Sg,,..., 58, be
Fi's component proof trees, and E, be the union of
the label sets of Sg,,.00y T8 Sdzy e 4, and {4 =
Ag, Ay = Bp}. From Lemma 3.1.1, ¢ is the restriction
of an m.g.u. of K, to the variables in A.

Next, from Lemma 3.35.3, there exist proof trees
Spyty -y OB of Bif, ..., Byof by Fy such that they
are identical to S4,,...,54, except for the left-hand
sides of the equations in the roots labels. Similarly, from
Lemma 3.3.3, there exist proof trees of S4.9,...,54,¢
of Aaf, ..., Anl by Fp such that they are identical to
S4.,-.., 54, excepl for the lefi-hand sides of the root
labels. Let F' be the proof forest consisting of Sp,e,
corsSB8, 5408, -1 54,8, and E' be the union of the
label sets of SEyy ey TB s Flgly ooy TAL0 and '[.r'-l =
Aof}. Then B is identical Lo (B, — {4, = Hg})f. From
Lemma 3.1.2, & is the restriction of an m.g.u. of B to
the variables in 4, since # does not substifute any term
for the variables in 4. Let §' be an m.g.u. of 4 and 4,8,
and 7 be an m.g.u. of the label set of F'. Then, F' isa
proof forest of B18,..., B0, A:0, ..., A, with answer
substitution +' by Pg such that o is the restriction of
an m.g.u. of #' and 7 to the variables in A. (See Figure
3.3.1.)

419

Py
"-'41 = Bl]'. 31111' "rsﬂ.
1 B0, S, S8 =

Lemms 3.3.3 Sg,,...,58

SH.J,...

Figure 3.3.1 Construction of Proof Forest for Case 2

Last, from Lemma 3.3.3,
w{SB!.] = w':SB:L‘}!

w(Sp,) = w(Ss.9),
w(Sa,) = '”':S-"-i":':

w(Sa,) = w(Sq.s)
holds. Hence
u{;‘i,ﬂ}z W{l:!i]ll ."12, ey
= w(F
= wlSa,) +w(Sa,) +--
=wldy, o)+ wl54,) +
= WHHh e :I'Bm}:l L !
Fw(Sa) + -+ wiSa,)
= w1} + w(Sa,) + - +w(5a,)
=w(Sp,) + - +w(Sg,)
 Fw(Sag) 4+ 4 w(Sa,)
= w(Sp,e) + -+ w(5p,.0)
Fuw(Saz0) +- -+ w(S4,9)
=w((Byf,..., By, A, ... K A.8), 7).
helds. Further, if the predicate of By is an old predicate,
I satisfies folding condition {d), and if not, ' does{from
Lemma 3.3.4.) Then, from condition (c) of descent

c]nuﬁe either

wid, o) > u.-{l:ﬁ_l LAL) T

w[—"-lr“l] = WHEIV b rBﬂ'I]: ﬂ}
halds. Whichever helds,

wid, o) > w((Bf,... Bnf, Al ..., A.0), f‘]
holds Thus, " 15 a -:lesoent cla.usﬂ of A w1t]1 AnSWer
substitution o in FPiy.

Au),7)

4+ w(Sy,)
-+ w(S4,)

or

Case 3: O is folded.
Let I} be the folding clause of the form

By = By,...,By (m>10)
and €’ be the resnlt of folding. ' From Lemma 33, 1,
wilhout loss of generality, we can assume that 4,,. .
An, are instances of By, ..., By, say by an in.at.a.nf.ialian
#, and C' is of the form

J'iu. i Egﬂ,,:!‘.;mq.]_.. v ,Aﬂ.

First, since € is a descent clause, there exists a
proof forest of 4;,..., 4, with answer substitntions r
by Fp such that the restriction of an m.g.n. of 5 and
7 to the variables in 4 15 ¢. Let F be the minimum
proof forest among such proof forests, 5a4,,...,54, be
F's component proof trees of Ay, ..., A, with answer
substitutions ey,...,0s by Fy, and E, be the union of
the label sets of 54,,...,54, and {4 = Ag}. From
Lemma 3.1.1, o is the restriction of an m.g.u. of & to
the variables in 4.

Next, from Lemma 3.3.2, there exist proof trees
Sy oo Sm,, of By,..., By by Py such thal they are

420

identical to 54,,..., 54, except for the left-hand sides
of the root labels, since B = Ay,...,Bn8 = A,
from folding condition (a). Let Sp,e be a proof tree
obfained by putting a root node labelled with “Byf =
By" over Sg,, ..., 58, , F' bethe proof forest consisting
of 8p0:Samysr---1 54, and E' be the union of the
label sets of Spys, Sy, -5 Sa, and {4 = Ag). Then
Ey is identical to [Ef — {Bﬂﬂ = Bﬂ}]l?. From Lemma
312, ¢ iz the restriction of an mgu. of E' to the
variables in A4, since # does not substitute any term
for the variables in A. Let 7' be an m.g.u. of the
union of the label sets of Sge, 54,50, - -1 54,. Then,
F' is a proof forest of Bo#, A4y, ..., A, with answer
sebstitution v by Fy such that the restriction of an
m.g.u. of 7 and ' to the variables in 4 is ¢, (See
Figure 3.3.2.)

Py:
“Hof = By, ShmgareooaSa

"5'—_5.1.,..- ...Sﬂm.Sﬂ_“,...,S“
Lemme 3.3.2

'SE| == 53-
Figure 3.3.2 Construction of Proof Forest for Case 3

Last, let oy be the answer substitution of Sg.p.
Because the predicate of Bpf is a new predicate, the
clanse vsed at the root of any proof tree of Byf by Fy is
in Fhep. Further, by folding condition (c), this clause
should be D. Hence, the root label of such a proof
free is “Bpfl = Hp,” and immediate subproofs of such a
proof tree are proof trees Sg,,..., 55, of By,..., Bu.
Sinee the weight w(Byf, og) is the minimum size of such
procf trees and the predicate of By is a new predicate,

w(Byb, o0) < w(Sg,) -+ -+ w(Ss,,)
holds. In addition, by folding condition (d) and the
definition of descent clause,
wid, &) > w4y, .
and from Lemma 3.3.2,
w(8g,) = w(Sa,),

s A T)

W‘I:Sﬂm} = '!H{S_gm}
held. Hence
wld, o)> w({dy,...,4,), -rg
=w(Sq, 14 +w(Ss)
+W(54nqe) + 00+ w(S4,)
= w(Sp,) + -+ w(5p,,)
+w(51"m{1] + e + mts-‘-n.]
= w(Bob, oo) + w(Ams1, Tmi1)
+ T + w(An:Q‘n}
= w{{E.;.I?, Am+l: vy Aﬂ}: "J}
holds. Thus, ©¥ is a descent clause of 4 with answer
substitution & in -Pi-l-ld

Theorem 3.3.8 Preservation of Success Set

The success set of any program in a transforma-
tion sequence starting from initial program Py is iden-
tical to that of F.

Froof, From Lemma 3.3.6 and 3.8.7, Fiy1 is weight
complete, and then from Lemma 3.3.5, M{P.y) 2

M(Po) for i = 0,1,...,N — 1. Further, from Lemma
334, M{Fi41) = AM(F) holds for i =0,1,..., ¥ — 1.

The original result by Tamaki and Sato | Tamaki
and Sato 1984) (Tamaki 1987) can be derived as a
corallary.

Corollary 3.3.9 Preservation of Least Herbrand
Model
The least Herbrand model of any program in a
transformation sequence starting from initial program
Fy iz identical to that of By

Proof. Let P be a program, M{P) be the set of all
the ground atoms Ar such that atom-substitution pair
(A, r) is included in A4(P). Then M(P) is the least
Herbrand model of P, and from Theorem 3.3.8, M(P)
s preserved. Thus, the feasi Herbrand model is pre
served.

4. Discussion

Preservation of success set widens the safe nse of
the Prolog programs oblained by Tamaki-Sato’s trans-
formation, which is not validated by preservation of
least Herbrand model. For example, consider the ‘seiof’
predicate of DEC-10 Prolog. A call ‘setof(X,P,S)’ means
“8 is the set of all instances of X such that P suceceeds”.
Two programs which are equivalent in the sense of the
least Herbrand model semantics do not necessarily be-
have in the same way to the “setof” call. For example,
consider again the two programs P, and P we have
shown in Section 1. Although these two programs are
equivalent in the sense of the least Herbrand model se-
mantics, to a query

7. setof(X,p(X),Y),

Py suceeeds wilh answer substifution <X &< a, ¥«
[a]>, while P, fails. However, when the success sets of
programs are identical, they behave in the same way to
any ‘setof’ call il the call stops. (Note that the success
sets of F; and Pp are not identical) Hence, we can
safely use a predicate as an argument of ‘setof’ when
the program for the predicate is obtained by Tamaki-
Sato's trapsformation.

In this paper, we have not mentioned the goal re-
placement rule, which Tamaki and Sato (Tamaki and
Sato 1984,1986) (Tamalki 1987) adopted as one of the
basic transformation rules. We expect that, in appli-
cation of the goal replacement rule, slightly strenger
conditions than those by Tamaki and Sato would guar-
antee the equivalence-preservation in our sense.

2. Conclusions

We have shown that Tamaki-Sate’s unfold/fold
transformation of Prelog programs preserves equiva-
lence in a stronger sense than that of the usual least
Herbrand model semantics, which Tamald and Sato
originally showed. That is, any program obtained from

an initial program by applying Tamaki-Sato’s transfor-
mation returns the same answer subsiitutions as the
initial program for any given top-level goal.

BRecently, it was proven that any program ob-
tained from an initial program by applying Tamaki-
Sato’s transformation returns the same answer substi-
tutions the same number of times as the initial program
for any given top-level goal. See (Kanamori and Kawa-
mura 1988) for the details.

ACKNOWLEDGMENTS

This work is based on results of Tamaki and Sate
{Tamaki and Sato 1984,1986) (Tamaki 1987). The au-
thors wonld like to express deep gratitude to Mr. H.
Tamald (ITbaraki University) and Dr. T. Sato (Elec-
trotechnieal Laboratory) for their perspicuous and stim-
ulative works. o

This research was done as a part of the Fifth Gen-
eration Computer Systems project of Japan (Kanamori
and Horiuchi 1987) (Kanamori and Fujita 1987) {Kana-
mori and Maeji 1886). We wonld like to thank Dr. XK.
Fuchi (Director of ICOT) for the opportunity of doing
this research, and Dr. K. Forukawa (Vice Director of
ICOT), Dr. R. Hasegawa (Chief of ICOT 1st Labora-
tory) and Dr. H. Tto(Chief of ICOT 3rd Laboratory) for
their advice and encouragement,

REFERENCES

Burstall, RM and J.Darlington (1977). “A Trans-
formation System for Developing Recursive Programs”,
LACM, Vol24, No.1, pp.44-67.

HKanamori, T and K.Horiuchi (1987). “Construction
of Logic Programs Based on Generalized Unfold/Fold
Rules”, Proc. of 4th International Conference on Logic
Programming, pp. T44-768, Melbourne. Also a pre-
liminary version appeared as [COT Technical Report
TR-177, 1986.

Kanamori, T and H.Fujita (1987). “Unfold/Fold Logic
Program Transformation with Counters”, Presented at
U.5-Japan Workshop on Logic of Programs, Honolulu.
Also a preliminary version appeared as ICOT Technical
Report TR-179, 1988,

Kanamori, T and M.Maeji (1986). “Derivation of Logic
Programs from Implicit Definition”, ICOT Technical
Report TR-178.

Kanameori, T and T.Kawamura (1988), “Preservation

of Stronger Equivalence in Unfold /Fold Logic Program

Transformation (II)", ICOT Technical Report TR-403.
Maher, M.J. (1986). “Equivalences of Logic Pro-
grams”, Proe. of 3rd International Conference on Logic
Programming, London.

Manna, Z and R.Waldinger (1979). “Synthesis :
Direams = Programs”, IEEE Trans, on Software Fn-
gineering, Vol.5, No.4, pp.264-328.

Tamaki, H and T.Sato (1984). “Unfold /Fold Transfor-
mation of Logic Programs®, Proc. of 2ad International

Logic Programming Conference, pp.127-138, Uppsala.

421

Tamaki, H and T.Sato (1986). “A (Generalized Correct-
ness Proof of the Unfold /Fold Logiec Program Transfor-
mation”, Department of Information Science THE6-04,
Ibaraki Universily.

Tamaki, H (1987). “Program Transformation in Legic
Programming”, (in Japanese) in “Program Transfor-
mation”, eds. K.Fuchi, K Furukawa and F.Mizoguchi,
Kyoritsu Pub. Co., pp.39-62.

